共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bovolenta P 《Journal of neurobiology》2005,64(4):405-416
Axon navigation relies on the competence of growth cones to sense and interpret attractive and repulsive guidance cues present along their trajectory. For most neurons, this process is mediated by a limited number of conserved families of ligand-receptor signaling systems, including Ephrin/Eph, Netrins/DCC-Unc5, Slits/Robo, and Semaphorins/Plexin-Neuropilin. Recent studies have demonstrated that some neurons respond also to well-known secreted signaling molecules, best known for their roles as morphogens, such as BMP7, SHH, FGF8, and Wnt. Thus, retina ganglion cell axon navigation is influenced by FGF, SHH, and possibly BMP signaling. Similarly, commissural neurons in the spinal cord respond sequentially to the activity of BMP, SHH, and Wnt to extend toward and away from their intermediate target, the floor plate. The data that support this conclusion will be summarized and how morphogens may signal at the growth cone will be discussed. 相似文献
3.
This review focuses on the energy metabolism during pollen maturation and tube growth and updates current knowledge. Pollen tube growth is essential for male reproductive success and extremely fast. Therefore, pollen development and tube growth are high energy-demanding processes. During the last years, various publications (including research papers and reviews) emphasize the importance of mitochondrial respiration and fermentation during male gametogenesis and pollen tube elongation. These pathways obviously contribute to satisfy the high energy demand, and there are many studies which suggest that respiration and fermentation are the only pathways to generate the needed energy. Here, we review data which show for the first time that in addition plastidial glycolysis and the balancing of the ATP/NAD(P)H ratio (by malate valves and NAD+ biosynthesis) contribute to satisfy the energy demand during pollen development. Although the importance of energy generation by plastids was discounted during the last years (possibly due to the controversial opinion about their existence in pollen grains and pollen tubes), the available data underline their prime role during pollen maturation and tube growth. 相似文献
5.
The vertebrate gap junctions formed by the connexin family of transmembrane proteins came to the attention of geneticists in 1993 with the identification of mutations linked to a form of demyelinating neuropathy. Since then, several other genetic disorders have been linked to mutations in specific connexin genes. Also, different diseases can result from different mutations in the same connexin gene. In addition, specific connexin knockout mice have surprising phenotypes. This is leading cell biologists to look afresh at connexins and their involvement in intercellular communication through gap junctions, a process that seems central to coordinating cell function within tissues. Here, we comment on how genetic studies are giving a new impetus to the cell biology of gap junctions. 相似文献
6.
7.
Hereditary spastic paraplegia is a rare disorder with gait disturbance due to a degeneration of the corticospinal tract, sometimes accompanied by involvement of other systems. Out of the 20 loci known so far, eight genes have now been identified, allowing the first molecular and cell studies in the pathophysiology of the disorder. These should also help to understand the function of the corticospinal tract at the molecular level and design strategies to prevent and treat spasticity due to more common causes. The proteins encoded by these genes play a role in development, in signal transduction between axons and myelinating cells, in cellular, particularly axonal trafficking or in energy metabolism. Some of them have actions in several areas of cellular function. Here we review the present knowledge about the genes involved in hereditary spastic paraplegia, a field presently undergoing rapid change. 相似文献
8.
Wilkinson DG 《Current biology : CB》2000,10(12):R447-R451
The establishment of topographic maps of neuronal connections is believed to involve graded repulsion mediated by EphA receptors and ephrin-A ligands. Gene knockouts show that ephrin-A ligands do indeed have a crucial role in mapping, and that mechanisms in addition to graded repulsion must also be at work. 相似文献
9.
P John Seery 《Arthritis research & therapy》2000,2(6):437-4
Transgenic mice overexpressing IFN-γ in the epidermis develop an inflammatory skin disease resembling cutaneous lupus erythematosus shortly after birth. By 3 months of age, most female transgenics develop a lupus-like syndrome characterised by production of IgG anti-dsDNA, antihistone and antinucleosome autoantibodies. The autoantibodies are nephritogenic, with one-third of females developing a severe immune complex mediated glomerulonephritis. Analysis of these transgenics suggests that pathogenic autoantibodies arise via an antigen-driven T-cell-dependent mechanism with apoptotic keratinocytes acting as a potential source of autoantigen. The mechanism of autoantibody production in IFN-γ transgenics may be relevant to human lupus and is consistent with a central role for cutaneous T cells in the pathogenesis of systemic lupus erythematosus in man. 相似文献
10.
Converging evidence points to a role for vascular endothelial growth factor (VEGF) in neuronal protection from hypoxic, ischemic and related forms of injury. Recent findings also suggest a previously unsuspected connection between VEGF and amyotrophic lateral sclerosis (ALS), a major neurodegenerative disease of unknown etiology. Further investigation of the relationship between VEGF and ALS could provide insight into the pathogenesis of ALS, and facilitate the development of therapeutic approaches for this currently untreatable and fatal crippling disease of motor neurons. 相似文献
11.
12.
Laura Olbrich Daniel Foehring Patrick Happel Beate Brand-Saberi Carsten Theiss 《Histochemistry and cell biology》2013,139(3):431-445
The neuronal growth cone plays a crucial role in the development of the nervous system. This highly motile structure leads the axon to its final destination by translating guidance cues into cytoskeletal rearrangements. Recently, vascular endothelial growth factor (VEGF), which is essential for angiogenesis and vascular sprouting, has been found to exert a trophic activity also on neurons, leading to an increased axonal outgrowth, similar to the well-known nerve growth factor (NGF). The neurotrophic properties of VEGF are likely to be promoted via the VEGF receptor 2 (VEGFR-2) and neuropilin-1 (NRP-1). In the long term, VEGF attracts and influences the growth cone velocity and leads to growth cone enlargement. The present study focuses on immediate VEGF effects using RFP-actin and GFP-NF-M microinjected chicken dorsal root ganglia for live cell imaging of the neuronal growth cone. We analyzed actin and neurofilament dynamics following VEGF and NGF treatment and compared the effects. Furthermore, key signaling pathways of VEGF were investigated by specific blocking of VEGFR-2 or NRP-1. With the aid of confocal laser scanning microscopy and stimulated emission depletion microscopy, we show for the first time that VEGF has a quick effect on the actin-cytoskeleton, since actin rearrangements were identifiable within a few minutes, leading to a dramatically increased motion. Moreover, these effects were strongly enhanced by adding both VEGF and NGF. Most notably, the effects were inhibited by blocking VEGFR-2, therefore we propose that the immediate effects of VEGF on the actin-cytoskeleton are mediated through VEGFR-2. 相似文献
13.
SPARC and tumor growth: Where the seed meets the soil? 总被引:21,自引:0,他引:21
Matricellular proteins mediate interactions between cells and their extracellular environment. This functional protein family includes several structurally unrelated members, such as SPARC, thrombospondin 1, tenascin C, and osteopontin, as well as some homologs of these proteins, such as thrombospondin 2 and tensascin X. SPARC, a prototypic matricellular protein, and its homolog hevin, have deadhesive effects on cultured cells and have been characterized as antiproliferative factors in some cellular contexts. Both proteins are produced at high levels in many types of cancers, especially by cells associated with tumor stroma and vasculature. In this Prospect article we summarize evidence for SPARC and hevin in the regulation of tumor cell growth, differentiation, and metastasis, and we propose that matricellular proteins such as these perform critical functions in desmoplastic responses of tumors that culminate in their dissemination and eventual colonization of other sites. 相似文献
14.
Deletions and the appearance of pseudogenes in pathways of carbon source utilisation and energy metabolism best explain the host-dependency and failure to culture Mycobacterium leprae axenically. From the genome sequence it is possible to predict that acetate and galactose cannot be used as carbon sources, while pyruvate can only be catabolised. Glycerol, glucose, and fatty acids could be used for glycolysis, the pentose cycle and -oxidation which are complete. Retrospective functional genomics – interpreting work before the completion of the genome project – supports the failure of M. leprae to use acetate as well as another prediction that metabolic flux from pyruvate to acetyl-CoA would be very low. However, the loss of a second icd gene (compared with M. tuberculosis), predicted to encode isocitrate dehydrogenase, did not diminish the specific activity of the enzyme. The genes for respiratory pathways are extremely limited, being present for oxidative phosphorylation as a result of electron transport only using FADH as an electron donor. In contrast, all the major biosynthetic pathways are complete except that M. leprae is a natural methionine auxotroph: this is predicted not to be attenuating, or explain host-dependency since methionine would be present in rich culture media. 相似文献
15.
Experimental evidence on the role of the cell cycle in plant growth regulation does not exclusively fit the cellular (division drives growth) or the organismal perspective (division merely accompanies growth). Here we present a broader, integrated concept of plant growth regulatory interactions, which accommodates experimental results gathered to date. This model can serve as a basis for future research, and prompts experimental approaches to encompass both measurements of cell growth and division parameters. 相似文献
16.
17.
18.
19.
Giniger E 《Differentiation; research in biological diversity》2002,70(8):385-396
For a neuron to play its assigned role in a neural circuit, it has to extend elaborate projections, dendrites and axons, to make precise connections with specific target cells. The past decade has seen the identification of a vast diversity of molecules that assist in the guidance of axons toward their intended targets: guidance cues, growth cone receptors, signaling proteins (Tessier-Lavigne and Goodman, 1996; Song and Poo, 2001). But just how do all of these proteins work together to cause the axon to grow, stop, or turn in a specific direction? In this review, we examine this process from several different perspectives - cytoskeletal dynamics; biochemistry of intracellular signaling proteins; molecular analysis of axon guidance receptors - to try to collapse some of the apparent complexity of axon guidance into a more coherent picture. In particular, we will see how relatively simple and consistent manipulations of the kinetic constants of Rho family GTPases could account for many aspects of the cycle of actin dynamics that underlies axon growth and guidance. This review will intentionally be highly selective in its treatment of this subject in order to synthesize a simplified view that may be of value in directing further thinking and experiments. 相似文献
20.
Adnan Noor Shah Mohsin Tanveer Saddam Hussain Guozheng Yang 《Reviews in Environmental Science and Biotechnology》2016,15(4):549-561
Beryllium could be a threatening heavy metal pollutant in the agro-ecosystem that may severely affect the performance of crops. Beryllium is used in various industries to make nuclear weapons and reactors, aircraft and space vehicle structures, instruments, and X-ray machines, and its entry into the environment is alarming for the productivity and sustainability of the ecosystem. In this review, we present a contemporary synthesis of the existing data regarding the toxic effects of beryllium on toxicity on biochemical and physiological processes in plants. Moreover, uptake, translocation, and assimilation of beryllium and its interaction with some essential mineral elements are also discussed. Although limited data are available regarding biochemical responses of plants to beryllium toxicity, we tried to clarify some basic physiological and biochemical steps that can be hampered by beryllium in plants. We linked our hypothetical concepts with previous evidence and provide a comprehensive summary of all possible remediation strategies that can be used for plants. Overall, we hope this review will be beneficial due to its practical implications and research directions. 相似文献