首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catecholaminergic neurons, which take up and retain exogenous norepinephrine labeled with tritium, were studied by means of high resolution radioautography, in the substantia nigra, the substantia grisea periventricularis, and the locus coeruleus of the rat. Under the conditions required for the radioautographic detection of exogenous norepinephrine-3H, it was established that (1) glutaraldehyde was the most suitable fixative for preserving the labeled amine in situ; (2) norepinephrine-3H itself, rather than metabolites, accounted for most of the reactions detected in catecholaminergic neurons. At various time intervals after an intraventricular injection of norepinephrine-3H, the tracer reached a concentration 15–100 times higher, and disappeared at a slower rate, in presynaptic axons (t½:4 hr) than in nerve cell bodies (t½:0.8–1.3 hr). After pretreatment with a monoamine oxidase inhibitor, the radioautographic reactions increased and persisted longer, especially in the preterminal axons. Within neurons, the labeled amine was ubiquitously distributed in the nerve cell body and concentrated in presynaptic axons and synaptic terminals of various morphological types. Although large granular vesicles were usually present in the labeled axonal bulbs, no structural characteristic could be specifically ascribed to catecholaminergic neurons. It is suggested that exogenous norepinephrine bound to macromolecular complexes is present in all parts of catecholaminergic neurons and mainly concentrated within presynaptic axons.  相似文献   

2.
1. A comparison of phenol, pentachlorophenol (PCP) and procaine effects on axonal conduction were studied in vitro in the sciatic nerves of toad. PCP and procaine were respectively 6.3 and 3.15 times more potent than phenol in blocking axonal conduction. 2. Effects of PCP on synaptic transmission were studied in vitro in the eighth sympathetic ganglion of toad. 3. Axonal conduction block and synaptic transmission block by phenol was reversible, but not that by PCP. 4. When the PCP ionization was increased, a lesser per cent reached the site of action, reducing its capacity to block the axonal conduction and ganglionic transmission. 5. PCP plus, 3,4-Diaminopyridine (3,4-DAP) decreased synaptic transmission block from post-ganglionic compound action potential (CAP) responses to supramaximal preganglionic stimulation.  相似文献   

3.
Effects of ethanol, tri-chloroethanol and acetaldehyde on synaptic transmission were studied in vitro in the VIIIth sympathetic ganglion of bullfrog. Acetaldehyde and trichloroethanol were, respectively, 276 and 382 times more potent than ethanol in blocking synaptic transmission. Transmission block by ethanol and trichloroethanol was reversible, but not that by acetaldehyde. The concentrations of ethanol, trichloroethanol and acetaldehyde that blocked synaptic transmission did not affect preganglionic axonal conduction.  相似文献   

4.
Post-synaptic potential (PSP) variability is typically attributed to mechanisms inside synapses, yet recent advances in experimental methods and biophysical understanding have led us to reconsider the role of axons as highly reliable transmission channels. We show that in many thin axons of our brain, the action potential (AP) waveform and thus the Ca++ signal controlling vesicle release at synapses will be significantly affected by the inherent variability of ion channel gating. We investigate how and to what extent fluctuations in the AP waveform explain observed PSP variability. Using both biophysical theory and stochastic simulations of central and peripheral nervous system axons from vertebrates and invertebrates, we show that channel noise in thin axons (<1 µm diameter) causes random fluctuations in AP waveforms. AP height and width, both experimentally characterised parameters of post-synaptic response amplitude, vary e.g. by up to 20 mV and 0.5 ms while a single AP propagates in C-fibre axons. We show how AP height and width variabilities increase with a ¾ power-law as diameter decreases and translate these fluctuations into post-synaptic response variability using biophysical data and models of synaptic transmission. We find for example that for mammalian unmyelinated axons with 0.2 µm diameter (matching cerebellar parallel fibres) axonal noise alone can explain half of the PSP variability in cerebellar synapses. We conclude that axonal variability may have considerable impact on synaptic response variability. Thus, in many experimental frameworks investigating synaptic transmission through paired-cell recordings or extracellular stimulation of presynaptic neurons, causes of variability may have been confounded. We thereby show how bottom-up aggregation of molecular noise sources contributes to our understanding of variability observed at higher levels of biological organisation.  相似文献   

5.
This study examined the ultrastructure of presynaptic terminals after short periods of vigorous acetylcholine (ACh) secretion in the cat superior cervical ganglion in vivo. Experimental trunks of cats anesthetized with chloralose-urethane were stimulated supra-maximally for periods of 15–30 min and at several frequencies including the upper physiological range (5–10 Hz). Stimulated and contralateral control ganglia from each animal were fixed by intra-arterial aldehyde perfusion, processed simultaneously, and compared by electron microscopy. Stimulation produced an absolute decrease in the number of synaptic vesicles, an enlargement of axonal surface membrane, and distinct alterations in the shape of presynaptic terminals. Virtually complete recovery occurred within 1 h after stimulation at 10 Hz for 30 min. These results support the hypothesis that ACh release at mammalian axodendritic synapses occurs by exocytosis of synaptic vesicles resulting in the incorporation of vesicle membrane into the presynaptic membrane and that synaptic vesicles subsequently are reformed from plasma membrane.  相似文献   

6.

Background

Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye.

Methodology/Principal Findings

We ‘imaged’ the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3±0.3 m/sec, mean ± SD) for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec). Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated.

Conclusion/Significance

Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion of the population activity will not be compensated by variability in extraretinal conduction times, estimated from data in the literature.  相似文献   

7.
Bitemporal intracerebral injections of puromycin in mice suppress indefinitely expression of memory of avoidance-discrimination learning. Ultrastructural studies of the entorhinal cortex of puromycin-treated mice revealed the following: (a) Abnormalities were not observed in presynaptic terminals and synaptic clefts; many postsynaptic dendrites or somas contained swollen mitochondria. (b) Dispersion of polyribosomes into single units or condensation of ribosomes into irregular aggregates with loss of "distinctiveness" was noted in a few neurons 7–27 hr after puromycin treatment. (c) Cytoplasmic aggregates of granular or amorphous material were frequently noted within otherwise normal neuronal perikarya. (d) Mitochondria in many neuronal perikarya and dendrites were swollen. Mitochondria in axons, presynaptic terminals, and glial cells were unaltered. The relationships between these lesions and the effect of puromycin on protein synthesis and memory are examined. It is suggested that the disaggregation of polysomes is too limited to explain the effect of puromycin on memory. Special emphasis is given to the swelling of mitochondria. The possible mechanisms and the significance of this lesion are discussed.  相似文献   

8.
Reliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals, is prerequisite for successful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. We show here that in mutants of the small GTPase Rab2, both active zone and synaptic vesicle proteins accumulated in the neuronal cell body at the trans-Golgi and were, consequently, depleted at synaptic terminals, provoking neurotransmission deficits. Ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40 × 60 nm, segregating in subfractions either positive for active zone or synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, Rab2 acts upstream of Arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we identified a Golgi-associated assembly sequence of presynaptic precursor biogenesis dependent on a Rab2-regulated protein export and sorting step at the trans-Golgi.  相似文献   

9.
THE ULTRASTRUCTURE OF THE CAT MYOCARDIUM : II. Atrial Muscle   总被引:23,自引:6,他引:17       下载免费PDF全文
The ultrastructure of the cells specialized for contraction in the atrium and ventricle of young adult cats are compared. The cells specialized for conduction are not included. In addition to possessing distinctive atrial granules, the cells of the atrium are smaller in diameter (5–6 µ) than ventricular cells (10–12 µ) and have strikingly fewer T tubules. These latter differences are discussed in terms of their possible significance for the rate of conduction of the action potential. It is suggested that the very small number of T tubules in atrial cells may compensate for the small cell diameter, and thus permit rapid conduction of the action potential across the surface of the atrium. Coated dense vesicles found in association with the sarcoplasmic reticulum at the level of the Z line in ventricular muscle are more evident in atrial cells. In the virtual absence of T tubules in atrial cells, the sub-sarcolemmal cisternae of the sarcoplasmic reticulum are almost exclusively at the cell periphery. The ends of the cells and their processes in ventricular muscle are rectilinear with the interdigitated portions of the intercalated discs oriented transversely, whereas those of the atrium are often oblique to the myofilament axis. This difference may be related to the lower mechanical tension on atrial cells.  相似文献   

10.
1. Recording with glass micropipette electrodes inserted close to the synaptic region, in the presynaptic and in the postsynaptic fibers of the giant synapse in the stellate ganglion of the squid, has been accomplished. 2. The forms of the spike and of the synaptic potential are very much like those reported earlier (Bullock, 1948) from macroelectrodes. The crest time and the rate of fall are labile and depend on the state of fatigue, though the time of initiation of the postsynaptic potential does not. 3. It is concluded after examination of both intra- and extracellular recordings that there is a real synaptic delay of the order of 1 or 2 milliseconds at 15–20°C. 4. There is sometimes a very small and sometimes no visible deflection in the intracellular postsynaptic record attributable to the presynaptic spike. It is concluded that transmission cannot be electrical. 5. The amplitude of the postsynaptic potential can be controlled over some range by the amplitude of the presynaptic potential. 6. Hyperpolarization of the postsynaptic membrane results in increase in amplitude of spikes up to 200 millivolts, in increase in the membrane potential level at which the spike flares up, but in no considerable change in the amplitude in postsynaptic potential. 7. The postsynaptic potential can add to the late falling phase and the undershoot of an antidromic spike in the postfiber but cannot add to the crest or early part of the falling phase. The earliest part of the antidromic spike during which the postsynaptic potential can add is probably a period of refractoriness to electrical shock by analogy with the properties of the axon.  相似文献   

11.
Bovine semitendinosus muscles were sampled immediately after death, after 24 hr postmortem with storage at 2°, 16°, or 37°C, and after 312 hr postmortem with storage at 2° and 16°C. A biopsy technique was used to prevent shortening during glutaraldehyde fixation. Postfixation in osmium tetroxide was followed by embedding in an Epon-Araldite mixture. Bovine muscle was supercontracted after 24 hr storage at 27deg; but was only slightly contracted after storage at 16° for 24 hr. Muscle held at 37° for 24 hr was slightly less supercontracted than the 2° muscle. Striking similarities existed between muscles stored at 16° and at 2°C for 312 hr. Both were slightly shortened with narrowed I bands and an area of increased density, probably due to overlap of thin filaments in the middle of the A band. Postmortem shortening was accompanied by banding-pattern changes similar to those predicted for contracting muscle by Huxley and Hanson's sliding filament model. Treatment of myofibrils with 0.05% trypsin resulted in a rapid loss of Z lines and, in supercontracted myofibrils, caused a return of the banding pattern of resting muscle.  相似文献   

12.
The extrinsic eye muscles of the killifish (F. heteroclitus) were fixed in OSO4 (pH 7.6) and subsequently dehydrated, embedded, and sectioned for electron microscopy. The fine structures of neuromuscular junctions and of sarcoplasmic reticulum were then observed. The neuromuscular junction consists of the apposition of axolemma (60 to 70 Å) and sarcolemma (90 to 100 Å), with an intervening cleft space of 200 to 300 Å, forming a synaptolemma 400 to 500 Å thick. The terminal axons contain synaptic vesicles, mitochondria, and agranular reticulum. The subsynaptic sarcolemma lacks the infolding arrangement characteristic of neuromuscular junctions from other vertebrate skeletal muscle, making them more nearly like that of insect neuromuscular junctions. A comparison between the folded and non-folded subsynaptic membrane types is made and discussed in terms of comparative rates of acetylcholine diffusion from the synaptic cleft and resistances of the clefts and subsynaptic membranes. The sarcoplasmic reticulum consists of segmentally arranged, membrane-limited vesicles and tubular and cisternal elements which surround individual myofibrils in a sleeve-like arrangement. Triadic differentiation occurs at or near the A-I junction. Unit sleeves span the A and I bands alternately and consist of closed terminal cisternae interconnected across the A and I bands by tubular cisternae. The thickness of the sarcoplasmic membranes increases from 30 to 40 Å in intertriadic regions to 50 to 70 Å at the triads. The location of the triads is compared with previously described striated muscle from Ambystoma larval myotomes, cardiac and sartorius muscles of the albino rat, mouse limb muscle, chameleon lizard muscle, and insect muscle, with reference to their possible role in intracellular impulse conduction.  相似文献   

13.
Summary The morphological evidence for a direct autonomic innervation of the mouse vomeronasal glands is presented. Axonal varicosities containing a few densecore vesicles and numerous clear vesicles (36–60 nm in diameter) make synaptic contacts with the secretory cells at the base of the glandular acini. The axonal presynaptic membrane is associated with a distinct dense material and it is separated from the secretory cell by a synaptic cleft of about 12–14 nm. At the postsynaptical level, coated vesicles can be found. Additional postsynaptical specializations have not been observed.  相似文献   

14.
Fast inhibitory glycinergic transmission occurs in spinal cord, brainstem, and retina to modulate the processing of motor and sensory information. After synaptic vesicle fusion, glycine is recovered back to the presynaptic terminal by the neuronal glycine transporter 2 (GlyT2) to maintain quantal glycine content in synaptic vesicles. The loss of presynaptic GlyT2 drastically impairs the refilling of glycinergic synaptic vesicles and severely disrupts neurotransmission. Indeed, mutations in the gene encoding GlyT2 are the main presynaptic cause of hyperekplexia in humans. Here, we show a novel endogenous regulatory mechanism that can modulate GlyT2 activity based on a compartmentalized interaction between GlyT2, neuronal plasma membrane Ca2+-ATPase (PMCA) isoforms 2 and 3, and Na+/Ca2+-exchanger 1 (NCX1). This GlyT2·PMCA2,3·NCX1 complex is found in lipid raft subdomains where GlyT2 has been previously found to be fully active. We show that endogenous PMCA and NCX activities are necessary for GlyT2 activity and that this modulation depends on lipid raft integrity. Besides, we propose a model in which GlyT2·PMCA2–3·NCX complex would help Na+/K+-ATPase in controlling local Na+ increases derived from GlyT2 activity after neurotransmitter release.  相似文献   

15.
Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABAARs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABAA autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca2+ photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl]i, autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30–150 GABAA channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Nav-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABAA autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity.  相似文献   

16.
To determine whether axonal transport plays a role in the establishment of long-lasting changes in synaptic transmission, the effects of colchicine on transport and on synaptic modifications induced by hyperactivity were studied in the nerve cord of the cockroach Blatta orientalis. Application of a lead weight on the insect's dorsum, and the consequent exaggerated use of antigravity reflexes, facilitated synaptic transmission along a particular nervous pathway in the metathoracic ganglion. Application of colchicine in the prothoracic ganglion reversibly blocked such synaptic facilitation and temporarily interfered with the transport of proteins along the cord. Five components of axonal transport, moving at 2, 10, 25, 75, and 150 mm/day, were altered by colchicine treatment with a temporal course that coincided with the reversible inhibition of synaptic facilitation. These results were brought about by colchicine acting directly on axonal transport at the level of the prothoracic ganglion, rather than on synaptic transmission measured at the metathoracic ganglion. The temporal correlation observed between the effects of colchicine on axonal transport and on synaptic facilitation strongly suggest that the transport process is essential for long-lasting synaptic modifications to take place.  相似文献   

17.
The fine structure of the "spoon" type synaptic endings of the chick tangential nucleus was studied with the electron microscope. These endings often measure ~18 µ in length by ~3–4 µ in width. The axoplasm of the endings contains very few synaptic vesicles, a large number of neurofilaments oriented parallel to the long axis of the nerve fiber, and microtubules and numerous mitochondria. The synaptic membrane complex shows areas of localized occlusion of the synaptic cleft with the formation of an external compound membrane. It has not been decided whether these areas have a disc shape; their length measures between 0.04 and 0.47 µ. The five-layer pattern characteristic of an external compound membrane is shown in specimens fixed with formalin—OsO4, glutaraldehyde—acrolein—OsO4, and acrolein KMnO4 but it does not appear in the glutaraldehyde-OsO4-fixed specimens. The over-all thickness of the external compound membrane varies depending upon the fixative used. The synaptic clefts in the regions between the external compound membrane discs are widened and measure ~300 A. A condensation of dense material occurs in pre- and postsynaptic cytoplasms all along the synaptic membrane complex. The morphological relationships described in the spoon endings are suggestive of electrical transmission.  相似文献   

18.
Glycogen is present in the rabbit retina in monoparticulate form. Beta particles (~ 229 A) are abundant in Müller cell cytoplasm, particularly in its inner portion, decreasing in number outwards along the cell. They are slightly larger (~ 250 A) and much scarcer in neurons, though regularly present in the juxtanuclear Golgi region of ganglion cells. When the retina was incubated in a glucose-free medium, it was rapidly depleted of native glycogen. On further incubation in medium containing glucose-3H plus unlabeled glucose, glycogen reappeared in the form of beta particles of the same size and distribution as native ones, while radioautography revealed the appearance of amylase-labile radioactivity in the same locations. This newly formed glycogen was not associated with any particular organelle. The rate of synthesis, as judged from the amount of radioactivity, was high in the inner portion of Müller cells and declined uniformly toward the cell outer end, following a logarithmic gradient. The rate of synthesis was low in ganglion cells, at best approaching values in the outer portion of Müller cells. The concentration of glycogen in the inner portion of Müller cells is consistent with the view that it may be the source of glucose for the anaerobic glycolysis prevailing in the inner retina.  相似文献   

19.
The structure of nuclei and nucleoli of hepatic cells after short-term ethionine administration was investigated with the electron microscope. By 1½ hr after the injection, a distinct alteration occurred in the nucleoli which was characterized by the appearance of electron-opaque masses in the nucleolonema. After 6–8 hr, the nucleoli showed partial fragmentation into small, dense masses. Large aggregates of interchromatinic granules appeared in the nucleoplasm. Condensation of chromatin became prominent in the nucleoplasm particularly along the nuclear membrane. By 12 hr almost complete fragmentation of nucleoli had occurred. The administration of adenine or methionine at 4 hr prevented the development of nucleolar changes. Also, adenine administration at 8 hr after ethionine completely reversed the nucleolar lesion by 12 hr. After methionine administration at 8 hr, many nucleoli showed incomplete reconstruction with many twisted ropelike structures when viewed 4 hr later. Identical structures were found when adenine was given at 8 hr, and animals were sacrificed 2 hr later. On the basis of this observation, the simplified structures of nucleoli found 2 hr after adenine or 4 hr after methionine appeared to be precursors of the nucleolonema. It is suggested that nucleoli show at least two basic reaction patterns to inhibitors of RNA synthesis, one typified by actinomycin D and one by ethionine.  相似文献   

20.
Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号