首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunochemical relationships of chicken pepsinogens and pepsins   总被引:1,自引:0,他引:1  
S T Donta  H Van Vunakis 《Biochemistry》1970,9(14):2798-2802
  相似文献   

2.
Three type-A and two type-C pepsinogens, namely, pepsinogens A-1, A-2, A-3, C-1, and C-2, were purified from adult goat abomasum. Their relative levels in abomasal mucosa were 27, 19, 14, 25, and 15%, respectively. Amino acid compositions were quite similar between isozymogens of respective types, but different between the two types especially in the Glx/Asx and Leu/Ile ratios. NH2-terminal amino acid sequences of pepsinogens A-3 and C-2 were SFFKIPLVKKKSLRQNLIEN- and LVKIPLKKFKSIRETM-, respectively. Pepsins A and C showed maximal hemoglobin-digestive activity at around pH 2 and 3, respectively, and specific activities of pepsins C were higher than those of pepsins A. Two subtypes of pepsin A were obvious, namely pepsin A-2/3 which maintains its activity in the weakly acidic pH region over pH 3 and pepsin A-1, which does not. Hydrolysis of oxidized insulin B chain by goat pepsins A occurred primarily at Ala14-Leu15 and Leu15-Tyr16 bonds.  相似文献   

3.
4.
5.
6.
The amino acid sequences of three pepsinogens (PG1, PG2 and PG3) of Pacific bluefin tuna (Thunnus orientalis) were deduced by cloning and nucleotide sequencing of the corresponding cDNAs. The amino acid sequences of the pre-forms of PG1, PG2 and PG3 were composed of a signal peptide (16 residues each), a propeptide (41, 37 and 35 residues, respectively) and a pepsin moiety (321, 323 and 332 residues, respectively). Amino acid sequence comparison and phylogenetic analysis indicated that PG1 and PG2 belong to the pepsinogen A family and PG3 to the pepsinogen C family. Homology modeling of the three-dimensional structure suggested that the remarkably high specific activity of PG2 toward hemoglobin, which had been found previously, was partly due to a characteristic deletion of several residues in the S1'-loop region that widens the space of the active site cleft region so as to accommodate protein and larger polypeptide substrates more efficiently. Including the tuna and all other fish pepsinogen sequences available to date, the molecular phylogenetic comparison was made with reference to evolution of fish pepsinogens. It was suggested that functional divergences of pepsinogens (pepsins) occurring in fishes as well as in mammals, correlated with differences in various aspects of fish physiology.  相似文献   

7.
The distribution of various isochore families on mitotic chromosomes of domestic chicken and Japanese quail was studied by the method of fluorescence in situ DNA--DNA hybridization (FISH). DNA of various isochore families was shown to be distributed irregularly and similarly on chromosomes of domestic chicken and Japanese quail. The GC-rich isochore families (H2, H3, and H4) hybridized mainly to microchromosomes and a majority of macrochromosome telomeric regions. In chicken, an intense fluorescence was also in a structural heterochromatin region of the Z chromosome long arm. In some regions of the quail macrochromosome arms, hybridization was also with isochore families H3 and H4. On macrochromosomes of both species, the pattern of hybridization with isochores of the H2 and H3 families resembled R-banding. The light isochores (L1 and L2 families) are mostly detected within macrochromosome internal regions corresponding to G bands, whereas microchromosomes lack light isochores. Although mammalian and avian karyotypes differ significantly in organization, the isochore distribution in genomes of these two lineages of the warm-blooded animals is similar in principle. On macrochromosomes of the two avian species studied, a pattern of isochore distribution resembled that of mammalian chromosomes. The main specific feature of the avian genome, a great number of microchromosomes (about 30% of the genome), determines a compositional specialization of the latter. This suggests the existence of not only structural but also functional compartmentalization of the avian genome.  相似文献   

8.
Three pepsinogens (pepsinogens 1, 2, and 3) were purified from the gastric mucosa of the North Pacific bluefin tuna (Thunnus thynuus orientalis). Their molecular masses were determined to be 40.4 kDa, 37.8 kDa, and 40.1 kDa, respectively, by SDS/polyacrylamide gel electrophoresis. They contained relatively large numbers of basic residues when compared with mammalian pepsinogens. Upon activation at pH 2.0, pepsinogens 1 and 2 were converted to the corresponding pepsins, in a stepwise manner through intermediate forms, whereas pepsinogen 3 was converted to pepsin 3 directly. The optimal pH of each pepsin for hemoglobin digestion was around 2.5. N-acetyl-L-phenylalanyl-L-diiodotyrosine was scarcely hydrolyzed be each pepsin. Pepstatin, diazoacetyl-DL-norleucine methyl ester in the presence of Cu2+, 1,2-epoxy-3-(p-nitrophenoxy)propane and p-bromophenacyl bromide inhibited each pepsin, although the extent of inhibition by each reagent differed significantly among the three pepsins. The amino acid sequences of the activation segments of these pepsinogens were determined together with the sequences of the NH2-terminal regions of pepsins. Similarities in the activation segment region among the three tuna pepsinogens were rather low, ranging over 28-56%. A phylogenetic tree for 16 aspartic proteinase zymogens including the three tuna pepsinogens was constructed based on the amino acid sequences of their activation segments. The tree indicates that each tuna pepsinogen diverged from a common ancestor of pepsinogens A and C and prochymosin in the early period of pepsinogen evolution.  相似文献   

9.
10.
Glutamine synthetase (L-glutamate: ammonia ligase, EC 6.3.1.2) was isolated from chicken liver, brain and neural retina. The specific activities of the purified enzyme preparations from the three different sources were similar. They were composed of subunits of the same molecular weight (43 K) and were immunologically indistinguishable. Slight differences were detectable among them in relation to the amino acid compositions and regulation of their activities by the several effectors tested.  相似文献   

11.
Two pepsinogens, the contents of which increase with developmental progress, were purified from the gastric mucosa of the adult rat by ammonium sulfate fractionation and chromatography on DEAE-cellulose and DEAE-Sepharose CL-6B columns. The purified zymogens, designated as pepsinogens I and II, were each shown to be homogeneous by polyacrylamide gel disc electrophoresis. Pepsinogen II had a greater electrophoretic mobility toward the anode at pH 8.0 than pepsinogen I. The molecular weights of both zymogens were estimated to be 38,000 by SDS-polyacrylamide gel electrophoresis. The activated enzymes, pepsins I and II, each had the same molecular weight of 32,000. The pH optima for both enzymes were found to be 2.0. The enzymes showed high stabilities at pH 8.0, while they lost their activities within 60 min at pH 10.0. The enzymes were inhibited by pepstatin and diazoacetyl-DL-norleucine methyl ester (DAN). The activities of the enzymes in hydrolyzing N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine (APDT) were about 1/8 of that of porcine pepsin. These results suggest that pepsins I and II are very similar.  相似文献   

12.
Summary Using antibodies against the fetal and adult forms of - and -globin, it has been shown that erythropoiesis in the para-aortic foci (PAF) constitutes a major species-specific difference between chicken and quail embryos. In quail embryos, para-aortic foci are rare, small and rather heterogeneous with regard to their erythropoietic and haemopoietic cell composition. In contrast, the PAFs in chicken embryos are abundant and consist of large numbers of erythropoietic cells.In both species a time difference (approximately 1 day) is observed between the first expression of the fetal - and -globin and the adult - and -globin in erythropoietic cells. Adult erythropoiesis in both species can be detected first in the stalk of the yolk sac; this is similar to the situation in mammalian and amphibian species. From this time onward the number of circulating adult erythrocytes increases steadily. Whereas in chicken, large intraembryonic foci that can serve as sources for these adult cells arise concomitantly, no such foci can be detected in quail embryos, suggesting that the quail yolk sac is a major source for these adult red blood cells.  相似文献   

13.
Interleukin 1 isoforms (IL-1) are major regulators of vertebrate immune responses. In the mammalian CNS, this function is reflected in physiological and anatomical evidence implicating IL-1 in a suite of behaviors associated with sickness. Although birds show sickness behavior, a parallel role of IL-1 in birds has not been investigated. As proinflammatory effects of IL-1 are mediated via the IL-1 type I receptor (IL-1RI), we investigated the distribution of IL-1RI protein and mRNA after lipopolysaccharide challenge in brains of two avian species, the chicken and Japanese quail. In some respects, the neuroanatomic distribution of IL-1R mRNA and protein in chicken and Japanese quail resembled that reported in mammals and was consistent with its putative role in the physiology and behavior of sickness. For example, we found IL-1RI mRNA or IL-1RI immunoreactivity in lemnothalamic visual projection areas of the pallium, surrounding blood vessels in pallial areas, in the dorsomedial nucleus of the hypothalamus, in the nucleus taenia, in cerebeller Purkinje cells and the motor components of the trigeminal and vagus nuclei. However, in contrast to mammals, we did not find evidence of IL1-RI receptors in medial or lateral pallial structures, paraventricular nucleus, areas homologous to the arcuate nucleus, the choroid plexus, organum vasculosum of the lamina terminalis or the reticular activating system. The distribution of IL-1RI suggests that a role for IL-1 in sickness behavior is conserved in birds, but that roles in other putative mammalian functions (e.g. hypothalamic-pituitary-adrenal and gonadal axes regulation, transport through barrier-related tissues, arousal) may differ.  相似文献   

14.
Purification and properties of chicken prothrombin   总被引:2,自引:0,他引:2  
Prothrombin was isolated from citrated chicken plasma. The isolation depends upon the elimination of an interfering substance closely adherent to chicken prothrombin by treatment with SrCO3. Subsequent to this, the classical adsorption to barium citrate, chromatography on DEAE-cellulose, and gel filtration on Sephadex G-200 was carried out. Prothrombin purified by this method was found to have a specific activity of 1050 Iowa units (850 N.I.H. thrombin units) per mg. Recovery from plasma averaged 40%. Molecular weight by Sephadex G-200 chromatography was 73,000 ± 5,000 and by dodecyl sulfate sodium salt acrylamide gel electrophoresis 70,000 ± 5,000. A stable dimer of Mr 138,000 was observed in some preparations. The isoelectric pH in both acetate and phosphate buffers (μ = 0.1) was 3.95. Rabbit antibody to chicken prothrombin evidenced a single line by immunoelectrophoresis against purified antigen and chicken plasma.  相似文献   

15.
Two pepsinogens (Pg C and Pg A) were isolated from the stomach of adult Xenopus laevis by Q-Sepharose, Sephadex G-75, and Mono-Q column chromatographies. Autolytic conversion and activation of the purified Pgs into the pepsins were examined by acid treatment. We determined the amino acid sequences from the NH2-termini of Pg C, pepsin C, Pg A, and pepsin A. Based on the sequences, the cDNAs for Pg C and Pg A were cloned from adult stomach RNA, and the complete amino acid sequences of the Pg C and Pg A were predicted. In addition, a Pg A cDNA was cloned from the stomach of adult bullfrog Rana catesbeiana, and the primary structure of the Pg A was predicted. Molecular phylogenetic analysis showed that such anuran Pg C and Pg A belong to the Pg C group and the Pg A group in vertebrates, respectively. The molecular properties of Pg C and Pg A, such as size, sequences of the activation peptide and active site, profile of autolytic activation, and pH dependency of proteolytic activity of the activated forms, pepsin C and pepsin A, resemble those of Pgs found in other vertebrates. However, the hemoglobin-hydrolyzing activity of Xenopus pepsin C is completely inhibited in the presence of equimolar pepstatin, an inhibitor of aspartic proteinases. Thus, the Xenopus pepsin C differs significantly from other vertebrate pepsins C in its high susceptibility to pepstatin, and closely resembles A-type pepsins.  相似文献   

16.
Egg yolk-based diluents provide adequate cryoprotection for the sperm of several mammalian species. Traditionally, chicken egg yolk has been used as additive for the freeze preservation of spermatozoa because of its wide availability. Variations in the chemical composition of the egg yolk of different avian species appear to influence the protection afforded during cooling, freezing, and thawing. The aim of the present study was to assess the use of quail egg yolk as a novel additive for the epididymal spermatozoa of a threatened wild ruminant species—the Spanish ibex—and to compare its efficacy with chicken egg yolk. Epididymal spermatozoa were diluted using a Tris–citric acid–glucose medium (TCG) composed of 3.8% Tris (w v−1), 2.2% citric acid (w v−1), 0.6% glucose (w v−1), 5% glycerol (v v−1), and 6% egg yolk (v v−1). Sperm masses from the right epididymes were diluted with TCG-6% chicken egg yolk medium, while those from the left were diluted with TCG-6% quail egg yolk. The thawed spermatozoa preserved with TCG-6% quail egg yolk extender exhibited lower motility (P < 0.001), membrane integrity (P < 0.001), and viability (P < 0.01) than those diluted with the TCG-6% chicken egg yolk extender. The fertility of spermatozoa frozen in TCG-6% chicken egg yolk tended to be higher than in those frozen with TCG-6% quail egg yolk (63.3% vs 36.4%, P = 0.19). These results show that quail egg yolk offers no advantages over chicken egg yolk in the cryopreservation of Spanish ibex epididymal spermatozoa.  相似文献   

17.
18.
Using direct R-banding fluorescence in situ hybridization, we assigned five functional genes-growth hormone receptor (GHR), prolactin receptor (PRLR), spleen tyrosine kinase (SYK), aldolase B (ALDOB), and muscle skeletal receptor tyrosine kinase (MUSK)-to the chicken Z chromosome. SYK and MUSK were newly localized to the chicken Z chromosome in this study. GHR and PRLR were situated close to each other on the short arm of the chicken Z chromosome, as are their counterparts on human chromosome 5. SYK, MUSK, and ALDOB, which have been mapped to human chromosome 9, were localized to the long arm of the chicken Z chromosome. Thus, the present results indicate the presence of conserved synteny between the chicken Z chromosome and human chromosomes 5 and 9. Using the same method, four of the genes (GHR, PRLR, ALDOB, and MUSK) were assigned to the Japanese quail Z chromosome. The locations of these four Z-linked genes were conserved between chicken and Japanese quail. The results support the notion that the avian Z chromosome and the mammalian X chromosome did not evolve from a common ancestral linkage group.  相似文献   

19.
Tyrosinase (EC 1.14.18.1) was purified from regenerating chicken feathers. Most of the enzyme activity was in the insoluble fraction, which was solubilized with 0.5% sodium cholate. Solubilized tyrosinase showed multiple forms on isoelectric focusing. The isoelectric points had the following pI values: 5.06, 4.83, 4.68, 4.56, 4.44, 4.32, 4.24, 4.14, 4.06 and 3.97. This tyrosinase fraction was subjected to trypsin (EC 3.4.21.4) cleavage, Sephacryl S-200, hydroxylapatite and DEAE-cellulose chromatography. Purified enzymatically active tyrosinase also showed multiple forms. Their isoelectric points were: 4.23, 4.14, 4.06, 3.99 and 3.91. Each active form had almost the same molecular weight, estimated at 66 000. Staining for 1,2-diol groups of glycoproteins and neuraminidase (EC 3.2.1.18) treatment suggested that chicken tyrosinase is a glycoprotein. The enzyme showed both dopa(L-3,4-dihydroxylphenylalanine) oxidase activity and tyrosine hydroxylase activity.  相似文献   

20.
Purification and isoelectric heterogeneity of chicken tyrosinase   总被引:1,自引:0,他引:1  
Alterations in rat liver transfer RNA (tRNA) methyltransferase activities have been observed after liver damage by various chemicals or by partial hepatectomy. The qualitative and quantitative nature of these activity changes and the time course for their induction have been studied. Since homologous tRNAs are essentially fully modified in vivo, E. coli tRNAs were used as in vitro substrates for the rat liver enzymes in these studies. Each of the liver-damaging agents tested rapidly caused increases in activities of the enzyme(s) catalyzing methyl group transfer to tRNAs that have an unmodified guanine at position 26 from the 5' end of the molecule. This group of tRNAs includes E. coli tRNANfmet, tRNAAla1, tRNALeu1, or Leu2, and tRNASer3 (Group 1). In each case N2-methylguanine and N2,N2-dimethylguanine represented 90% or more of the products of these in vitro methylations. The product and substrate specificity observed are characteristic of N2-guanine methyltransferase II (S-adenosyl-L-methionine : tRNA (guanine-2)-methyltransferase, EC 2.1.1.32). In crude and partially purified preparations derived from livers of both control and treated animals this enzyme activity was not diminished significantly by exposure to 50 degrees C for min. The same liver-damaging agents induced little or no change in the activities of enzymes that catalyze methyl group transfer to various other E. coli tRNAs that do not have guanine at position 26 (Group 2). The results of mixing experiments appear to rule out the likelihood that the observed enzyme activity changes are due to stimulatory or inhibitory materials present in the enzyme preparations from control or treated animals. Thus, our experiments indicate that liver damage by each of several different methods, including surgery or administration of chemicals that are strong carcinogens, hepatotoxins, or cancer-promoting substances, all produce changes in liver tRNA methyltransferase activity that represent a selective increase in activity of N2-guanine tRNA methyltransferase II. It is proposed that the specificity of this change is not fortuitous, but is the manifestation of an as yet unidentified regulatory process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号