首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
To characterize structural changes induced in the nicotinic acetylcholine receptor (AChR) by agonists, we have mapped the sites of photoincorporation of the cholinergic noncompetitive antagonist 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (]125I]TID) in the presence and absence of 50 microM carbamylcholine. [125I]TID binds to the AChR with similar affinity under both these conditions, but agonist inhibits photoincorporation into all subunits by greater than 75% (White, B. H., Howard, S., Cohen, S. G., and Cohen, J. B. (1991) J. Biol. Chem. 266, 21595-21607). [125I]TID-labeled sites on the beta- and delta-subunits were identified by amino-terminal sequencing of both cyanogen bromide (CNBr) and tryptic fragments purified by Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by reversed-phase high-performance liquid chromatography. In the absence of agonist, [125I]TID specifically labels homologous aliphatic residues (beta L-257, delta L-265, beta V-261, and delta V-269) in the M2 region of both subunits. In the presence of agonist, labeling of these residues is reduced approximately 90%, and the distribution of labeled residues is broadened to include a homologous set of serine residues at the amino terminus of M2. In the beta-subunit residues beta S-250, beta S-254, beta L-257, and beta V-261 are all labeled in the presence of carbamylcholine. This pattern of labeling supports an alpha-helical model for M2 with the labeled face forming the ion channel lumen. The observed redistribution of label in the resting and desensitized states provides the first direct evidence for an agonist-dependent rearrangement of the M2 helices. The efficient labeling of the resting state channel in a region capable of structural change also suggests a plausible model for AChR gating in which the aliphatic residues labeled by [125I]TID form a permeability barrier to the passage of ions. We also report increased labeling of the M1 region of the delta-subunit in the presence of agonist.  相似文献   

2.
Bupropion, a clinically used antidepressant and smoking-cessation drug, acts as a noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs). To identify its binding site(s) in nAChRs, we developed a photoreactive bupropion analogue, (±)-2-(N-tert-butylamino)-3'-[(125)I]-iodo-4'-azidopropiophenone (SADU-3-72). Based on inhibition of [(125)I]SADU-3-72 binding, SADU-3-72 binds with high affinity (IC(50) = 0.8 μM) to the Torpedo nAChR in the resting (closed channel) state and in the agonist-induced desensitized state, and bupropion binds to that site with 3-fold higher affinity in the desensitized (IC(50) = 1.2 μM) than in the resting state. Photolabeling of Torpedo nAChRs with [(125)I]SADU-3-72 followed by limited in-gel digestion of nAChR subunits with endoproteinase Glu-C established the presence of [(125)I]SADU-3-72 photoincorporation within nAChR subunit fragments containing M1-M2-M3 helices (αV8-20K, βV8-22/23K, and γV8-24K) or M1-M2 helices (δV8-14). Photolabeling within βV8-22/23K, γV8-24K, and δV8-14 was reduced in the desensitized state and inhibited by ion channel blockers selective for the resting (tetracaine) or desensitized (thienycyclohexylpiperidine (TCP)) state, and this pharmacologically specific photolabeling was localized to the M2-9 leucine ring (δLeu(265), βLeu(257)) within the ion channel. In contrast, photolabeling within the αV8-20K was enhanced in the desensitized state and not inhibited by TCP but was inhibited by bupropion. This agonist-enhanced photolabeling was localized to αTyr(213) in αM1. These results establish the presence of two distinct bupropion binding sites within the Torpedo nAChR transmembrane domain: a high affinity site at the middle (M2-9) of the ion channel and a second site near the extracellular end of αM1 within a previously described halothane (general anesthetic) binding pocket.  相似文献   

3.
Interactions of benzophenone (BP) with the Torpedo nicotinic acetylcholine receptor (nAChR) were characterized by electrophysiological analyses, radioligand binding assays, and photolabeling of nAChR-rich membranes with [3H]BP to identify the amino acids contributing to its binding sites. BP acted as a low potency noncompetitive antagonist, reversibly inhibiting the ACh responses of nAChRs expressed in Xenopus oocytes (IC50 = 600 microM) and the binding of the noncompetitive antagonist [3H]tetracaine to nAChR-rich membranes (IC50 = 150 microM). UV irradiation at 365 nm resulted in covalent incorporation of [3H]BP into the nAChR subunits (delta > alpha approximately beta > gamma), with photoincorporation limited to the nAChR transmembrane domain. Comparison of nAChR photolabeling in the closed state (absence of agonist) and desensitized state (equilibrated with agonist) revealed selective desensitized state labeling in the delta subunit of deltaPhe-232 in deltaM1 and deltaPro-286/deltaIle-288 near the beginning of deltaM3 that are within a pocket at the interface between the transmembrane and extracellular domains. There was labeling in the closed state within the ion channel at position M2-13 (alphaVal-255, betaVal-261, and deltaVal-269) that was reduced by 90% upon desensitization and labeling in the transmembrane M3 helices of the beta and gamma subunits (betaMet-285, betaMet-288, and gammaMet-291) that was reduced by 50-80% in the desensitized state. Labeling at the lipid interface (alphaMet-415 in alphaM4) was unaffected by agonist. These results provide a further definition of the regions in the nAChR transmembrane domain that differ in structure between the closed and desensitized states.  相似文献   

4.
S A Forman 《Biochemistry》1999,38(44):14559-14564
3-(Trifluoromethyl)-3-(m-iodophenyl)diazirine (TID) is a hydrophobic inhibitor of nicotinic acetylcholine receptors (nAChRs) and a photolabel that incorporates both at the lipid-protein interface and within the gated pore. On the basis of Torpedo vesicle studies, TID is thought to selectively inhibit the closed nAChR state. The nAChR site(s) mediating TID inhibition is unknown. We investigated the state dependence and kinetics of TID inhibition electrophysiologically using rapidly superfused membrane patches expressing mouse muscle nAChRs. Currents from patches simultaneously exposed to ACh and TID show no inhibition of peak currents relative to acetylcholine (ACh) alone but demonstrate slow (10 s(-1)) TID inhibition. Patch preexposure to TID before ACh results in a burst of current followed by rapid [TID]-dependent inhibition at a bimolecular rate of 1.8 x 10(8) M(-1) s(-1), indicating that TID selectively inhibits open channels. We also determined sensitivity to TID in two nAChRs containing mutations in their pore-forming M2 domains. The alphaL251T mutation eliminates sensitivity to TID inhibition, while the alphaS252I mutation enhances this sensitivity 4-fold compared to wild type. These results indicate that TID inhibition of nAChRs follows two distinct kinetic steps. The rate-limiting step, which shows features suggesting a diffusion barrier, precedes rapid open-state-dependent TID binding to an inhibition site near the putative nAChR gate.  相似文献   

5.
3-Trifluoromethyl-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) has been shown to be a potent noncompetitive antagonist (NCA) of the nicotinic acetylcholine receptor (AChR). Amino acids that contribute to the binding site for [(125)I]TID in the ion channel have been identified in both the resting and desensitized state of the AChR (White, B.H., and Cohen, J.B. (1992) J. Biol. Chem. 267, 15770-15783). To characterize further the structure of the NCA-binding site in the resting state channel, we have employed structural analogs of TID. The TID analogs were assessed by the following: 1) their ability to inhibit [(125)I]TID photoincorporation into the resting state channel; 2) the pattern, agonist sensitivity, and NCA inhibition of [(125)I]TID analog photoincorporation into AChR subunits. The addition of a primary alcohol group to TID has no demonstrable effect on the interaction of the compound with the resting state channel. However, conversion of the alcohol function to acetate, isobutyl acetate (TIDBIBA), or to trimethyl acetate leads to rightward shifts in the concentration-response curves for inhibition of [(125)I]TID photoincorporation into the AChR channel and a progressive reduction in the agonist sensitivity of [(125)I]TID analog photoincorporation into AChR subunits. Inhibition of [(125)I]TID analog photoincorporation by NCAs (e.g. tetracaine) as well as identification of the sites of [(125)I]TIDBIBA photoincorporation in the deltaM2 segment indicate a common binding locus for each TID analog. We conclude that relatively small additions to TID progressively reduce its ability to interact with the NCA site in the resting state channel. A model of the NCA site and resting state channel is presented.  相似文献   

6.
D C Chiara  Y Xie  J B Cohen 《Biochemistry》1999,38(20):6689-6698
Photoaffinity labeling of the Torpedo nicotinic acetylcholine receptor (nAChR) with [3H]d-tubocurarine (dTC) has identified a residue within the gamma-subunit which, along with the analogous residue in delta-subunit, confers selectivity in binding affinities between the two agonist sites for dTC and alpha-conotoxin (alpha Ctx) MI. nAChR gamma-subunit, isolated from nAChR-rich membranes photolabeled with [3H]dTC, was digested with Staphylococcus aureus V8 protease, and a 3H-labeled fragment was purified by reversed-phase high-performance liquid chromatography. Amino-terminal sequence analysis of this fragment identified 3H incorporation in gamma Tyr-111 and gamma Tyr-117 at about 5% and 1% of the efficiency of [3H]dTC photoincorporation at gamma Trp-55, the primary site of [3H]dTC photoincorporation within gamma-subunit [Chiara, D. C., and Cohen, J. B. (1997) J. Biol. Chem 272, 32940-32950]. The Torpedo nAChR delta-subunit residue corresponding to gamma Tyr-111 (delta Arg-113) contains a positive charge which could confer the lower binding affinity seen for some competitive antagonists at the alpha-delta agonist site. To test this hypothesis, we examined by voltage-clamp analysis and/or by [125I]alpha-bungarotoxin competition binding assays the interactions of acetylcholine (ACh), dTC, and alpha Ctx MI with nAChRs containing gamma Y111R or delta R113Y mutant subunits expressed in Xenopus oocytes. While these mutations affected neither ACh equilibrium binding affinity nor the concentration dependence of channel activation, the gamma Y111R mutation decreased by 10-fold dTC affinity and inhibition potency. Additionally, each mutation conferred a 1000-fold change in the equilibrium binding of alpha Ctx MI, with delta R113Y enhancing and gamma Y111R weakening affinity. Comparison of these results with previous results for mouse nAChR reveals that, while the same regions of gamma- (or delta-) subunit primary structure contribute to the agonist-binding sites, the particular amino acids that serve as antagonist affinity determinants are species-dependent.  相似文献   

7.
Hamouda AK  Chiara DC  Blanton MP  Cohen JB 《Biochemistry》2008,47(48):12787-12794
The Torpedo nicotinic acetylcholine receptor (nAChR) is the only member of the Cys-loop superfamily of ligand-gated ion channels (LGICs) that is available in high abundance in a native membrane preparation. To study the structure of the other LGICs using biochemical and biophysical techniques, detergent solubilization, purification, and lipid reconstitution are usually required. To assess the effects of purification on receptor structure, we used the hydrophobic photoreactive probe 3-trifluoromethyl-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) to compare the state-dependent photolabeling of the Torpedo nAChR before and after purification and reincorporation into lipid. For the purified nAChR, the agonist-sensitive photolabeling within the M2 ion channel domain of positions M2-6, M2-9, and M2-13, the agonist-enhanced labeling of deltaThr274 (deltaM2-18) within the delta subunit helix bundle, and the labeling at the lipid-protein interface (alphaMu4) were the same as for the nAChR in native membranes. However, addition of agonist did not enhance [(125)I]TID photolabeling of deltaIle288 within the deltaM2-M3 loop. These results indicate that after purification and reconstitution of the Torpedo nAChR, the difference in structure between the resting and desensitized states within the M2 ion channel domain was preserved, but not the agonist-dependent change of structure of the deltaM2-M3 loop. To further characterize the pharmacology of [(125)I]TID binding sites in the nAChR in the desensitized state, we examined the effect of phencyclidine (PCP) on [(125)I]TID photolabeling. PCP inhibited [(125)I]TID labeling of amino acids at the cytoplasmic end of the ion channel (M2-2 and M2-6) while potentiating labeling at M2-9 and M2-13 and allosterically modulating the labeling of amino acids within the delta subunit helix bundle.  相似文献   

8.
The lipid requirements of the Torpedo californica nicotinic acetylcholine receptor (nAChR) were assessed by reconstituting purified receptors into lipid vesicles of defined composition and by using photolabeling with 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) to determine functionality. Earlier studies demonstrated that nAChRs reconstituted into membranes containing phosphatidylcholine (PC), the anionic lipid phosphatidic acid (PA), and cholesterol (CH) are particularly effective at stabilizing the nAChR in the resting (closed) state that is capable of undergoing agonist-induced conformational transitions (i.e., functionality). The present studies demonstrate that (1) there is no obligatory requirement for PC, (2) increasing the CH content serves to increase the degree to which nAChRs are stabilized in the resting state, and this effect saturates at approximately 35 mol % (molar lipid percentage), and (3) the effect of increasing levels of PA saturates at approximately 12 mol % and in the absence of PA nAChRs are stabilized in the desensitized state (i.e., nonfunctional). Native Torpedo membranes contain approximately 35 mol % CH but less than 1 mol % PA, suggesting that other anionic lipids may substitute for PA. We report that (1) phosphatidylserine (PS) and phosphatidylinositol (PI), anionic lipids that are abundant in native Torpedo membranes, also stabilize the receptor in the resting state although with reduced efficacy (approximately 50-60%) compared to PA, and (2) for nAChRs reconstituted into PA/CH membranes at different lipid-protein molar ratios, receptor functionality decreases rapidly below approximately 65 lipids per receptor. Collectively, these results are consistent with a functional requirement of a single shell of lipids surrounding the nAChR and specific anionic lipid- and sterol (CH)-protein interactions.  相似文献   

9.
Blanton MP  McCardy EA 《Biochemistry》2000,39(44):13534-13544
To identify regions of the Torpedo Na,K-ATPase alpha-subunit that interact with membrane lipid and to characterize conformationally dependent structural changes in the transmembrane domain, we have proteolytically mapped the sites of photoincorporation of the hydrophobic compounds 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) and the phosphatidylcholine analogue [(125)I]TIDPC/16. The principal sites of [(125)I]TIDPC/16 labeling were identified by amino-terminal sequence analysis of proteolytic fragments of the Na,K-ATPase alpha-subunit and are localized to hydrophobic segments M1, M3, M9, and M10. These membrane-spanning segments have the greatest levels of exposure to the lipid bilayer and constitute the bulk of the lipid-protein interface of the Na,K-ATPase alpha-subunit. The extent of [(125)I]TID and [(125)I]TIDPC/16 photoincorporation into these transmembrane segments was the same in the E(1) and E(2) conformations, indicating that lipid-exposed segments located at the periphery of the transmembrane complex do not undergo large-scale movements during the cation transport cycle. In contrast, for [(125)I]TID but not for [(125)I]TIDPC/16, there was enhanced photoincorporation in the E(2) conformation, and this component of labeling mapped to transmembrane segments M5 and M6. Conformationally sensitive [(125)I]TID photoincorporation into the M5 and M6 segments does not reflect a change in the levels of exposure of these segments to the lipid bilayer as evidenced by the lack of [(125)I]TIDPC/16 labeling of these two segments in either conformation. These results suggest that [(125)I]TID promises to be a useful tool for structural characterization of the cation translocation pathway and for conformationally dependent changes in the pathway. A model of the spatial organization of the transmembrane segments of the Na,K-ATPase alpha- and beta-subunits is presented.  相似文献   

10.
We have shown previously that the lipophilic photoreagent 3-(trifluoromethyl)3-m-([125I]iodophenyl)-diazirine ([125I]TID) photolabels all four subunits of the Torpedo nicotinic acetylcholine receptor (AChR) and that greater than 70% of this photoincorporation is inhibited by cholinergic agonists and some noncompetitive antagonists, including histrionicotoxin (HTX), but not phencyclidine (PCP; White, B.H., and Cohen, J.B. (1988) Biochemistry 27, 8741-8751). We have now examined the effects of nonradioactive TID on (a) AChR photoincorporation of [125I]TID, (b) AChR-mediated ion transport, and (c) AChR binding of several cholinergic ligands. We find that TID inhibits [125I]TID photoincorporation into the AChR to the same extent as carbamylcholine. The saturable component of [125I]TID photolabeling is half-maximal at 4 microM [125I]TID with 0.5 mol specifically incorporated per mol of AChR after 30 min photolysis with 60 microM [125I]TID. Repeated labeling of membranes at a fixed [125I]TID concentration gave results consistent with a maximal incorporation of one [125I]TID molecule per AChR. Nonradioactive TID also noncompetitively inhibits agonist-stimulated 22Na+ efflux from Torpedo vesicles with an IC50 of 1 microM. Furthermore, TID inhibits allosterically the binding of [3H]HTX, decreasing its affinity for the AChR 5-fold both in the presence and absence of agonist. In contrast, TID has little effect on [3H]PCP binding in the absence of agonist but completely inhibits it in the presence of agonist. TID enhances the cooperativity of [3H]nicotine binding. [125I]TID is thus a photoaffinity label for a novel noncompetitive antagonist binding site on the AChR that is linked allosterically to the binding sites of both agonists and other noncompetitive antagonists. The [125I]TID site is presumably located within the central pore of the AChR.  相似文献   

11.
The lipophilic photoactivatable probe 3-(trifluoromethyl)-3-(m-iodophenyl) diazirine (TID) is a noncompetitive, resting-state inhibitor of the nicotinic acetylcholine receptor (nAChR) that requires tens of milliseconds of preincubation to inhibit agonist-induced cation efflux. At equilibrium, [(125)I]TID photoincorporates into both the ion channel and the lipid-protein interface of the Torpedo nAChR. To determine which of these regions is responsible for resting-state inhibition, we characterized the interactions between [(125)I]TID and nAChR-rich membranes milliseconds after mixing, by use of time-resolved photolabeling. Photolabeling was performed after preincubation times of 2 ms or 600 s (equilibrium), and the efficiencies of incorporation at specific residues were determined by amino-terminal sequence analysis of nAChR-subunit proteolytic fragments isolated by SDS-PAGE and/or reversed-phase HPLC. Equilibration of TID with lipid was complete within a millisecond as determined by both stopped-flow fluorescence quenching of diphenylhexatriene in lipid bilayers and photoincorporation into nAChR-rich membrane phospholipids. Equilibration with the lipid-protein interface (alphaM4) was slightly slower, reaching approximately 50% that at equilibrium after 2 ms preincubation. In contrast, equilibration with the channel region (alpha 2 and deltaM2) was much slower, reaching only 10% that at equilibrium after 2 ms preincubation. Within the ion channel, the ratio of [(125)I]TID incorporation between M2 residues 9', 13', and 16' was independent of preincubation time. We conclude that TID's access to the ion channel is more restricted than to the lipid-protein interface and that TID bound within the ion channel is responsible for flux inhibition upon activation of the nAChR.  相似文献   

12.
Using an acetylcholine-derivatized affinity column, we have purified human alpha4beta2 neuronal nicotinic acetylcholine receptors (nAChRs) from a stably transfected HEK-293 cell line. Both the quantity and the quality of the purified receptor are suitable for applying biochemical methods to directly study the structure of the alpha4beta2 nAChR. In this first study, the lipid-protein interface of purified and lipid-reconstituted alpha4beta2 nAChRs was directly examined using photoaffinity labeling with the hydrophobic probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID photoincorporated into both alpha4 and beta2 subunits, and for each subunit the labeling was initially mapped to fragments containing the M4 and M1-M3 transmembrane segments. For both the alpha4 and beta2 subunits, approximately 60% of the total labeling was localized within fragments that contain the M4 segment, which suggests that the M4 segment has the greatest exposure to lipid. Within M4 segments, [125I]TID labeled homologous amino acids alpha4-Cys582/beta2-Cys445, which are also homologous to the [125I]TID-labeled residues alpha1-Cys418 and beta1-Cys447 in the lipid-exposed face of Torpedo nAChR alpha1M4 and beta1M4, respectively. Within the alpha4M1 segment, [125I]TID labeled residues Cys226 and Cys231, which correspond to the [125I]TID-labeled residues Cys222 and Phe227 at the lipid-exposed face of the Torpedo alpha1M1 segment. In beta2M1, [125I]TID labeled beta2-Cys220, which is homologous to alpha4-Cys226. We conclude from these studies that the alpha4beta2 nAChR can be purified from stably transfected HEK-293 cells in sufficient quantity and purity for structural studies and that the lipid-protein interfaces of the neuronal alpha4beta2 nAChR and the Torpedo nAChR display a high degree of structural homology.  相似文献   

13.
The structural changes induced in the nicotinic acetylcholine receptor by two noncompetitive channel blockers, proadifen and phencyclidine, have been studied by infrared difference spectroscopy and using the conformationally sensitive photoreactive noncompetitive antagonist 3-(trifluoromethyl)-3-m-([(125)I]iodophenyl)diazirine. Simultaneous binding of proadifen to both the ion channel pore and neurotransmitter sites leads to the loss of positive markers near 1663, 1655, 1547, 1430, and 1059 cm(-)(1) in carbamylcholine difference spectra, suggesting the stabilization of a desensitized conformation. In contrast, only the positive markers near 1663 and 1059 cm(-)(1) are maximally affected by the binding of either blocker to the ion channel pore suggesting that the conformationally sensitive residues vibrating at these two frequencies are stabilized in a desensitized-like conformation, whereas those vibrating near 1655 and 1430 cm(-)(1) remain in a resting-like state. The vibrations at 1547 cm(-)(1) are coupled to those at both 1663 and 1655 cm(-)(1) and thus exhibit an intermediate pattern of band intensity change. The formation of a structural intermediate between the resting and desensitized states in the presence of phencyclidine is further supported by the pattern of 3-(trifluoromethyl)-3-m-([(125)I]iodophenyl)diazirine photoincorporation. In the presence of phencyclidine, the subunit labeling pattern is distinct from that observed in either the resting or desensitized conformations; specifically, there is a concentration-dependent increase in the extent of photoincorporation into the delta-subunit. Our data show that domains of the nicotinic acetylcholine receptor interconvert between the resting and desensitized states independently of each other and suggest a revised model of channel blocker action that involves both low and high affinity agonist binding conformational intermediates.  相似文献   

14.
We used a series of adamantane derivatives to probe the structure of the phencyclidine locus in either the resting or desensitized state of the nicotinic acetylcholine receptor (AChR). Competitive radioligand binding and photolabeling experiments using well-characterized noncompetitive antagonists such as the phencyclidine analogue [piperidyl-3,4-(3)H(N)]-N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine ([(3)H]TCP), [(3)H]ethidium, [(3)H]tetracaine, [(14)C]amobarbital, and 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) were performed. Thermodynamic and structure-function relationship analyses yielded the following results. (1) There is a good structure-function relationship for adamantane amino derivatives inhibiting [(3)H]TCP or [(3)H]tetracaine binding to the resting AChR. (2) Since the same derivatives inhibit neither [(14)C]amobarbital binding nor [(125)I]TID photoincorporation, we conclude that these positively charged molecules preferably bind to the TCP locus, perhaps interacting with alphaGlu(262) residues at position M2-20. (3) The opposite is true for the neutral molecule adamantane, which prefers the TID (or barbiturate) locus instead of the TCP site. (4) The TID site is smaller and more hydrophobic (it accommodates neutral molecules with a maximal volume of 333 +/- 45 A(3)) than the TCP locus, which has room for positively charged molecules with volumes as large as 461 A(3) (e.g., crystal violet). This supports the concept that the resting ion channel is tapering from the extracellular mouth to the middle portion. (5) Finally, although both the hydrophobic environment and the size of the TCP site are practically the same in both states, there is a more obvious cutoff in the desensitized state than in the resting state, suggesting that the desensitization process constrains the TCP locus. A plausible location of neutral and charged adamantane derivatives is shown in a model of the resting ion channel.  相似文献   

15.
Pratt MB  Pedersen SE  Cohen JB 《Biochemistry》2000,39(37):11452-11462
The binding sites of ethidium, a noncompetitive antagonist of the nicotinic acetylcholine receptor (nAChR), have been localized in the Torpedo nAChR in the desensitized state by use of a photoactivatible derivative, [(3)H]ethidium diazide. At 10 microM [(3)H]ethidium diazide, incorporation into the alpha-, beta-, and delta-subunits was inhibited by the presence of phencyclidine (PCP). Within the alpha-subunit, the incorporation was mapped to a 20-kDa fragment beginning at alphaSer-173 and containing the first three transmembrane segments, alphaM1, alphaM2, and alphaM3. Further digestion of this fragment generated two fragments with PCP-inhibitable incorporation, one containing alphaM1 and one containing both alphaM2 and alphaM3. Within alphaM2, specific incorporation was present in alphaLeu-251 and alphaSer-252, residues that have been previously shown to line the lumen of the ion channel. Digestion of the delta-subunit with S. aureus V8 protease generated a 14-kDa and a 20-kDa fragment, both of which began at Ile-192 and contained PCP-inhibitable labeling. The 14-kDa fragment, containing deltaM1 and deltaM2, was further digested to generate a 3-kDa fragment, containing deltaM2 alone, with PCP-inhibitable incorporation. Digestion of the 20-kDa fragment, which contained deltaM1, deltaM2, and deltaM3, generated two fragments with incorporation, one containing the deltaM1 segment and the other containing deltaM2 and deltaM3. These results establish that in the desensitized state of the nAChR, the high-affinity binding site of ethidium is within the lumen of the ion channel and that the bound drug is in contact with amino acids from both the M1 and M2 hydrophobic segments.  相似文献   

16.
[(3)H]4-Benzoylbenzoylcholine (Bz(2)choline) was synthesized as a photoaffinity probe for the Torpedo nicotinic acetylcholine receptor (nAChR). [(3)H]Bz(2)choline acts as an nAChR competitive antagonist and binds at equilibrium with the same affinity (K(D) = 1.4 microm) to both agonist sites. Irradiation at 320 nm of nAChR-rich membranes equilibrated with [(3)H]Bz(2)choline results in the covalent incorporation of [(3)H]Bz(2)choline into the nAChR gamma- and delta-subunits that is inhibitable by agonist, with little specific incorporation in the alpha-subunits. To identify the sites of photoincorporation, gamma- and delta-subunits, isolated from nAChR-rich membranes photolabeled with [(3)H]Bz(2)choline, were digested enzymatically, and the labeled fragments were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and/or reversed-phase high performance liquid chromatography. For the gamma-subunit, Staphylococcus aureus V8 protease produced a specifically labeled peptide beginning at gammaVal-102, whereas for the delta-subunit, endoproteinase Asp-N produced a labeled peptide beginning at deltaAsp-99. Amino-terminal sequence analysis identified the homologous residues gammaLeu-109 and deltaLeu-111 as the primary sites of [(3)H]Bz(2)choline photoincorporation. This is the first identification by affinity labeling of non-reactive amino acids within the acetylcholine-binding sites, and these results establish that when choline esters of benzoic acid are bound to the nAChR agonist sites, the para substituent is selectively oriented toward and in proximity to amino acids gammaLeu-109/deltaLeu-111.  相似文献   

17.
M P Blanton  J B Cohen 《Biochemistry》1992,31(15):3738-3750
To identify regions of the Torpedo nicotinic acetylcholine receptor (AchR) interacting with membrane lipid, we have used 1-azidopyrene (1-AP) as a fluorescent, photoactivatable hydrophobic probe. For AchR-rich membranes equilibrated with 1-AP, irradiation at 365 nm resulted in covalent incorporation in all four AchR subunits with each of the subunits incorporating approximately equal amounts of label. To identify the regions of the AchR subunits that incorporated 1-AP, subunits were digested with Staphylococcus aureus V8 protease and trypsin, and the resulting fragments were separated by SDS-PAGE followed by reverse-phase high-performance liquid chromatography. N-terminal sequence analysis identified the hydrophobic segments M1, M3, and M4 within each subunit as containing the sites of labeling. The labeling pattern of 1-AP in the alpha-subunit was compared with that of another hydrophobic photoactivatable probe, 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID). The nonspecific component of [125I]TID labeling [White, B., Howard, S., Cohen, S. G., & Cohen, J.B. (1991) J. Biol. Chem. 266, 21595-21607] was restricted to the same regions as those labeled by 1-AP. The [125I]TID residues labeled in the hydrophobic segment M4 were identified as Cys-412, Met-415, Cys-418, Thr-422, and Val-425. The periodicity and distribution of labeled residues establish that the M4 region is alpha-helical in nature and indicate that M4 presents a broad face to membrane lipid.  相似文献   

18.
To identify binding domains in a ligand-gated ion channel for etomidate, an intravenous general anesthetic, we photolabeled nicotinic acetylcholine receptor (nAChR)-rich membranes from Torpedo electric organ with a photoactivatable analog, [(3)H]azietomidate. Based upon the inhibition of binding of the noncompetitive antagonist [(3)H]phencyclidine, azietomidate and etomidate bind with 10-fold higher affinity to nAChRs in the desensitized state (IC(50) = 70 microm) than in the closed channel state. In addition, both drugs between 0.1 and 1 mm produced a concentration-dependent enhancement of [(3)H]ACh equilibrium binding affinity, but they inhibited binding at higher concentrations. UV irradiation resulted in preferential [(3)H]azietomidate photoincorporation into the nAChR alpha and delta subunits. Photolabeled amino acids in both subunits were identified in the ion channel domain and in the ACh binding sites by Edman degradation. Within the nAChR ion channel in the desensitized state, there was labeling of alphaGlu-262 and deltaGln-276 at the extracellular end and deltaSer-258 and deltaSer-262 toward the cytoplasmic end. Within the acetylcholine binding sites, [(3)H]azietomidate photolabeled alphaTyr-93, alphaTyr-190, and alphaTyr-198 in the site at the alpha-gamma interface and deltaAsp-59 (but not the homologous position, gammaGlu-57). Increasing [(3)H]azietomidate concentration from 1.8 to 150 microm increased the efficiency of incorporation into amino acids within the ion channel by 10-fold and in the ACh sites by 100-fold, consistent with higher affinity binding within the ion channel. The state dependence and subunit selectivity of [(3)H]azietomidate photolabeling are discussed in terms of the structures of the nAChR transmembrane and extracellular domains.  相似文献   

19.
B H White  J B Cohen 《Biochemistry》1988,27(24):8741-8751
The hydrophobic, photoactivatable probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to label acetylcholine receptor rich membranes purified from Torpedo californica electric organ. All four subunits of the acetylcholine receptor (AChR) were found to incorporate label, with the gamma-subunit incorporating approximately 4 times as much as each of the other subunits. Carbamylcholine, an agonist, and histrionicotoxin, a noncompetitive antagonist, both strongly inhibited labeling of all AChR subunits in a specific and dose-dependent manner. In contrast, the competitive antagonist alpha-bungarotoxin and the noncompetitive antagonist phencyclidine had only modest effects on [125I]TID labeling of the AChR. The regions of the AChR alpha-subunit that incorporate [125I]TID were mapped by Staphylococcus aureus V8 protease digestion. The carbamylcholine-sensitive site of labeling was localized to a 20-kDa V8 cleavage fragment that begins at Ser-173 and is of sufficient length to contain the three hydrophobic regions M1, M2, and M3. A 10-kDa fragment beginning at Asn-339 and containing the hydrophobic region M4 also incorporated [125I]TID but in a carbamylcholine-insensitive manner. Two further cleavage fragments, which together span about one-third of the alpha-subunit amino terminus, incorporated no detectable [125I]TID. The mapping results place constraints on suggested models of AChR subunit topology.  相似文献   

20.
The nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase functionally interact in skeletal muscle (Krivoi, I. I., Drabkina, T. M., Kravtsova, V. V., Vasiliev, A. N., Eaton, M. J., Skatchkov, S. N., and Mandel, F. (2006) Pflugers Arch. 452, 756–765; Krivoi, I., Vasiliev, A., Kravtsova, V., Dobretsov, M., and Mandel, F. (2003) Ann. N.Y. Acad. Sci. 986, 639–641). In this interaction, the specific binding of nanomolar concentrations of nicotinic agonists to the nAChR stimulates electrogenic transport by the Na,K-ATPase α2 isozyme, causing membrane hyperpolarization. This study examines the molecular nature and membrane localization of this interaction. Stimulation of Na,K-ATPase activity by the nAChR does not require ion flow through open nAChRs. It can be induced by nAChR desensitization alone, in the absence of nicotinic agonist, and saturates when the nAChR is fully desensitized. It is enhanced by noncompetitive blockers of the nAChR (proadifen, QX-222), which promote non-conducting or desensitized states; and retarded by tetracaine, which stabilizes the resting nAChR conformation. The interaction operates at the neuromuscular junction as well as on extrajunctional sarcolemma. The Na,K-ATPase α2 isozyme is enriched at the postsynaptic neuromuscular junction and co-localizes with nAChRs. The nAChR and Na,K-ATPase α subunits specifically coimmunoprecipitate with each other, phospholemman, and caveolin-3. In a purified membrane preparation from Torpedo californica enriched in nAChRs and the Na,K-ATPase, a ouabain-induced conformational change of the Na,K-ATPase enhances a conformational transition of the nAChR to a desensitized state. These results suggest a mechanism by which the nAChR in a desensitized state with high apparent affinity for agonist interacts with the Na,K-ATPase to stimulate active transport. The interaction utilizes a membrane-delimited complex involving protein-protein interactions, either directly or through additional protein partners. This interaction is expected to enhance neuromuscular transmission and muscle excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号