首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用蛋白dotblot技术检测了低氧内皮细胞条件培养液(HECCM)和常氧内皮细胞条件培养液(NECCM)内PDGF相对含量,并利用[3H]-TdR掺入法和流式细胞术观察了HECCM和NECCM及加入特异PDGF抗体对肺动脉平滑肌细胞(PASMC)生长的影响。结果表明,HECCM中的PDGF含量明显高于NECCM;HECCM能明显增强PASMC内DNA合成,促进PASMC从Go/G1期进入S期;当预先加入PDGF-B链抗体时,则会明显地抑制HECCM对PASMC的DNA合成,阻止PASMC从Go/G1期进入S期。结果提示,低氧时PASMC增殖与肺动脉内皮细胞分泌释放PDGF增加有关  相似文献   

2.
Arachidonic acid and its metabolites have been previously implicated in the regulation of endothelial cell proliferation. Arachidonic acid may be liberated from cellular phospholipids by the action of group VIA calcium-independent phospholipase A2 (iPLA2-VIA). Consequently, we tested the hypothesis that iPLA2-VIA activity is linked to the regulation of endothelial cell proliferation. Inhibition of iPLA2 activity by bromoenol lactone (BEL) was sufficient to entirely block endothelial cell growth. BEL dose-dependently inhibited endothelial cell DNA synthesis in a manner that was reversed upon the exogenous addition of arachidonic acid. DNA synthesis was inhibited by the S-isomer and not by the R-isomer of BEL, demonstrating that endothelial cell proliferation is mediated specifically by iPLA2-VIA. iPLA2-VIA activity was critical to the progression of endothelial cells through S phase and is required for the expression of the cyclin A/cdk2 complex. Thus, inhibition of iPLA2-VIA blocks S phase progression and results in exit from the cell cycle. Inhibition of iPLA2-VIA-mediated endothelial cell proliferation is sufficient to block angiogenic tubule formation in co-culture assays. Consequently, iPLA2-VIA is a novel regulator of endothelial cell S phase progression, cell cycle residence, and angiogenesis.  相似文献   

3.
Phosphatidylinositol-3 kinase (PI3K) proteins are important regulators of cell survival and proliferation. PI3K-dependent signalling regulates cell proliferation by promoting G1- to S-phase progression during the cell cycle. However, a definitive role for PI3K at other times during the cell cycle is less clear. In these studies, we provide evidence that PI3K activity is required during DNA synthesis (S-phase) and G2-phase of the cell cycle. Inhibition of PI3K with LY294002 at the onset of S-phase caused a 4- to 5-h delay in progression through G2/M. LY294002 treatment at the end of S-phase caused an approximate 2-h delay in progression through G2/M, indicating that PI3K activity functions for both S- and G2-phase progression. The expression of constitutively activated Akt partially reversed the inhibitory effects of LY294002 on mitotic entry, which demonstrated that Akt was one PI3K target that was required during G2/M transitions. Inhibition of PI3K resulted in enhanced susceptibility of G2/M synchronized cells to undergo apoptosis in response to DNA damage as compared to asynchronous cells. Thus, similar to its role in promoting cell survival and cell cycle transitions from G1 to S phase, PI3K activity appears to promote entry into mitosis and protect against cell death during S- and G2-phase progression.  相似文献   

4.
EGF induces cell cycle arrest of A431 human epidermoid carcinoma cells   总被引:4,自引:0,他引:4  
The human carcinoma cell line A431 is unusual in that physiologic concentrations of epidermal growth factor (EGF) inhibit proliferation. In the presence of 5-10 nM EGF proliferation of A431 cells is abruptly and markedly decreased compared to the untreated control cultures, with little loss of cell viability over a 4-day period. This study was initiated to examine how EGF affects the progression of A431 cells through the cell cycle. Flow cytometric analysis of DNA in EGF-treated cells reveals a marked change in the cell cycle distribution. The percentage of cells in late S/G2 increases and early S phase is nearly depleted. Since addition of the mitotic inhibitor vinblastine causes accumulation of cells in mitosis and prevents reentry of cells into G1, it is possible to distinguish between slow progression through G1 and G2 and blocks in those phases. When control cells, not treated with EGF, are exposed to vinblastine, the cells accumulate mitotic figures, as expected, and show progression into S, thus diminishing the number of cells in G1. In contrast, no mitotic figures are found among the EGF-treated cells in the presence or absence of vinblastine, and progression from G1 into S is not observed, as the number of cells in G1 remains constant. These results suggest that there are two EGF-induced blocks in cell cycle transversal; one is in late S and/or G2, blocking entry into mitosis, and the other is in G1, blocking entry into S phase. After 24 hours of EGF treatment, DNA synthesis is reduced to less than 10% compared to untreated controls as measured by the incorporation of [3H]thymidine or BrdU. In contrast, protein synthesis is inhibited by about twofold. Although inhibition of protein synthesis is less extensive, it occurs 6 hours prior to an equivalent inhibition of DNA synthesis. The rapid decrease in protein synthesis may result in the subsequent cell cycle arrest which occurs several hours later.  相似文献   

5.
6.
The effects of prostaglandins (PGs) A and J, which are anti-tumor eicosanoids, on the proliferation of cultured vascular smooth muscle cells were investigated. Serum-stimulated DNA synthesis was potently inhibited by PGA1, PGA2, PGJ2, and delta 12-PGJ2 in similar dose-dependent fashions. The effects of PGA1 and PGA2 were reversible when they were removed from the culture media, whereas recoveries were only partial in the cells treated with PGJ2 and delta 12-PGJ2. PGs were effective even if they were added immediately before entry into S phase. Inhibition of DNA synthesis was sustained when hydroxyurea, which blocks cell cycle at the G1/S border, was added after the removal of PGA2, and vice versa; PGs blocked DNA synthesis when they were added after the removal of hydroxyurea. Levels of c-myc mRNA formed two peaks during the G1 phase, at 1-2 h and at 8-12 h. The PGs did not affect the first elevation, but enhanced the second and sustained it up to 18-24 h, whereas in controls, c-myc mRNA decreased quickly after entry into S phase. The rate of degradation of c-myc mRNA was much smaller in PG-treated cells than in nontreated cells. We conclude, therefore, that PGA and PGJ inhibit a crucial event(s) in the cell cycle occurring at the G1/S border, but that this inhibition is not accompanied by the reduction in c-myc gene expression in contrast with some types of tumor cells treated with PGs.  相似文献   

7.
Novel techniques were used to determine when in the cell cycle of proliferating NIH 3T3 cells cellular Ras and cyclin D1 are required. For comparison, in quiescent cells, all four of the inhibitors of cell cycle progression tested (anti-Ras, anti-cyclin D1, serum removal, and cycloheximide) became ineffective at essentially the same point in G1 phase, approximately 4 h prior to the beginning of DNA synthesis. To extend these studies to cycling cells, a time-lapse approach was used to determine the approximate cell cycle position of individual cells in an asynchronous culture at the time of inhibitor treatment and then to determine the effects of the inhibitor upon recipient cells. With this approach, anti-Ras antibody efficiently inhibited entry into S phase only when introduced into cells prior to the preceding mitosis, several hours before the beginning of S phase. Anti-cyclin D1, on the other hand, was an efficient inhibitor when introduced up until just before the initiation of DNA synthesis. Cycloheximide treatment, like anti-cyclin D1 microinjection, was inhibitory throughout G1 phase (which lasts a total of 4 to 5 h in these cells). Finally, serum removal blocked entry into S phase only during the first hour following mitosis. Kinetic analysis and a novel dual-labeling technique were used to confirm the differences in cell cycle requirements for Ras, cyclin D1, and cycloheximide. These studies demonstrate a fundamental difference in mitogenic signal transduction between quiescent and cycling NIH 3T3 cells and reveal a sequence of signaling events required for cell cycle progression in proliferating NIH 3T3 cells.  相似文献   

8.
When citrate export from mitochondria is blocked with 1,2,3-benzenetricarboxylate (BTC) during the G1/S phase of the cell cycle, both DNA synthesis and cell growth are dramatically inhibited in suspension-grown 70Z/3 murine lymphoma cell cultures sustained under otherwise optimal conditions. Synchronized (G0/G1 or G1/S) and unsynchronized cultures are susceptible to this phenomenon. BTC prevents two requirements from being met. (1) It deprives the cytosol of the acetyl CoA necessary for operation of the cholesterogenesis pathway, thereby depleting the supply of mevalonate (MVA) implicated as a requirement for triggering DNA synthesis. (2) It behaves as a nonmetabolizable divalent cation chelator, reducing the availability of Ca2+ and Mg2+, which, in whole cells are both required for DNA synthesis. Such inhibitions are reversible. In whole cells, removal of the inhibitor yields rapid and complete recovery of DNA synthesis. During the prolonged presence of BTC, the addition of MVA plus the Ca2+ ionophore A23187 allows partial recovery of DNA synthesis. In isolated, DNA synthesizing nuclei, on the other hand, the slight inhibition of DNA synthesis by BTC is reversed merely by addition of Mg2+. We conclude that the uninterrupted production of citrate-derived MVA via the mitochondria, at the G1/S boundary of the cell cycle (i.e., subsequent to peak cholesterol synthesis), is mandatory for initiating the duplication of the cell genome. Consequently, by its mitochondrial site of action, BTC can severely limit the otherwise continuous supply of MVA during late G1, which in turn, prevents entry into the S phase, and thereby cell proliferation.  相似文献   

9.
To gain insight into the mechanism of the antiproliferative effects of heparin on vascular smooth muscle cells (SMC), the influence of this glycosaminoglycan on cell cycle progression and the expression of the c-fos, c-myc, and c-myb proto-oncogenes and two other growth-regulated genes was examined. SMC, synchronized by a serum-deprivation protocol, enter S phase 12-16 h after serum stimulation. Pretreatment with heparin for 48 h blocked the induction of histone H3 RNA, an S phase-expressed product, and prevented cell replication. Thus, heparin prevents entry of cells into S phase. Conversely, heparin had essentially no effect on changes in expression of the c-fos and c-myc proto-oncogenes during the G0 to G1 transition. Normal increases in c-fos and c-myc RNA were observed 30 min and 2 h following serum addition, respectively. However, the increase in expression of the mRNA of the c-myb proto-oncogene and the mitochondrial ATP/ADP carrier protein, 2F1, which begins to occur 8 h following serum addition to SMC, was completely inhibited by heparin. Two-dimensional polyacrylamide gel electrophoresis of the products of a rabbit reticulocyte cell-free translation of RNA isolated at various times confirmed this temporal assessment of the effects of heparin. These results suggest that heparin does not inhibit cell proliferation by blocking the G0 to G1 transition. Rather, heparin may affect a critical event in the mid-G1 phase of the cell cycle which is necessary for subsequent DNA synthesis.  相似文献   

10.
AML1/RUNX1, a member of the core binding factor (CBF) family stimulates myelopoiesis and lymphopoiesis by activating lineage-specific genes. In addition, AML1 induces S phase entry in 32Dcl3 myeloid or Ba/F3 lymphoid cells via transactivation. We now found that AML1 levels are regulated during the cell cycle. 32Dcl3 and Ba/F3 cell cycle fractions were prepared using elutriation. Western blotting and a gel shift/supershift assay demonstrated that endogenous CBF DNA binding and AML1 levels were increased 2-4-fold in S and G(2)/M phase cells compared with G(1) cells. In addition, G(1) arrest induced by mimosine reduced AML1 protein levels. In contrast, AML1 RNA did not vary during cell cycle progression relative to actin RNA. Analysis of exogenous Myc-AML1 or AML1-ER demonstrated a significant reduction in G(1) phase cells, whereas levels of exogenous DNA binding domain alone were constant, lending support to the conclusion that regulation of AML1 protein stability contributes to cell cycle variation in endogenous AML1. However, cytokine-dependent AML1 phosphorylation was independent of cell cycle phase, and an AML1 mutant lacking two ERK phosphorylation sites was still cell cycle-regulated. Inhibition of AML1 activity with the CBFbeta-SMMHC or AML1-ETO oncoproteins reduced cyclin D3 RNA expression, and AML1 bound and activated the cyclin D3 promoter. Signals stimulating G(1) to S cell cycle progression or entry into the cell cycle in immature hematopoietic cells might do so in part by inducing AML1 expression, and mutations altering pathways regulating variation in AML1 stability potentially contribute to leukemic transformation.  相似文献   

11.
Recent work has shown that macrophage-mediated cytostatic activity inhibits cell cycle traverse in G1 and/or S phase of the cell cycle without affecting late S, G2, or M phases. The present report is directed at distinguishing between such cytostatic effects on G1 phase or S phase using the accumulation of DNA polymerase alpha as a marker of G1 to S phase transition. Quiescent lymphocytes stimulated with concanavalin A undergo a semisynchronous progression from G0 to G1 to S phase with a dramatic increase in DNA polymerase alpha activity between 20 and 30 hr after stimulation. This increase in enzyme activity was inhibited, as was the accumulation of DNA, when such cells were cocultured with activated murine peritoneal macrophages during this time interval. However, if mitogen-stimulated lymphocytes were enriched for S-phase cells by centrifugal elutriation and cocultured with activated macrophages for 4-6 hr, DNA synthesis was inhibited but the already elevated DNA-polymerase activity was unaffected. Similar results were obtained when a virally transformed lymphoma cell line was substituted as the target cell in this assay. These results show that both G1 and S phase of the cycle are inhibited and suggest that inhibition of progression through the different phases may be accomplished by at least two distinct mechanisms.  相似文献   

12.
The infection of permissive monkey kidney cells (CV-1) with simian virus 40 induces G1 growth-arrested cells into the cell cycle. After completion of the first S phase and movement into G2, mitosis was blocked and the cells entered another DNA synthesis cycle (second S phase). Growth-arrested CV-1 cells replicated significant amounts of viral DNA in the G2 phase with the majority of synthesis occurring during the second S phase. When mimosine-blocked (G1/S) infected cells were released into the cell cycle, a major portion of the viral DNA was detected in G2 with the largest accumulation in the second S phase. The total DNA produced per infected cell was 10-12C with approximately 0.5-2C of viral DNA replicated per cell. Therefore the majority of the DNA per cell was cellular, 4C from the first S phase and approximately 4-6C from the second cellular synthesis phase.  相似文献   

13.
本文用双参数FCM技术,对同一个细胞的DNA和RNA含量进行相关测量,比较了ACM B对小鼠L_(1210)白血病细胞周期和RNA含量的影响.结果发现在一次给药后8小时可导致早、中期S的积累,并抑制S期细胞的DNA合成;到24小时DNA合成恢复正常,并进入G_2期,但由于G_2期细胞进入M期受阻,造成G_2期细胞的积累,这时被阻断在G_2期的细胞RNA含量显著增加,形成正不平衡生长,而给药剂量较大的实验组(1/1.5LD_(50))S期细胞的RNA含量不随着DNA含量的增加而增加,形成负不平衡生长,ACM A和ACM B对体内Li_(210)细胞周期作用相同.  相似文献   

14.
Aminonucleoside (AMS) inhibited the cell cycle of human lung fibroblasts at a point in G1 phase and at another point in G2 phase. Even when this inhibition was fully established, DNA synthesis and mitosis which were in progress proceeded normally. Inhibition of RNA synthesis in the cultures preceded the effects on DNA synthesis and mitosis, but inhibition of protein synthesis could not be detected. These points of potential inhibition do not exist in the cell cycle of HeLa cell, or are not affected by aminonucleoside. Here inhibition of cell proliferation by AMS was less marked, and when inhibition eventually occurred it was not specific for any point of the cell cycle. The rate of entry of the inhibitor was similar in both types of cell.  相似文献   

15.
Lymphocytes express voltage-activated K+ channels in their membrane. Combining the patch-clamp techniques of recording with immunological methods, we have analyzed the expression and the involvement of these channels during defined steps of LPS-induced B cell activation. We show that the number of K+ channels increased strongly when B cells entered in the G1 phase of the cell cycle. The involvement of ion channels in B cell proliferation was assessed using channel blockers that inhibit the K+ current. It was first found that TEA, but not TMA, quinine and verapamil totally suppressed both K+ current and DNA synthesis by stimulated lymphocytes as measured by [3H]TdR uptake or propiedium iodide staining. The drugs affected neither the induction by LPS of activation markers such as Ag of the murine class II MHC and type II receptor for the Fc region of IgG nor the initial cell enlargement that occur early during activation. These data indicate that functional K+ channels are not essential for the transition from the G0 to the G1 phases. In contrast, the same channel antagonists blocked the induction of transferrin receptor expression, characteristic of the final stages of G1. These drugs acted on cells already in G1, because their addition 30 h after LPS still suppressed DNA synthesis, and because they inhibited the proliferation of purified B cell blasts. The effect of tetraethylammonium was reversible, a lag period of 12 h occurring before the cells start DNA synthesis after drug removal. Taken together, these data demonstrate that the proliferation of LPS-stimulated B cells requires functional ion channels at a critical period in the G1 phase, taking place before transferrin receptor expression and the entry into the S phase. The involvement of voltage dependent K+ channels at this particular point is suggested by the parallel effects of the drugs used on K+ currents and DNA synthesis.  相似文献   

16.
In cultures of normal adult human glia-like cells, density-dependent cell cycle inhibition (topoinhibition) and contact inhibition of ruffling occur almost simultaneously, suggesting a functional coupling between activities of the cell surface and the initiation of DNA synthesis. The present paper examines whether cytochalasin B (CB), which reversibly inhibits ruffling, also blocks the glia cell cycle.The effects of the drug (2 μg/ml) were the following:
1. 1. Initiation of DNA synthesis of subcultivated stationary cells was inhibited.
2. 2. Stimulation of DNA synthesis in stationary cells by medium change was suppressed.
3. 3. Migration of cells into a wound in a confluent cell layer was blocked as well as the initiation of DNA synthesis in cells lining the wound.
4. 4. Initiation (but not continuation) of DNA synthesis of exponentially growing cells was inhibited leading to a population mainly arrested in G 1 as determined by microspectrophotometry on Feulgen-stained cells. Topoinhibited cells were also blocked in G 1. Since cytokinesis was blocked by CB, a fraction of binuclear cells appeared.
The cell cycle block induced by CB was reversible, even after several weeks of treatment, with the exception that binuclear cells more reluctantly entered the S phase after release of the block.In conclusion, CB efficiently induces a reversible and probably physiologic cell cycle block. This finding strengthens the notion of a connection between cell membrane and cell proliferation. The underlying mechanism is discussed.  相似文献   

17.
18.
Cell cycle progression of synchronized HeLa cells was studied by measuring labeling of the nuclei with [3H]thymidine. The progression was arrested in a chemically defined medium in which K+ was replaced by Rb+ (Rb-CDM) but was restored upon addition of insulin and/or low density lipoprotein (LDL). Cells started DNA synthesis 12 hr after addition of insulin and/or LDL, regardless of the time of arrest, suggesting their arrest early in the G1 phase. After incubation of cells in Rb-CDM containing insulin or LDL singly for 3, 6, or 9 hr, replacement of the medium by that without an addition resulted in marked delay in entry of cells into the S phase, but in its replacement by medium containing both agents, the delay was insignificant. Synthesis of bulk protein, estimated as increase in the cell volume, was not strongly inhibited. From these results we conclude that cell cycle progression of HeLa cells in K?-depleted CDM is arrested early in the G1 phase and that the arrest is due to lack of some protein(s) required for entry into the S phase that is synthesized in the early G1 phase.  相似文献   

19.
In mammalian cells inhibition of the cdc2 function results in arrest in the G2-phase of the cell cycle. Several cdc2-related gene products have been identified recently and it has been hypothesized that they control earlier cell cycle events. Here we have studied the relationship between activation of one of these cdc2 homologs, the cdk2 protein kinase, and the progression through the cell cycle in cultured human fibroblasts. We found that cdk2 was activated and specifically localized to the nucleus during S phase and G2. Microinjection of affinity-purified anti-cdk2 antibodies but not of affinity-purified anti-cdc2 antibodies, during G1, inhibited entry into S phase. The specificity of these effects was demonstrated by the fact that a plasmid-driven cdk2 overexpression counteracted the inhibition. These results demonstrate that the cdk2 protein kinase is involved in the activation of DNA synthesis.  相似文献   

20.
As described previously, a natural product isolated from fungus (Acremonium sp.), dehydroaltenusin, is an inhibitor of mammalian DNA polymerase alpha in vitro [Y. Mizushina, S. Kamisuki, T. Mizuno, M. Takemura, H. Asahara, S. Linn, T. Yamaguchi, A. Matsukage, F. Hanaoka, S. Yoshida, M. Saneyoshi, F. Sugawara, K. Sakaguchi, Dehydroaltenusin, a mammalian DNA polymerase alpha inhibitor, J. Biol. Chem. 275 (2000) 33957_33961]. In this study, we investigated the interaction of dehydroaltenusin with lipid bilayers using an in vitro liposome system, which is a model of the cell membrane, and found that approximately 4% of dehydroaltenusin was incorporated into liposomes. We also investigated the influence of dehydroaltenusin on cultured cancer cells. Dehydroaltenusin inhibited the growth of HeLa cells with an LD50 value of 38 microM, and as expected, S phase accumulation in the cell cycle. The total DNA polymerase activity of the extract of incubated cells with dehydroaltenusin was 23% lower than that of nontreated cells. Dehydroaltenusin increased cyclin E and cyclin A levels. In the analysis of the cell cycle using G1/S synchronized cells by employing hydroxyurea, the compound delayed both entry into the S phase and S phase progression. In a similar analysis using G2/M synchronized cells by employing nocodazole, the compound accumulated the cells at G1/S and inhibited entry into the S phase. Thus, the pharmacological abrogation of cell proliferation by dehydroaltenusin may prove to be an effective chemotherapeutic agent against tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号