首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S S Peng  C Y Chen  N Xu    A B Shyu 《The EMBO journal》1998,17(12):3461-3470
  相似文献   

2.
The salivarian trypanosome Trypanosoma brucei infects mammals and is transmitted by tsetse flies. The mammalian ‘bloodstream form’ trypanosome has a variant surface glycoprotein coat and relies on glycolysis while the procyclic form from tsetse flies has EP protein on the surface and has a more developed mitochondrion. We show here that the mRNA for the procyclic-specific cytosolic phosphoglycerate kinase PGKB, like that for EP proteins, contains a regulatory AU-rich element (ARE) that destabilises the mRNA in bloodstream forms. The human HuR protein binds to, and stabilises, mammalian mRNAs containing AREs. Expression of HuR in bloodstream-form trypanosomes resulted in growth arrest and in stabilisation of the EP, PGKB and pyruvate, phosphate dikinase mRNAs, while three bloodstream-specific mRNAs were reduced in abundance. The synthesis and abundance of unregulated mRNAs and proteins were unaffected. Our results suggest that regulation of mRNA stability by AREs arose early in eukaryotic evolution.  相似文献   

3.
4.
Jin  Heping  Chen  Yanlian  Ren  Jian  Huang  Junjiu  Zhao  Yong  Liu  Haiying 《中国科学:生命科学英文版》2022,65(12):2505-2516

TERC is the RNA component of telomerase, and provides a template for TERT to synthesize telomere repeats at chromosome ends. Increasing evidence has revealed that TERC is involved in other biological processes beyond telomerase. Here, we found that the expression level of TERC is negatively correlated with PD-L1 and that ectopic expression of TERC but not TERT in ALT cells significantly inhibits PD-L1, suggesting that TERC suppresses PD-L1 expression in a telomerase-independent manner. Mechanistically, instead of regulating PD-L1 mRNA directly, TERC accelerates PD-L1 mRNA degradation by inhibiting the expression of HuR, which binds to the 3′UTR of PD-L1 mRNA and maintains its stability. We also found that the small molecule AS1842856, a FoxO1 inhibitor, promotes TERC expression and reverses the PD-L1 upregulation caused by chemotherapy, providing a potential combination cancer therapy that avoids cancer immune escape during chemotherapy.

  相似文献   

5.
6.
7.
8.
AU-rich elements (AREs) control the expression of numerous genes by accelerating the decay of their mRNAs. Rapid decay and deadenylation of beta-globin mRNA containing AU-rich 3' untranslated regions of the chemoattractant cytokine interleukin-8 (IL-8) are strongly attenuated by activating the p38 mitogen-activated protein (MAP) kinase/MAP kinase-activated protein kinase 2 (MK2) pathway. Further evidence for a crucial role of the poly(A) tail is provided by the loss of destabilization and kinase-induced stabilization in ARE RNAs expressed as nonadenylated forms by introducing a histone stem-loop sequence. The minimal regulatory element in the IL-8 mRNA is located in a 60-nucleotide evolutionarily conserved sequence with a structurally and functionally bipartite character: a core domain with four AUUUA motifs and limited destabilizing function on its own and an auxiliary domain that markedly enhances destabilization exerted by the core domain and thus is essential for the rapid removal of RNA targets. A similar bipartite structure and function are observed for the granulocyte-macrophage colony-stimulating factor (GM-CSF) ARE. Stabilization in response to p38/MK2 activation is seen with the core domain alone and also after mutation of the AUUUA motifs in the complete IL-8 ARE. Stabilization by ARE binding protein HuR requires different sequence elements. Binding but no stabilization is observed with the IL-8 ARE. Responsiveness to HuR is gained by exchanging the auxiliary domain of the IL-8 ARE with that of GM-CSF or with a domain of the c-fos ARE, which results in even stronger responsiveness. These results show that distinct ARE domains differ in function with regard to destabilization, stabilization by p38/MK2 activation, and stabilization by HuR.  相似文献   

9.
The family of cytoplasmic polyadenylation element binding proteins CPEB1, CPEB2, CPEB3, and CPEB4 binds to the 3′‐untranslated region (3′‐UTR) of mRNA, and plays significant roles in mRNA metabolism and translation regulation. They have a common domain organization, involving two consecutive RNA recognition motif (RRM) domains followed by a zinc finger domain in the C‐terminal region. We solved the solution structure of the first RRM domain (RRM1) of human CPEB3, which revealed that CPEB3 RRM1 exhibits structural features distinct from those of the canonical RRM domain. Our structural data provide important information about the RNA binding ability of CPEB3 RRM1. Proteins 2014; 82:2879–2886. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
11.
Regulation of messenger RNA stability by AU-rich elements is an important means of regulating genes induced by growth factors and cytokines. Nup475 (also known as tristetraprolin, or TIS11) is the prototype for a family of zinc-binding Cys(3)His motif proteins required for proper regulation of tumor necrosis factor mRNA stability in macrophages. We developed an Escherichia coli expression system to produce soluble Nup475 protein in quantity to study its RNA binding properties. Nup475 protein bound a tumor necrosis factor AU-rich element over a broad range of pH and salt concentrations by RNA gel shift. This binding was inhibited by excess zinc metal, providing a potential mechanism for previous reports of zinc stabilization of AU-rich element (ARE) containing messenger RNAs. Immobilized Nup475 protein was used to select its optimal binding site by RNA SELEX and revealed a strong preference for the extended sequence UUAUUUAUU, rather than a simple AUUUA motif. These findings were confirmed by site-directed mutagenesis of the tumor necrosis factor ARE and RNA gel shifts on c-fos, interferon-gamma, and interferon-beta ARE fragments. A weaker binding activity toward adenine-rich sites, such as a poly(A) tail RNA fragment, can partially disrupt the Nup475-tumor necrosis factor AU-rich element complex.  相似文献   

12.
The role of the AU-rich elements of mRNAs in controlling translation   总被引:8,自引:0,他引:8  
Adenosine- and uridine-rich elements (AREs) located in 3'-untranslated regions are the best-known determinants of RNA instability. These elements have also been shown to control translation in certain mRNAs, including mRNAs for prominent pro-inflammatory and tumor growth-related proteins, and physiological anti-inflammatory processes that target ARE-controlled translation of mRNAs coding for pro-inflammatory proteins have been described. A major research effort is now being made to understand the mechanisms by which the translation of these mRNAs is controlled and the signalling pathways involved. This review focuses on the role of ARE-containing gene translation in inflammation, and the disease models that have improved our understanding of ARE-mediated translational control.  相似文献   

13.
14.
15.
The stability of RNAs bearing AU-rich elements in their 3'-UTRs, and thus the level of expression of their protein products, is regulated by interactions with cytoplasmic RNA-binding proteins. Binding by HuR generally leads to mRNA stabilization and increased protein production, whereas binding by AUF1 isoforms generally lead to rapid degradation of the mRNA and reduced protein production. The exact nature of the interplay between these and other RNA-binding proteins remains unclear, although recent studies have shown close interactions between them and even suggested competition between the two for binding to their cognate recognition sequences. Other recent reports have suggested that the sequences recognized by the two proteins are different. We therefore performed a detailed in vitro analysis of the binding site(s) for HuR and AUF1 present in androgen receptor mRNA to define their exact target sequences, and show that the same sequence is contacted by both proteins. Furthermore, we analysed a proposed HuR target within the 3'-UTR of MTA1 mRNA, and show that the contacted bases lie outside of the postulated motif and are a better match to a classical ARE than the postulated motif. The defining features of these HuR binding sites are their U-richness and single strandedness.  相似文献   

16.
17.
《Molecular cell》2022,82(20):3840-3855.e8
  1. Download : Download high-res image (118KB)
  2. Download : Download full-size image
  相似文献   

18.
19.
Previous studies have demonstrated that the major storage protein RNAs found in the rice endosperm are transported as particles via actomyosin to specific subdomains of the cortical endoplasmic reticulum. In this study, we examined the potential role of Os Tudor-SN, a major cytoskeletal-associated RNA binding protein, in RNA transport and localization. Os Tudor-SN molecules occur as high-molecular-weight forms, the integrity of which are sensitive to RNase. Immunoprecipitation followed by RT-PCR showed that Os Tudor-SN binds prolamine and glutelin RNAs. Immunofluorescence studies using affinity-purified antibodies show that Os Tudor-SNs exists as particles in the cytoplasm, and are distributed to both the protein body endoplasmic reticulum (ER) and cisternal ER. Examination of Os Tudor-SN particles in transgenic rice plants expressing GFP-tagged prolamine RNA transport particles showed co-localization of Os Tudor-SN and GFP, suggesting a role in RNA transport. Consistent with this view, GFP-tagged Os Tudor-SN is observed in living endosperm sections as moving particles, a property inhibited by microfilament inhibitors. Downregulation of Os Tudor-SN by antisense and RNAi resulted in a decrease in steady state prolamine RNA and protein levels, and a reduction in the number of prolamine protein bodies. Collectively, these results show that Os Tudor-SN is a component of the RNA transport particle, and may control storage protein biosynthesis by regulating one or more processes leading to the transport, localization and anchoring of their RNAs to the cortical ER.  相似文献   

20.
Polypyrimidine tract binding protein (PTB) is a major hnRNP protein with multiple roles in mRNA metabolism, including regulation of alternative splicing and internal ribosome entry site-driven translation. We show here that a fourfold overexpression of PTB results in a 75% reduction of mRNA levels produced from transfected gene constructs with different polyadenylation signals (pA signals). This effect is due to the reduced efficiency of mRNA 3' end cleavage, and in vitro analysis reveals that PTB competes with CstF for recognition of the pA signal's pyrimidine-rich downstream sequence element. This may be analogous to its role in alternative splicing, where PTB competes with U2AF for binding to pyrimidine-rich intronic sequences. The pA signal of the C2 complement gene unusually possesses a PTB-dependent upstream sequence, so that knockdown of PTB expression by RNA interference reduces C2 mRNA expression even though PTB overexpression still inhibits polyadenylation. Consequently, we show that PTB can act as a regulator of mRNA expression through both its negative and positive effects on mRNA 3' end processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号