首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In the simple eucaryote Saccharomyces cerevisiae there are at least three phenotypically distinct classes of mutants sensitive to inactivation by radiations and alkylating agents: class I mutants are sensitive to ultraviolet light and nitrogen mustard (HN2); class II mutants are sensitive to X-rays and methylmethane sulphonate (MMS); and class III mutants are sensitive to all four of these agents. We have constructed doubly mutant strains of types (I, I), (I, II), (I, III), and (II, III) and have measured their sensitivity to UV, X-rays, HN2 and MMS in order to characterize the interactions of the various mutant gene pairs. Class (I, III) double mutants proved to be supersensitive to UV and HN2 and class (II, III) double mutants proved to be supersensitive to X-rays and MMS. All other double mutants showed little or no enhancement of sensitivity over their most sensitive single mutant parents. Mutants of class I are known to be defective in excision repair and our results are consistent with the idea that there exist at least two additional pathways for dark repair in yeast, one capable of repairing X-ray and MMS damage to DNA, and another, possibly analogous to post-replication repair in bacteria, that competes with the other two for damaged regions in DNA.  相似文献   

2.
Summary Mutants of Drosophila melanogaster which are defective in DNA synthesis have been identified among mutagen-sensitive stocks through analysis of both organ and cell cultures. A new procedure employing larval brain ganglia allows poorly fertile or sterile mutants to be analyzed for the first time. Parallel studies were performed in both tissues to establish the sensitivity of the new assay relative to that of the proven cell-culture assay. Damage was induced in the DNA of cultured cells with UV irradiation and in that of ganglial cells with the carcinogen N-acetoxy-2-acetylaminofluorene. Cultures were then pulse-labeled with 3H-thymidine, incubated in the absence of thymidine, and the newly synthesized DNA was analyzed by alkaline sucrose gradient centrifugation. The molecular weight of labeled DNA from mutant cells was compared with that from control cells to assess the effect of the mutant on DNA synthesis. Among 16 mutant stocks that were scanned in either or both tissues, seven show reductions in DNA synthesis using an undamaged template. Mutants at five different genetic loci [mus(2)205, mus(3)304, mus(3)308, mus(3)310 and mus(3)311] possess a reduced capacity to synthesize DNA on a UV-damaged template in primary cell cultures. Four of these five defects can also be detected in carcinogen-treated organ cultures. Two additional defects in postreplication repair were observed with the brainganglia assay in strains that cannot be assayed in cell culture [mus(1)108, mus(2)206].Abbreviations MMS methyl methanesulfonate - HN2 nitrogen mustard - AAF 2-acetylaminofluorene - AAAF N-acetoxy-2-acetylaminofluorene - DMSO dimethyl sulfoxide  相似文献   

3.
Summary Radiation sensitive mutants of Saccharomyces cerevisiae were exposed to the action of nitrogen mustard (HN2) and methyl methanesulfonate (MMS). Sensitivity to HN2 was found to be correlated with sensitivity to ultraviolet light, whereas sensitivity to MMS was found to be correlated with sensitivity to X-rays. One mutant strain that is sensitive to both UV and X-rays was found to be sensitive also to HN2 and MMS. The latter result shows that there exists a locus in yeast that controls the repair of DNA damaged by all four of these mutagens.  相似文献   

4.
全球变化中氮沉降日益严重,已对森林生态系统的各个过程产生了重要影响。因此,通过研究氮添加对森林生态系统土壤碳输出的影响,对分析全球变化背景下土壤碳吸存具有重要意义。对黑龙江省帽儿山实验林场白桦(Betula platyphylla)次生林,以及水曲柳(Fraxinus mandschurica)、红松(Pinus koraiensis)、长白落叶松(Larix olgensis)人工林通过2年氮添加(对照(0 kg N hm~(-2) a~(-1)),低氮(50 kg N hm~(-2) a~(-1)),中氮(100 kg N hm~(-2) a~(-1))和高氮(150 kg N hm~(-2) a~(-1)))试验,测定根生物量密度、土壤微生物量碳浓度、土壤呼吸速率及温、湿度敏感性等指标,旨在探讨森林生态系统土壤呼吸对氮添加的短期响应。结果表明:(1)低氮处理对白桦和水曲柳林土壤呼吸速率影响不显著,但显著提高了红松和长白落叶松林土壤呼吸速率;水曲柳林分中高氮处理土壤呼吸速率显著降低于低氮和中氮处理,而其他林分高氮处理土壤呼吸速率仅显著低于低氮处理。(2)氮添加处理下,4种林分中林分土壤呼吸速率与根生物量密度呈极显著正相关,Pearson相关系数为0.81。(3)低氮处理下5 cm和10 cm处土壤呼吸温度敏感性系数Q_(10)值较CK处理分别提高了2.65%和3.12%,高氮处理较CK处理分别降低了6.29%和5.46%。但氮添加处理对土壤呼吸和土壤湿度间的相关性无影响。综上所述,阔叶林与针叶林土壤呼吸速率对氮添加的响应存在差异。根生物量密度是影响不同林分土壤呼吸对短期氮添加响应的主要因素,同时氮添加处理显著改变了土壤温度敏感性系数。  相似文献   

5.
Summary Mutants ofEscherichia coli K12, deficient in up to three major outer membrane proteinsb,c andd have been constructed. Mutants that lack the lipopolysaccharide sugar heptose are deficient in proteinb. All heptose-deficient strains are supersensitive to lysozyme, various antibiotics and detergents. They excrete the periplasmic enzyme ribonuclease I. Mutants deficient in proteinsc and/ord have the same sensitivity towards these compounds as the parent strain. Cells of single, double and triple mutants are all rod-shaped. Electrophoretic analysis of cell evelope proteins indicates that in some mutants the protein deficiency is partially compensated for by increased amounts of one or two of the other major outer membrane proteins. Heptose-deficient strains have an increased amount of 2-keto-3-deoxyoctonate.  相似文献   

6.
Humanin (HN) is a linear 24‐aa peptide recently detected in human Alzheimer's disease (AD) brain. HN specifically inhibits neuronal cell death in vitro induced by ß‐amyloid (Aß) peptides and by amyloid precursor protein and its gene mutations in familial AD, thereby representing a potential therapeutic lead structure for AD; however, its molecular mechanism of action is not well understood. We report here the identification of the binding epitopes between HN and Aß(1–40) and characterization of the interaction structure through a molecular modeling study. Wild‐type HN and HN‐sequence mutations were synthesized by SPPS and the HPLC‐purified peptides characterized by MALDI‐MS. The interaction epitopes between HN and Aß(1–40) were identified by affinity‐MS using proteolytic epitope excision and extraction, followed by elution and mass spectrometric characterization of the affinity‐bound peptides. The affinity‐MS analyses revealed HN(5–15) as the epitope sequence of HN, whereas Aß(17–28) was identified as the Aß interaction epitope. The epitopes and binding sites were ascertained by ELISA of the complex of HN peptides with immobilized Aß(1–40) and by ELISA with Aß(1–40) and Aß‐partial sequences as ligands to immobilized HN. The specificity and affinity of the HN‐Aß interaction were characterized by direct ESI‐MS of the HN‐Aß(1–40) complex and by bioaffinity analysis using a surface acoustic wave biosensor, providing a KD of the complex of 610 n m . A molecular dynamics simulation of the HN‐Aß(1–40) complex was consistent with the binding specificity and shielding effects of the HN and Aß interaction epitopes. These results indicate a specific strong association of HN and Aß(1–40) polypeptide and provide a molecular basis for understanding the neuroprotective function of HN. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The Colletotrichum lagenarium PKS1 gene was expressed in the heterologous fungal host, Aspergillus oryzae, under the starch-inducible α-amylase promoter to identify the direct product of polyketide synthase (PKS) encoded by the PKS1 gene. The main compound produced by an A. oryzae transformant was isolated and characterized to be 1,3,6,8-tetrahydroxynaphthalene (T4HN) as its tetraacetate. Since the PKS1 gene was cloned from C. lagenarium to complement the nonmelanizing albino mutant, T4HN was assumed to be an initial biosynthetic intermediate, and thus the product of the PKS reaction, but had not been isolated from the fungus. The production of T4HN by the PKS1 transformant unambiguously identified the gene to encode a PKS of pentaketide T4HN. In addition, tetraketide orsellinic acid and pentaketide isocoumarin were isolated, the latter being derived from a pentaketide monocyclic carboxylic acid, as by-products of the PKS1 PKS reaction. Production of the pentaketide carboxylic acid provided insights into the mechanism for the PKS1 polyketide synthase reaction to form T4HN.  相似文献   

8.
A Mesorhizobium huakuii strain HN3015 was isolated from Astragalus sinicus in a rice-growing field of Southern China. Strain HN3015 contained three large plasmids. The three indigenous plasmids, named as pMhHN3015a, pMhHN3015b and pMhHN3015c of M. huakuii HN3015, were, respectively, cured by Tn5-sacB insertion. The mutant strain HN3015-1 cured with its largest plasmid pMhHN3015c formed only white null nodules. Mutant HN3015-3 cured with its smallest plasmid pMhHN3015a could form pink effective nodules. However, mutant HN3015-2 cured of the second largest plasmid pMhHN3015b lost nodulation ability. Furthermore, curing of pMhHN3015a had enhanced competitive nodulation ability and symbiotic efficiency of HN3015-3. The results from acidity tolerance assays indicated that the three plasmids in M. huakuii HN3015 had a positive control effect on acidity tolerance of HN3015, and all indigenous plasmids of M. huakuii HN3015 had a negative control effect on the alkali tolerance capacity of HN3015. Surprisingly, all plasmids in M. huakuii HN3015 had also a negative control effect on its growth rate. The results showed an interactive and functional complexity of plasmids in strain HN3015.  相似文献   

9.
Growth of the hopanoid-producing bacterium Zymomonas mobilis was inhibited at low concentrations of the cationic detergent octadecyltrimethylammoniumchloride (OTAC). A relationship between sensitivity of Zymomonas mobilis to OTAC, presence of hopanoids and ethanol tolerance was postulated. Mutants resistant to OTAC were isolated from strains ZM1 and ZM4. They did not present any alteration of the hopanoid content and their squalene cyclases showed the same sensitity to OTAC as the parent enzymes. Resistance to OTAC paralleled pleiotropic effects including, enhanced accessibility of the membrane-bound alkaline phosphatase, important release of proteins from cells by Tris/HCl treatment, increased resistance to antibiotics and increased sensitivity to ethanol. In addition, OTACR mutants were also characterized by the synthesis or the overproduction of an outer membrane protein (F53) not detected on 2D-PAGE maps of parent strains and by a normal heat shock response. The role of hopanoids, heat shock proteins, protein F53 and membrane organization in ethanol tolerance is discussed.Abbreviations OTAC octadecyltrimethylammoniumchloride - SLS sodium lauryl sarcosinate  相似文献   

10.
    
Summary Mutants of coliphage lambda defective in structural genes were isolated and characterized. The isolation method consisted in lysogenizing bacteria with mutagenized phage and testing for inability to form plaques after heat induction. The mutants were propagated as prophages in the lysogens. Mutants in the region of the tail-genes U, V. G and H were enriched for by a selection method based on recombination and complementation with known mutants, and they were mapped by deletion mapping with newly isolated dg's. The lysates of all the mutants were examined by electron microscopy. Some of the mutants showed phenotypes different from those of known amber mutants in the same genes. They are interpreted as producing partially active, altered gene products and might be useful for the studies of morphogenesis and of the mechanism of infection.  相似文献   

11.

Background

Decline in insulin action is a metabolic feature of aging and is involved in the development of age-related diseases including Type 2 Diabetes Mellitus (T2DM) and Alzheimer''s disease (AD). A novel mitochondria-associated peptide, Humanin (HN), has a neuroprotective role against AD-related neurotoxicity. Considering the association between insulin resistance and AD, we investigated if HN influences insulin sensitivity.

Methods and Findings

Using state of the art clamp technology, we examined the role of central and peripheral HN on insulin action. Continuous infusion of HN intra-cerebro-ventricularly significantly improved overall insulin sensitivity. The central effects of HN on insulin action were associated with activation of hypothalamic STAT-3 signaling; effects that were negated by co-inhibition of hypothalamic STAT-3. Peripheral intravenous infusions of novel and potent HN derivatives reproduced the insulin-sensitizing effects of central HN. Inhibition of hypothalamic STAT-3 completely negated the effects of IV HN analog on liver, suggesting that the hepatic actions of HN are centrally mediated. This is consistent with the lack of a direct effect of HN on primary hepatocytes. Furthermore, single treatment with a highly-potent HN analog significantly lowered blood glucose in Zucker diabetic fatty rats. Based upon the link of HN with two age-related diseases, we examined if there were age associated changes in HN levels. Indeed, the amount of detectable HN in hypothalamus, skeletal muscle, and cortex was decreased with age in rodents, and circulating levels of HN were decreased with age in humans and mice.

Conclusions

We conclude that the decline in HN with age could play a role in the pathogenesis of age-related diseases including AD and T2DM. HN represents a novel link between T2DM and neurodegeneration and along with its analogues offers a potential therapeutic tool to improve insulin action and treat T2DM.  相似文献   

12.
We have undertaken the study of a collection of 32 Drosophila melanogaster mus strains selected on the basis of developmental sensitivity to the DNA-damaging agents, methyl methanesulfonate (MMS), N-acetyl-2-aminofluorene (AAF), nitrogen mustard (HN2), and gamma-radiation. In total, 18 of these strains are sensitive to MMS. In turn, 14 of these exhibit unconditional MMS sensitivity (one of the latter mutants is lethal at 29 degrees C), whereas the other 4 are sensitive to MMS only at higher temperatures. Detailed analysis of the 7 strongest MMS-sensitive strains reveals that they identify 4 new second chromosome mus loci. Two mus loci are each represented by two alleles. One mutant (mus205B1) is allelic to a previously characterized mus locus. Different MMS-sensitive mutants display patterns of mutagen cross-sensitivity (to AAF, HN2, benzo[a]pyrene (BP), and gamma-rays) that parallel the range of responses seen in previously recovered X-linked and autosomal mus loci. In general, mutations that are strongly sensitive to MMS are also sensitive to one or both of the procarcinogens, AAF and BP, as opposed to HN2 and gamma-radiation. In contrast, the moderately MMS-sensitive mutations are sensitive to HN2 and gamma-rays, but not to AAF or BP. Of the 14 mus strains that are not sensitive to MMS, 5 are sensitive to AAF, another 5 are sensitive to HN2, and the remaining 4 are sensitive to gamma-rays.  相似文献   

13.
Mutants at 2 new loci which control mutagen-sensitivity are described. Mutants at both loci are female-sterile and are hypersensitive to killing by MMS; neither increases the frequency of sex-linked recessive lethals. A screen of previously described female-sterile and meotic mutants has revealed that a number of these are also sensitive to mutagens. In addition, several new mutants have been identified on the basis of sensitivity to either HN2 or MMS. An anlysis of complementation data suggests that all of the X-linked genes controlling sensitivity to MMS may now have been identified. Among the new mei-41 alleles are mutants which show verly little meiotic nondisjunction or loss. Cytogenetic mapping of previously known mutants is also described. The mutants mus(1)104D1 and mei-41D5 are located in th eregion 14B13±?14D1,2 on the polytene chromosome map, and they map very close to each other genetically. Cytogenetically mus(1)101D1 is between salivary chromosome bands 12A6,7 and 12D3, mus(1)103D1 is between bands 12A1,2 and 12A6,7, and mus(1)-109A1 is in section 8F3-9A2.  相似文献   

14.
Thirteen X-linked mutants have been isolated in Drosophila melanogaster which render male and homozygous female larvae sensitive to the mutagen methyl methanesulfonate. Their characterization and preliminary assignment to functional groups is described. Four of these mutants are alleles of mei-41 (Baker and Carpenter 1972). Like previously isolated alleles of this locus, these mutants reduce fertility and increase loss and nondisjunction of the X-chromosome in homozygous females. The remaining mutants have been tentatively assigned to six functional groups (two mutants to the mus(1)101 locus, two to mus(1)102 , two to mus(1)103, and one each to mus(1)104, mus(1)105 , and mus(1)106). Several of the complementation groups can be distinguished on the basis of nondisjunction and cross sensitivity to mutagens. Females homozygous for the mei-41, mus(1)101 and mus(1)102 mutants exhibit elevated levels of nondisjunction. Mutants belonging to complementation groups mei-41, mus(1)101, and mus(1)104 are sensitive to nitrogen mustard (HN2) in addition to their MMS sensitivity. Among these mutants there is currently a direct correlation between sensitivity to HN2, sensitivity to 2-acetylaminofluorene and a deficiency in post-replication repair ( Boyd and Setlow 1976). Only the mei-41 mutants are hypersensitive to UV radiation, although several of the mutants exhibit sensitivity to gamma-rays. Semidominance is observed in female larvae of the mei-41, mus(1)104, and mus(1)103 mutants after exposure to high concentrations of MMS. The properties of the mutants generally conform to a pattern which has been established for related mutants in yeast. Additional properties of these mutants are summarized in Table 9.  相似文献   

15.
The present study investigated the impact of puberty on sex differences in neural sensitivity to negative stimuli. Event-related oscillation technique was used. Because girls are more vulnerable to affective disturbances than boys during adolescence, it was hypothesized that puberty exerts different influences on neural sensitivity to negative stimuli in boys and girls. EEGs were recorded for highly negative (HN), mildly negative (MN) and neutral pictures, when boys and girls distinct in pubertal status performed a non-emotional distracting task. No emotion effect and its interaction with sex and puberty were observed in response latencies. However, puberty influenced the gamma-band oscillation effect for negative stimuli differently for boys and girls: Pre-pubertal boys showed a significant emotion effect for HN stimuli, whose size was decreased in pubertal boys. By contrast, there was a significant emotion effect for HN stimuli in pubertal girls but not in pre-pubertal girls. On the other hand, the size of the emotion effect for HN stimuli was similar for pre-pubertal boys and girls; while this effect was significantly more pronounced in pubertal girls compared to pubertal boys. Additionally, the size of the emotion effect in gamma oscillations decreased as a function of pubertal development during both HN and MN stimulation in boys. For girls, the emotion effect in gamma oscillations increased with pubertal development during HN stimulation. Thus, puberty is associated with reduced neural sensitivity in boys but increased sensitivity in girls, in reaction to negative stimuli. The implications of these results for the psychopathology during adolescence were discussed.  相似文献   

16.
Summary Mutants of Saccharomyces cerevisiae without detectable phosphofructokinase activity were isolated. They were partly recessive and belonged to two genes called PFK1 and PFK2. Mutants with a defect in only one of the two genes could not grow when they were transferred from a medium with a nonfermentable carbon source to a medium with glucose and antimycin A, an inhibitor of respiration. However, the same mutants could grow when antimycin A was added to such mutants after they had been adapted to the utilization of glucose. Double mutants with defects in both genes could not grow at all on glucose as the sole carbon source. Mutants with a single defect in gene PFK1 or PFK2 could form ethanol on a glucose medium. However, in contrast to wild-type cells, there was a lag period of about 2 h before ethanol could be formed after transfer from a medium with only nonfermentable carbon sources to a glucose medium. Wild-type cells under the same conditions started to produce ethanol immediately. Mutants with defects in both PFK genes could not form ethanol at all. Mutants without phosphoglucose isomerase or triosephosphate isomerase did not form ethanol either. Double mutants without phosphofructokinase and phosphoglucose isomerase accumulated large amounts of glucose-6-phosphate on a glucose medium. This suggested that the direct oxidation of glucose-6-phosphate could not provide a bypass around the phosphofructokinase reaction. On the other hand, the triosephosphate isomerase reaction was required for ethanol production. Experiments with uniformly labeled glucose and glucose labeled in positions 3 and 4 were used to determine the contribution of the different carbon atoms of glucose to the fermentative production of CO2. With only fermentation operating, only carbon atoms 3 and 4 should contribute to CO2 production. However, wild-type cells produced significant amounts of radioactivity from other carbon atoms and pfk mutants generated CO2 almost equally well from all six carbon atoms of glucose. This suggested that phosphofructokinase is a dispensable enzyme in yeast glycolysis catalyzing only part of the glycolytic flux.  相似文献   

17.
Oidium heveae, an obligate biotrophic pathogen of rubber trees (Hevea brasiliensis), causes significant yield losses of rubber worldwide. However, the molecular mechanisms underlying the interplay between O. heveae and rubber trees remain largely unknown. In this study, we isolated an O. heveae strain, named HN1106, from cultivated H. brasiliensis in Hainan, China. We found that O. heveae HN1106 triggers the hypersensitive response in a manner that depends on the effector‐triggered immunity proteins EDS1 (Enhanced Disease Susceptibility 1) and PAD4 (Phytoalexin Deficient 4) and on salicylic acid (SA) in the model plant Arabidopsis thaliana. However, SA‐independent resistance also appears to limit O. heveae infection of Arabidopsis, because the pathogen does not produce conidiospores on npr1 (nonexpressor of pr1), sid2 (SA induction deficient 2) and NahG plants, which show disruptions in SA signalling. Furthermore, we found that the callose synthase PMR4 (Powdery Mildew Resistant 4) prevents O. heveae HN1106 penetration into leaves in the early stages of infection. To elucidate the potential mechanism of resistance of Arabidopsis to O. heveae HN1106, we inoculated 47 different Arabidopsis accessions with the pathogen, and analysed the plant disease symptoms and O. heveae HN1106 hyphal growth and conidiospore formation on the leaves. We found that the accession Lag2‐2 showed significant susceptibility to O. heveae HN1106. Overall, this study provides a basis for future research aimed at combatting powdery mildew caused by O. heveae in rubber trees.  相似文献   

18.
Viruses of the Paramyxoviridae family are the leading cause of respiratory disease in children. The human parainfluenza viruses (hPIV) are members of the Paramyxovirinae subfamily, which also includes mumps virus, Newcastle disease virus (NDV), Sendai virus (SV) and simian type 5 virus (SV5). On the surface of these viruses is the glycoprotein hemagglutinin-neuraminidase (HN), which is responsible for cell attachment, promotion of fusion and release of progeny virions. This multifunctional nature of HN makes it an attractive target for the development of inhibitors as a treatment for childhood respiratory diseases. Here we report the crystal structure of NDV HN in complex with a derivative of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, Neu5Ac2en, that has a functional group designed to occupy a large conserved binding pocket around the active site. The purpose of this study was to examine the effect of a bulky hydrophobic group at the O4 position of Neu5Ac2en, given the hydrophobic nature of the binding pocket. This derivative, with a benzyl group added to the O4 position of Neu5Ac2en, has an IC50 of ∼10 μM in a neuraminidase assay against hPIV3 HN. The IC50 value of the parent compound, Neu5Ac2en, in the same assay is ∼25 μM. These results highlight the striking difference between the influenza neuraminidase and paramyxovirus HN active sites, and provide a platform for the development of improved HN inhibitors.  相似文献   

19.
Nitrogen mustard (HN2) is a bifunctional alkylating agent which is thought to cause cytotoxicity by covalently binding to DNA. Most studies to date have looked at qualitatively determining the presence of DNA–HN2 adducts from reactions with native DNA. The adduct which is predominately formed in these reactions is N-[2-(hydroxyethyl)-N-(2-(7-guaninyl)ethyl]methylamine (N7G). A simple and sensitive reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of N7G from DNA using ultraviolet detection is described. DNA samples having been exposed to HN2 treatment were hydrolyzed and preseparated from high-molecular-mass material by filtration using a molecular mass cut-off of 3000. The mobile phase consisted of methanol–26 mM ammonium formate, pH 6.5 (24:76, v/v). N7G, as well as the internal standard, methoxyphenol, were separated within 30 min. The recovery of N7G after hydrolysis of the DNA reaction product was quantitative and limits of detection and quantification of 10 and 20 ng/ml, respectively, were calculated. The method was validated in DNA–HN2 dose response experiments. The N7G reaction product appears to be the first reaction product formed at lower ratios of HN2/DNA but its production plateaus at higher ratios of HN2/DNA probably due to increased formation of hitherto unknown adducts. The method is simple and sensitive and for this reason, may be suited for the determination of DNA/HN2 reaction products.  相似文献   

20.
Aim: We aimed to investigate whether urine intercellular adhesion molecule-1 (ICAM-1) might serve as a marker of renal disorder in children with ureteropelvic junction obstruction.

Material and methods: Twenty-nine children with severe hydronephrosis (HN) were compared with 23 participants with mild HN and with 19 healthy peers.

Results: Urine ICAM-1/uCre levels were significantly higher in HN children than healthy controls (P?<0.01), and in severe HN when compared with mild HN (p?<0.05).

Conclusions: It seemed to us that uICAM-1 is a biomarker of renal disorder, and might have the potential to predict which patients will require surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号