首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The size and structure of the covalently closed circular chloroplast DNAs (ctDNA) from pea, lettuce, and spinach plants, have been studied by analytical ultracentrifugation. The values of so20,w,Na+ of the native and denatured forms of the open and closed circular DNAs from these plants have been determined. The absolute molecular weight of purified closed circular pea ctDNA monomers has been determined by buoyant equilibrium sedimentation to be 89.1 (S.D. +/- 0.7)-10(6). The value of the so20,w,Na+ of open circular pea ctDNA and its molecular weight, in conjunction with corresponding values for other sizes of circular DNA, has been used to derive an empirical relationship between so20,w,Na+ and molecular weight for open circular DNAs. Using this relationship, the molecular weights of lettuce and spinach ctDNAs have been determined to be 98.2 (S.D. +/- 1.5)-10(6) and 97.2 (S.D. +/- 1.5)-10(6), respectively. At pH values 12.7 and 13, closed circular lettuce and pea ctDNAs have been found to exist as mixtures of reversibly and irreversibly denatured closed circular DNAs.  相似文献   

2.
A water-insoluble alpha-(1-->3)-D-glucan (A) from Lentinus edodes was fractionated into 13 fractions in dimethyl sulfoxide containing 0.25 M lithium chloride (0.25 M LiCl-Me(2)SO). Five fractions were treated with sulfur trioxide-pyridine complex at 25 degrees C to synthesize water-soluble sulfated derivatives (S-A). The weight-average molecular weights, M(w), and intrinsic viscosities [eta], of the samples A and S-A were determined by multi-angler laser light scattering (MALLS), and viscosity. The M(w) dependence of [eta] and of the radius of gyration (z)(1/2), was found to be represented approximately by [eta]=4.9 x 10(-2) M(w)(0.67) (cm(3) g(-1)), and (z)(1/2)=4.8 x 10(-2) M(w)(0.54) (nm) for the alpha-glucan in 0.25 M LiCl-Me(2)SO in the M(w) range from 7.24 x 10(4) to 4.21 x 10(5), and by [eta]=6.8 x 10(-4) M(w) 1.06 (cm(3) g(-1)), and (z)(1/2)=9.4 x 10(-4) M(w)(0.92) (nm) for the sulfated alpha-glucan in aqueous 0.5 M NaCl in the M(w) range from 5.92 x 10(4) to 1.42 x 10(5) at 25 degrees C. The results indicate that the alpha-(1-->3)-D-glucan exists as a flexible chain in 0.25 M LiCl-Me(2)SO, and its sulfated derivative in 0.5 M NaCl aqueous has stiffer chains than the original. (13)C NMR indicated that intramolecular hydrogen bonding occurred in the sulfated alpha-glucan, causing the observed chain stiffness.  相似文献   

3.
The following physical parameters of the legumin from Vicia faba were determined by means of small-angle X-ray scattering, quasi-elastic light scattering and circular dichroism: molar mass, M = 3.5 X 10(5) g/mol; radius of gyration, Rg = 4.45 nm; maximum dimension, L = 13 nm; translational diffusion coefficient, D0(20),w = 3.38 X 10(-7) cm2 X s-1; alpha-helix content about 15%; content of beta-sheets 10%; dihedral point group symmetry of the molecule 32.  相似文献   

4.
D W Frederiksen 《Biochemistry》1979,18(9):1651-1656
Porcine aortic myosin is a smooth muscle contractile protein similar to its striated muscle counterpart. Electrophoresis in sodium dodecyl sulfate indicates that the molecule consists of three classes of subunits with polypeptide chain molecular weights of 192,000, 19,000, and 15,000. At 277 nm the absorption spectrum gives an extinction coefficient for aortic myosin of 0.558 cm2/mg; the circular dichroism spectrum of the protein indicates that aortic myosin contains about 70% of its residues in the alpha-helical configuration. Amino acid analysis shows that the smooth muscle myosin has significantly more arginine and leucine and significantly less valine and isoleucine than rabbit skeletal muscle myosin. Other studies yielded these data: Vapp = 0.716 mL/g [eta] = 0.213 mL/mg, S20, w = 5.84 x 10(-13)S. Similar studies with rabbit skeletal muscle myosin indicate that Vapp = 0.711 mL/g and S20, w = 6.36 x 10(-13)S. These properties suggest that aortic myosin, like skeletal muscle myosin, behaves hydrodynamically like a rigid rod.  相似文献   

5.
A method for isolating covalently closed circular double-stranded DNA from plants infected with the geminivirus, tomato golden mosaic virus, is described. Ethidium bromide titration showed this DNA to be negatively supercoiled with a superhelical density of -0.062. The presence of S1 nuclease-sensitive secondary structure in the supercoiled DNA was demonstrated by its conversion to the open circular and linear DNA forms on treatment with this enzyme.  相似文献   

6.
The effective diffusion coefficient of sucrose in 5% calcium alginate gel containing 41.6 g.d.c. l-1. Saccharomyces cerevisiae was investigated. Both free and immobilized S. cerevisiae in 0.175 cm and 0.3 cm diameter particles were used and the reactions were achieved in a medium containing 100 g l-1 sucrose and 0.05 M CaCl2. With the assumption that the microorganisms did not grow or die in this medium, the results were analyzed according to Michaelis-Menten kinetics and the values of the parameters were determined as: Vm = 0.256 g ml-1 gel h-1, Km0 = 0.097 g ml-1, Km1 = 0.125 g ml-1, and Km2 = 0.165 g ml-1. Using these values, effectiveness factors were calculated as eta 1 = 0.89 and eta 2 = 0.76, and effective diffusion coefficients for sucrose in calcium alginate gel were determined as De1 = 4.1 X 10(-6) cm2 s-1 and De2 = 4.0 X 10(-6) cm2 s-1, for the particle size involved.  相似文献   

7.
Zhang X  Xu J  Zhang L 《Biopolymers》2005,78(4):187-196
Seven lentinan fractions of various weight-average molecular weights (M(w)), ranging from 1.45 x 10(5) to 1.13 x 10(6) g mol(-1) were investigated by static light scattering and viscometry in 0.1M NaOH solution at 25 degrees C. The intrinsic viscosity [eta] - M(w) and radius of gyration s(2)(z) (1/2) - M(w) relationships for lentinan in 0.1M NaOH solution were found to be represented by [eta] = 5.1 x 10(-3)M(w) (0.81) cm(3) g(-1) and s(2)(z) (1/2) = 2.3 x 10(-1)M(w) (0.58) nm, respectively. Focusing on the effects of the M(w) polydispersity with the Schulz-Zimm distribution function, the data of M(w), s(2)(z) (1/2), and [eta] was analyzed on the basis of the Yoshizaki-Nitta-Yamakawa theory for the unperturbed helical wormlike chain combined with the quasi-two-parameter (QTP) theory for excluded-volume effects. The persistence length, molecular weight per unit contour length, and the excluded-volume strength were determined roughly to be 6.2 nm, 980 nm(-1), and 0.1, respectively. Compared with the theoretical value calculated by the Monte Carlo model, the persistence length is longer than that of the single (1 --> 3)-beta-(D)-glucan chain. The results revealed that lentinan exists as single-stranded flexible chains in 0.1M NaOH solution with a certain degree of expansion due to the electrostatic repulsion from the interaction between the OH(-) anions and lentinan molecules.  相似文献   

8.
The properties of a soluble endoprotease from rat liver were studied. The enzyme was purified in a latent form. It sedimented as a single component with a sedimentation coefficient (S(0)20,w) of 19.8 S. Measurement by quasi-elastic light scattering gave a diffusion coefficient (D(0)20,w) of 2.5 X 10(-7) cm2 X s-1 and an effective hydrodynamic radius of 85 A. The enzyme had an unusually high molecular weight, estimated as 743,000 by sedimentation equilibrium and 722,000 by sedimentation velocity and diffusion measurements and as 760,000 by a recently developed low-angle laser light scattering method. Judging from electron microscopic observation and the calculated frictional and axial ratios, the enzyme molecule is disc-shaped. Analysis of the far-ultraviolet circular dichroic spectrum showed that the enzyme contains 50% alpha-helical, 25% beta-sheet, and 15% unordered structures with 10% beta-turns. The isoelectric point of the enzyme is 5.0. These properties indicate that the purified enzyme is a homogeneous molecule. In addition, the enzyme is a simple protein since it contains no measurable amounts of nucleic acid carbohydrate or lipid.  相似文献   

9.
The rotational motions of human fibrinogen in solution at 20 degrees C have been examined, in the 0.2-12-microseconds time range, by measuring the laser-induced dichroism of the triplet state of an erythrosin probe covalently bonded to the protein. The decay of the anisotropy was multiexponential, and up to three correlation times (phi 1 = 380 +/- 50 ns, phi 2 = 1.1 +/- 0.1 microseconds, and phi 3 = 3.3 +/- 0.6 microseconds) were needed to obtain a satisfactory analysis. The experimental data are consistent with the brownian motions of an elongated, rigid particle. If the correlation times are combined with previous data on the intrinsic viscosity of fibrinogen, the rotational and translational diffusive properties of the protein can be reproduced with high accuracy by idealizing it as an elongated ellipsoid of revolution with dimensions (2a x 2b) of (54 +/- 6) x (7.2 +/- 0.5) nm, having rotational diffusion constants of D parallel = (6.2 +/- 0.7) x 10(5) s-1 and D perpendicular = (5 +/- 1) x 10(4) s-1. The possibility of Ca(2+)-dependent changes in the rigidity or conformation of fibrinogen was excluded by examining the submicrosecond time-resolved fluorescence depolarization of 1-methylpyrene conjugates of the protein in the presence of different calcium concentrations. Although there are inherent difficulties to extrapolate the data on isolated fibrinogen molecules to the polymerizing species, this relatively stiff conformation meets the requirements of the classical half-staggered double-stranded model of fibrin polymerization rather better than those of the recently proposed interlocked single-stranded mechanism.  相似文献   

10.
The continuous cultures of the diatom Nitzschia laevis were performed at different dilution rates (D) and feed glucose concentrations (S(0)) to investigate cellular physiological responses and its production potential of eicosapentaenoic acid (EPA). Steady-state cell dry weight, residual glucose concentration, cell growth yield, specific glucose consumption rate, and fatty acid profiles were investigated within the range of D from 0.1 to 1.0 day(-1) (S(0) fixed at 20 g/L) and the range of S(0) from 5 to 35 g/L (D fixed at 0.3 day(-1)), respectively. The highest EPA productivity of 73 mg L(-1) day(-1) was obtained at D = 0.5 day(-1) and S(0) = 20 g/L. However, when the continuous culture achieved high productivities of EPA at certain dilution rates and feed glucose concentrations, glucose in the feed could not be consumed completely. Accordingly, the continuous culture was evaluated in terms of both EPA productivity (P) and glucose assimilation efficiency (E). The parameter eta, defined as the product of P and E, was used as an overall performance index. Since eta is a function of the two independent variables D and S(0), we employed a central composite design to optimize D and S(0) for the highest eta value. Based on the experimental results of the design, a second-order polynomial equation was established to represent the relationship between eta and D and S(0). The optimal values of D and S(0) were subsequently determined as 0.481 day(-1) and 15.56 g/L, respectively by the empirical model. The verification experiment confirmed the validity of the model. Under the optimal conditions, eta value reached 46.5 mg L(-1) day(-1), suggesting a considerably high efficiency of the continuous culture of N. laevis in terms of EPA production and glucose utilization.  相似文献   

11.
Ribosomal protein S1 of Thermus thermophilus overexpressed in Escherichia coli cells has been isolated and subjected to studies by analytical sedimentation and differential scanning microcalorimetry techniques. It has been demonstrated that the protein of 60 kDa sediments at s020,w = 4.6 S and has the diffusion coefficient D020,w = 6.7 x 10(-7) cm2/s in 25 mm HEPES-NaOH buffer, pH 7.5 (similarly to bovine serum albumin of 66 kDa that sediments at s0 20,w = 4.4 S and D020,w =6.0 x 10(-7) cm2/s), indicating its compact globular conformation under these conditions. The microcalorimetry study has shown the presence of a cooperative tertiary structure melting at 90 degrees C, but with several (probably three) independent cooperative domains. In the presence of 100 mm NaCl the protein becomes more asymmetric (s020,w = 3.1 S) but does not lose its cooperativity and thermostability, this suggesting just the weakening of interdomain ionic interactions. The compact globular conformation of protein S1 seems to be most likely within the ribosome.  相似文献   

12.
The intrinsic viscosity ([eta]) and the molecular weight (M) by sedimentation equilibrium were determined for hyaluronic acids of low (M=104--7.2X10(4)) and high (M=3.1X10(5)--1.5X10(6)) molecular weights. Double logarithmic plot of [eta] against M gave different lines for the two groups. The relationship between [eta] and M was [eta]=3.0X10(6)XM1,20 for the former and [eta]=5.7X10(-4)XM0.46 for the latter group. The molecular weight at the point of intersection of the two lines was about 1.5X10(5). The rheological behavior of the hyaluronic acids below M=2.1X10(4), for which the value of reduced viscosity was independent of concentration, was different from that of the hyaluronic acids above M=5.1X10(4), for which the value of reduced viscosity increased with concentration.  相似文献   

13.
M A Geeves 《Biochemistry》1989,28(14):5864-5871
The equilibrium and dynamics of the interaction between actin, myosin subfragment 1 (S1), and ADP have been investigated by using actin which has been covalently labeled at Cys-374 with a pyrene group. The results are consistent with actin binding to S1.ADP (M.D) in a two-step reaction, A + M.D K1 equilibrium A-M.D K2 equilibrium A.M.D, in which the pyrene fluorescence only monitors the second step. In this model, K1 = 2.3 X 10(4) M-1 (k+1 = 4.6 X 10(4) M-1 s-1) and K2 = 10 (k+2 less than or equal to 4 s-1); i.e., both steps are relatively slow compared to the maximum turnover of the ATPase reaction. ADP dissociates from both M.D and A-M.D at 2 s-1 and from A.M.D at greater than or equal to 500 s-1; therefore, actin only accelerates the release of product from the A.M.D state. This model is consistent with the actomyosin ATPase model proposed by Geeves et al. [(1984) J. Muscle Res. Cell Motil. 5, 351]. The results suggest that A-M.D cannot break down at a rate greater than 4 s-1 by dissociation of ADP, by dissociation of actin, or by isomerizing to A.M.D. It is therefore unlikely to be significantly occupied in a rapidly contracting muscle, but it may have a role in a muscle contracting against a load where the ATPase rate is markedly inhibited. Under these conditions, this complex may have a role in maintaining tension with a low ATP turnover rate.  相似文献   

14.
A comparative study using laser flash photolysis of the kinetics of reduction and intramolecular electron transfer among the redox centers of chicken liver xanthine dehydrogenase and of bovine milk xanthine oxidase is described. The photogenerated reductant, 5-deazariboflavin semiquinone, reacts with the dehydrogenase (presumably at the Mo center) in a second-order manner, with a rate constant (k = 6 x 10(7) M-1 s-1) similar to that observed with the oxidase [k = 3 x 10(7) M-1 s-1; Bhattacharyya et al. (1983) Biochemistry 22, 5270-5279]. In the case of the dehydrogenase, neutral FAD radical formation is found to occur by intramolecular electron transfer (kobs = 1600 s-1), presumably from the Mo center, whereas with the oxidase the flavin radical forms via a bimolecular process involving direct reduction by the deazaflavin semiquinone (k = 2 x 10(8) M-1 s-1). Biphasic rates of Fe/S center reduction are observed with both enzymes, which are due to intramolecular electron transfer (kobs approximately 100 s-1 and kobs = 8-11 s-1). Intramolecular oxidation of the FAD radical in each enzyme occurs with a rate constant comparable to that of the rapid phase of Fe/S center reduction. The methylviologen radical, generated by the reaction of the oxidized viologen with 5-deazariboflavin semiquinone, reacts with both the dehydrogenase and the oxidase in a second-order manner (k = 7 x 10(5) M-1 s-1 and 4 x 10(6) M-1 s-1, respectively). Alkylation of the FAD centers results in substantial alterations in the kinetics of the reaction of the viologen radical with the oxidase but not with the dehydrogenase. These results suggest that the viologen radical reacts directly with the FAD center in the oxidase but not in the dehydrogenase, as is the case with the deazaflavin radical. The data support the conclusion that the environments of the FAD centers differ in the two enzymes, which is in accord with other studies addressing this problem from a different perspective [Massey et al. (1989) J. Biol. Chem. 264, 10567-10573]. In contrast, the rate constants for intramolecular electron transfer among the Mo, FAD, and Fe/S centers in the two enzymes (where they can be determined) are quite similar.  相似文献   

15.
Formation and enzymatic properties of the UvrB.DNA complex   总被引:2,自引:0,他引:2  
The UvrA, UvrB, and UvrC proteins collectively catalyze the dual incision of a damaged DNA strand in an ATP-dependent reaction. We previously reported (Orren, D. K., and Sancar, A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 5237-5241) that UvrA delivers UvrB to damaged sites in DNA; upon addition of UvrC to these UvrB.DNA complexes, the DNA is incised. In the present study, we have further characterized both the delivery of UvrB to DNA and the subsequent incision process, with emphasis on the role of ATP in these reactions. The UvrA-dependent delivery of UvrB onto damaged DNA is relatively slow (kon approximately 6 x 10(4) M-1 s-1) and requires ATP hydrolysis (Km = 120 microM). Although ATP enhances the stability of UvrB.DNA complexes (koff = 8.5 x 10(-5) s-1), the isolated UvrB.DNA complexes do not contain any covalently attached or stably bound nucleotide. However, ATP binding is required for the UvrC-dependent dual incision of DNA bound by UvrB. Interestingly, adenosine 5'-(3-O-thio)triphosphate can substitute for ATP at this step. The Km for ATP during incision is 2 microM, but ATP is not hydrolyzed at a detectable level during the incision reaction. The incisions made by UvrB-UvrC are on both sides of the adduct and result in the excision of the damaged nucleotide.  相似文献   

16.
An Mr 57,000 single-chain chimeric plasminogen activator, K12G0S32, consisting of a variable region fragment (Fv) derived from the fibrin fragment D-dimer-specific monoclonal antibody MA-15C5 and of a 33-kDa (amino acids Ala132 to Leu411) recombinant single-chain urokinase-type plasminogen activator (rscu-PA-33k) was studied. K12G0S32, secreted by infected Spodoptera frugiperda insect cells at a rate of 1.5 micrograms/10(6) cells/48 h, was purified to homogeneity by ion-exchange chromatography and gel filtration. It was obtained essentially as a single-chain molecule with a Ka = 5.5 x 10(9) M-1 for immobilized fragment D-dimer, similar to that of MA-15C5. The specific activity of both its single-chain and two-chain forms on fibrin plates was 100,000 IU/mg of urokinase-type plasminogen activator (u-PA) equivalent. Activation of plasminogen by two-chain K12G0S32 obeyed Michaelis-Menten kinetics with Km = 2.9 +/- 0.6 microM and a k2 = 3.7 +/- 0.6 s-1 (mean +/- S.D.; n = 3), as compared to Km = 12 microM and k2 = 4.8 s-1 for rtcu-PA-32k (recombinant low Mr two-chain u-PA consisting of amino acids Leu144 to Leu411). Single-chain K12G0S32 induced a dose- and time-dependent lysis of a 125I-fibrin-labeled human plasma clot immersed in citrated human plasma; 50% lysis in 2 h was obtained with 0.70 +/- 0.07 micrograms/ml (mean +/- S.D.; n = 5), as compared with 8.8 +/- 0.1 micrograms/ml for rscu-PA-32k (recombinant low Mr single-chain u-PA consisting of amino acids Leu144 to Leu411) (mean +/- S.D.; n = 3). With two-chain K12G0S32, 50% clot lysis in 2 h required 0.25 +/- 0.03 micrograms/ml (mean +/- S.D.; n = 3), as compared with only 0.62 +/- 0.04 micrograms/ml (mean +/- S.D.; n = 2) for rtcu-PA-32k. These results indicate that low Mr single-chain u-PA can be targeted to a fibrin clot with a single-chain Fv fragment of a fibrin-specific antibody, resulting in a 13-fold increase of the fibrinolytic potency of the single-chain form and a 2.5-fold increase of the potency of the two-chain form.  相似文献   

17.
On the mechanism of fibrin-specific plasminogen activation by staphylokinase   总被引:10,自引:0,他引:10  
The mechanism of plasminogen activation by recombinant staphylokinase was studied both in the absence and in the presence of fibrin, in purified systems, and in human plasma. Staphylokinase, like streptokinase, forms a stoichiometric complex with plasminogen that activates plasminogen following Michaelis-Menten kinetics with Km = 7.0 microM and k2 = 1.5 s-1. In purified systems, alpha 2-antiplasmin inhibits the plasminogen-staphylokinase complex with k1(app) = 2.7 +/- 0.30 x 10(6) M-1 s-1 (mean +/- S.D., n = 12), but not the plasminogen-streptokinase complex. Addition of 6-aminohexanoic acid induces a concentration-dependent reduction of k1(app) to 2.0 +/- 0.17 x 10(4) M-1 s-1 (mean +/- S.D., n = 5) at concentrations greater than or equal to 30 mM, with a 50% reduction at a 6-aminohexanoic acid concentration of 60 microM. Staphylokinase does not bind to fibrin, and fibrin stimulates the initial rate of plasminogen activation by staphylokinase only 4-fold. Staphylokinase induces a dose-dependent lysis of a 0.12-ml 125I-fibrin-labeled human plasma clot submersed in 0.5 ml of citrated human plasma; 50% lysis in 2 h is obtained with 17 nM staphylokinase and is associated with only 5% plasma fibrinogen degradation. Corresponding values for streptokinase are 68 nM and more than 90% fibrinogen degradation. In the absence of a fibrin clot, 50% fibrinogen degradation in human plasma in 2 h requires 790 nM staphylokinase, but only 4.4 nM streptokinase. These results suggest the following mechanism for relatively fibrin-specific clot lysis with staphylokinase in a plasma milieu. In plasma in the absence of fibrin, the plasminogen-staphylokinase complex is rapidly neutralized by alpha 2-antiplasmin, thus preventing systemic plasminogen activation. In the presence of fibrin, the lysine-binding sites of the plasminogen-staphylokinase complex are occupied and inhibition by alpha 2-antiplasmin is retarded, thus allowing preferential plasminogen activation at the fibrin surface.  相似文献   

18.
Distinct semimetmyohemerythrin species are produced by one-electron oxidation of deoxymyohemerythrin and one-electron reduction of metmyohemerythrin. The former, (semimetmyo)o, changes (greater than or equal to 90%) to the latter, (semimetmyo)R, with k = 1.0 x 10(-2) s-1, delta H = 15.1 kcal mol-1 and delta S = -17 eu. Oxidation of (semimetmyo)o by Fe(CN)6(3)- rapidly produces an unstable metmyohemerythrin form which converts to the final metmyohemerythrin with k = 4.6 x 10(-3) s-1, delta H = 16.8 kcal mol-1, and delta S = -13 eu. The two met forms react at the same rate with N3-, but the unstable form reacts very rapidly with S2O4(2-) in contrast to stable metmyohemerythrin. (Semimetmyo)R or a mixture of metmyohemerythrin and deoxymyohemerythrin equilibrate very slowly to a mixture containing all three species. The rate constants for disproportionation and comproportionation are 0.89 M-1 s-1 and 9.4 M-1 s-1, respectively. EPR spectra near liquid He temperatures and optical absorption spectra have been used to characterize and measure the rates at 25 degrees C, pH 8.2, and I = 0.15 M. The comparative behavior of octameric and monomeric protein is discussed.  相似文献   

19.
Properties of fractionated chondroitin sulphate from ox nasal septa   总被引:4,自引:9,他引:4       下载免费PDF全文
1. Chondroitin sulphate was isolated from bovine nasal septa by precipitation with cetylpyridinium chloride after digestion of the tissue with papain. 2. The material was divided into two portions, one of which was partially degraded with testicular hyaluronidase. 3. Untreated and hyaluronidase-digested material were fractionated into a total of eleven subfractions by gel chromatography on Sephadex G-200 and Sephadex G-100 respectively. 4. Chemical analyses indicated that the composition of all the fractions was similar to that of chondroitin sulphate. However, electrophoresis revealed a charge-inhomogeneity in the low-molecular-weight fractions obtained after hyaluronidase digestion. 5. The physicochemical properties of the subfractions were investigated by sedimentation-velocity, diffusion and sedimentation-equilibrium studies, osmometry, viscometry and gel chromatography. The individual fractions were essentially monodisperse and showed molecular weights ranging from 2400 to 36000. 6. The relationship between the intrinsic viscosity and the molecular weight was [eta]=5.0x10(-6)xM(1.14), indicating that the chondroitin sulphate molecules assume a shape intermediate between that of a random coil and a stiff rod. 7. The relationship between the sedimentation constant and the molecular weight (>10(4)) was s(0) (20,w)=2.3x10(-2)xM(0.44).  相似文献   

20.
Oxidation processes of radiation-generated three-electron-bonded intermediates derived from methionine Met2[S+...S] and Met[S...X] (X=Cl,Br) were investigated through reaction with tryptophan and tyrosine, using the optical pulse radiolysis method. Bimolecular rate constants have been measured for the reactions Met2[S+...S] with TrpH(k=3.8 x 10(8) dm3 mol-1 s-1 and k = 4.9 X 10(8) dm3 mol-1 s-1 at at ph 1 and 4.3, respectively) and Met2[S+...S] with tyrosine, k=3.8 x 10(7) dm3 mol-1 s-1. Rate constants for intermolecular transformation of Met[S...Br] and Met[S...Cl] into TrpH+. or Trp. were also estimated. They varied from 4.7 X 10(8) dm3 mol-1 s-1 (bromide species) to 1.0 X 10(9)dm3 mol-1 s-1 (chloride species). It has also been established azide radicals N-6, N.3 in contrast to dihalide radicals (X-2) do not form transients of Met[S...X] (X = N3)-type. However, oxidation of N-3 by Met2[S+...S] occurs with a bimolecular rate constant of 2.8 X 10(8) dm3 mol-1 s-1. These results are discussed in the light of some equilibria which have been proposed earlier for methionine-halide systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号