首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diisopropyl phosphorofluoridate (DFP) is an organophosphorus ester, and a single dose (1.7 mg/kg, sc.) of this compound produces mild ataxia in hens in 7–14 days and a severe ataxia or paralysis (OPIDN) in three weeks. OPIDN is associated with axonal swelling and their degeneration. We have previously observed alteration in neurofilament (NF) protein levels in the spinal cord of DFP-treated hens. The main objective of this investigation was to study NF protein levels in the sciatic nerves (SN) of hens, in which OPIDN has been potentiated by phenylmethylsulfonyl fluoride (PMSF) post-treatment. PMSF is known to protect DFP-treated (1.7 mg/kg) hens from developing OPIDN if injected before, and potentiate OPIDN if injected after the administration of DFP (0.5 mg/kg). The potentiation of OPIDN was accompanied by earlier elevation of NF proteins in the SN particulate fraction. In contrast, SN supernatant fraction showed a transient fall in NF protein levels in potentiation OPIDN. Out of the two other cytoskeletal proteins (i.e., tubulin, tau) studied in this investigation, tubulin also showed earlier elevation in its level in the particulate fraction in potentiated OPIDN. The earlier elevation of NF protein levels in SN particulate fraction in potentiated OPIDN suggested the possible involvement of NFs in delayed neurotoxicity.  相似文献   

2.
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus-ester induced delayed neurotoxicity (OPIDN) in the hen, human and other sensitive species. We studied the effect of single dose of DFP (1.7 mg/kg/s.c.) on the expression of alpha tubulin which is one of the major sub-unit of tubulin polymers that constitute an important constituent of cellular architecture. The hens were sacrificed at different time points i.e. 1, 2, 5, 10, and 20 days. Total RNA was extracted from the following brain regions: cerebrum, cerebellum, and brainstem as well as spinal cord. Northern blots prepared using standard protocols were hybridized with alpha tubulin as well as with -actin and 28S RNA cDNA (controls) probes. The results indicate a differential /spatial /temporal regulation of alpha tubulin levels which may be the result of perturbed microtubule dynamics not only in the axons but also in perikarya of neurons in the CNS of DFP treated hens. In the highly susceptible tissues like brainstem and spinal cord the initial down-regulation of mRNA levels could be attributed to DFP induced stress response resulting in inhibited cell metabolism and or cell injury / cell death. Increase in levels of mRNA at 5 days and thereafter coincided with increased tubulin transport which may be due to increased phosphorylation of tubulins in both axons and perikarya and other intraaxonal changes resulting in impaired axonal transport. DFP induced decreased rate of tubulin polymerization resulting in increased levels of free tubulin monomers may be involved in the altered alpha tubulin mRNA expression at different time points by autoregulatory circuits. Cerebellum being the less susceptible tissue showed only a moderate decline at day 2, while the alpha tubulin remained at near control levels at day 1. Delayed down-regulation may be due to the co-ordinated up or down- regulation of different sub-types of alpha and beta tubulins as well as the differential response of specialised cell types in cerebellum. Continuous overexpression of alpha tubulin in cerebrum from the beginning may be its effective protective strategy to safeguard itself from neurotoxicity. Differential expression pattern observed could be due to the differential susceptibility and variability in the rate of axonal transport of different regions besides the tubulin heterogenity of CNS. Hence our results indicte differential expression of alpha tubulin is either one of the reasons for the development of OPIDN or the result of progressive changes taking place during OPIDN.  相似文献   

3.
4.
Brain neuropathy target esterase is identified as a paraoxon-resistant, mipafox-sensitive esterase that can be labelled with [3H]diisopropyl phosphorofluoridate. During "aging" of the labelled (inhibited) esterase, half the label (one isopropyl group) is transferred to a site (of the same molecular weight in sodium dodecyl sulphate) whence it may be released in volatile form by treatment with alkali. Our previously published procedure for complete extraction in a form suitable for scintillation counting of tritium-labelled proteins from polyacrylamide gels includes treatment of part-solubilised gels with alkali. Particles from brain of the hen, pig, sheep, guinea-pig, and rat were preincubated with paraoxon with or without mipafox, treated with [3H]diisopropyl phosphorofluoridate, and solubilised in sodium dodecyl sulphate. Labelled polypeptides (except from the rat) were separated by electrophoresis. Both mipafox-sensitive labelling and "volatilisable counts" were located principally in the 155-kilodalton region, with the residues dispersed throughout the gels. The quantities of paraoxon-resistant, mipafox-sensitive labelling sites and of "volatilisable counts" (in pmol/particles from 1 g) were, respectively, 12.2 and 8.65 in hen brain, 9.80 and 6.82 in pig, 8.48 and 5.46 in sheep, 4.46 and 4.01 in guinea-pig, and 4.91 and 2.08 in rat. The "volatilisable count" assay seems more specific for neuropathy target esterase and is easier and more precise than assays based on differences in labelling of two samples, each subjected to much processing. Hydrolytic activity of particles taken before labelling was measured against phenyl valerate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
7.
The end-structure of afferent axons chronically severed in the rat sciatic nerve or dorsal column (DC) was visualized by centrifugal transport of horseradish peroxidase (HRP) or wheatgerm agglutinin conjugated to HRP (WGA:HRP) injected into the L4 or L5 dorsal root ganglion. Nerve regeneration was prevented and neuroma formation encouraged by tightly ligating the cut nerve end. For the first few weeks postoperative, the time during which afferents trapped in a nerve-end neuroma generate their most intense ectopic impulse barrage, the developing neuroma was dominated by swollen terminal end-bulbs. There was some axonal dying-back, retrograde fiber growth, and terminal sprouting, but little preterminal branching. The rich tangle of fine preterminal branches usually thought of in relation to nerve-end neuromas did not elaborate until several months postoperative, a time when the neuroma is relatively quiescent electrically. Afferents cut in the DC, which never develop dramatic ectopic electrical activity, showed morphological peculiarities similar to nerve-end neuromas during the early postoperative period, including retrograde fiber growth and minimal sprouting. They did not, however, go on to form luxuriant branches. These data provide preliminary clues as to the structure of the ectopic impulse-generating mechanism thought to underlie paresthesias and pain associated with peripheral nerve injury.  相似文献   

8.
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus ester-induced delayed neurotoxicity (OPIDN) in sensitive species. We have investigated the in vivo and in vitro effects of DFP on hen brain tubulin polymerization. Hens were treated with a single dose of DFP (1.7 mg/kg, sc.), and were sacrificed after 18–21 days. Tubulin from DFP-treated hen brains showed small but significant decrease (14.42%) in the rate of polymerization and 11.05% decrease in rise in O.D. at 340 nm in 30 min. DFP in vivo treatment also resulted in decreased concentration of tau and an enhanced concentration of two peptides (45 kDa, 35 kDa) in the brain supernatant. These peptides seemed to be the degradation products of MAP-2. The decrease in the rate of brain tubulin polymerization in treated hens is consistent with neurochemical alterations and the focal degeneration and aggregation of these filamentous structures in OPIDN.Abbreviations DFP Diisopropyl phosphorofluoridate - DMSO dimethyl sulfoxide - DTT dithiothreitol - EGTA ethyleneglycol-bis(-aminoethyl ether)N,N,N,N-tetraacetic acid - EDTA ethylenediaminetetraacetic acid - 2, 5-DH 2, 5-hexanedione - DMHD 3, 4-dimethyl-2, 5-hexanedione - OPIDN organophosphorus ester-induced delayed neurotoxicity - PMSF phenylmethylsulfonyl fluoride - PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - TOCP tri-o-cresyl phosphate  相似文献   

9.
Abstract: The adenylyl cyclase-cyclic AMP (cAMP) second messenger pathway has been proposed to regulate myelin gene expression; however, a clear correlation between endogenous cAMP levels and myelin-specific mRNA levels has never been demonstrated during the induction or maintenance of differentiation by the myelinating Schwann cell. Endogenous cAMP levels decreased to 8–10% of normal nerve by 3 days after crush or permanent transection injury of adult rat sciatic nerve. Whereas levels remained low after transection injury, cAMP levels reached only 27% of the normal values by 35 days after crush injury. Because P0 mRNA levels were 60% of normal levels by 14 days and 100% by 21 days after crush injury, cAMP increased only well after P0 gene induction. cAMP, therefore, does not appear to trigger myelin gene induction but may be involved in myelin assembly or maintenance. Forskolin, an activator of adenylyl cyclase, increased endoneurial cAMP levels only in the normal nerve, and in the crushed nerve beginning at 16 days after injury, but at no time in the transected nerve. Only by treating transected nerve with 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of cAMP phosphodiesterases, in combination with forskolin was it possible to increase cAMP levels. No induction of myelin genes, however, was observed with short- or long-term treatment with IBMX and forskolin in the transected nerve. A three-fold increase in phosphodiesterase activity was observed at 35 days after both injuries, and a nonmyelinated nerve was shown to have even higher activity. These experiments, therefore, suggest an important role for phosphodiesterase in the inactivation of this second messenger-dependent stimuli when Schwann cells are non-myelinating, such as after sciatic nerve injury or in the nonmyelinated nerve, which again implies that cAMP may be required for the maintenance of the myelin sheath.  相似文献   

10.
Disruption of the 75-kD low-affinity nerve growth factor (NGF) receptor (p75) has been shown to result in sensory and sympathetic nervous system deficits (Lee et al., 1992a,b). In order to establish precisely which subsets of neurons are capable of responding to neurotrophins (NTs) through the low-affinity NGF receptor, p75 was localized in the primate autonomic and somatic sensory nervous systems. In the autonomic system, cell bodies of some parasympathetic and enteric neurons expressed detectable levels of p75, whereas all sympathetic neurons expressed the protein. In the sensory system, some, but not all, cell bodies were labeled in cranial and spinal sensory ganglia and in the mesencephalic nucleus. Some peripheral and central projections of the sensory neurons were also labeled. Centrally, most of the labeled processes were found in regions containing primarily small unmyelinated fibers, including lamina II of Rexed and areas of the solitary tract and nucleus. Peripherally, labeled processes were associated with unmyelinated nerves and specialized structures such as taste buds and Meissner corpuscles, but not with myelinated processes. This study indicates that the subset of neurons in the autonomic nervous system likely to be capable of responding to neurotrophins is broader than generally thought, and that p75-ex-pressing neurons tend to be clustered. Moreover, in the sensory nervous system p75 is expressed by most cell bodies, but expression in their projections is restricted both peripherally and centrally to unmyelinated processes and nerve terminals.  相似文献   

11.
12.
[3H]Dynorphin A(1-8) is readily metabolised by rat lumbosacral spinal cord tissue in vitro, affording a variety of products including a significant amount (20% recovered activity) of [3H][Leu5]enkephalin. In the presence of the peptidase inhibitors bestatin, captopril, thiorphan, and leucyl-leucine, [3H][Leu5]enkephalin was the major metabolic product, accounting for 60% of recovered activity. Production of [3H][Leu5]enkephalin was seen across all gross brain regions. The enzyme responsible for the cleavage has an optimal substrate length of 8-13 amino acids and is inhibited by N-[1-(RS)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate, a site-directed inhibitor of the metalloendopeptidase EC 3.4.24.15. However the enzymic breakdown also has properties in common with involvement of endo-oligopeptidase A. Possible consequences of the formation of [Leu5]-enkephalin from the smaller dynorphins are discussed.  相似文献   

13.
Endopeptidase-24.11 is a 90-kDa surface glycoprotein with the ability to hydrolyze a variety of biologically active peptides. Interest in this enzyme is based on the consensus that it may play a role in the termination of peptide signals in the central nervous system. In the present study, we have investigated the distribution of endopeptidase-24.11 in two nerves of the peripheral nervous system of newborn pigs: the sciatic, composed of a mixture of myelinated and nonmyelinated axons, and cervical sympathetic trunk in which greater than 99% of the axons are nonmyelinated. The endopeptidase was monitored enzymatically, as well as by immunoblotting and immunocytochemistry using mono- and polyclonal anti-endopeptidase antibodies. Endopeptidase-24.11 was detected in both the sciatic nerve and the cervical sympathetic trunk. Membrane preparations from sciatic nerve hydrolyzed 125I-insulin B-chain, and more than 50% of the activity was inhibited by phosphoramidon with an IC50 concentration of 3.2 nM. Moreover, a 90-kDa polypeptide was detected by immunoblotting of sciatic nerve membranes. The type of cells expressing the endopeptidase was determined by immunohistochemistry. In teased nerve preparations, these cells were identified morphologically as myelin- and non-myelin-forming Schwann cells. Endopeptidase-24.11 was also expressed by cultured Schwann cells from sciatic nerve and cervical sympathetic trunk maintained for 3 h in vitro. The presence of endopeptidase-24.11 on the Schwann cell surface raises the possibility of a potential role for the enzyme in nerve development and/or regeneration.  相似文献   

14.
The myelin-associated glycoprotein (MAG) was quantitated in the CNS and PNS of quaking mice and the levels compared to the levels of myelin basic protein (MBP) and 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity. In the brainstems of 36-day-old quaking mice, MBP, MAG, and CNPase were reduced to 12, 16, and 29% of control levels, respectively. In the sciatic nerves of the 36-day-old quaking mice, MBP and CNPase were 38 and 75% of control levels, respectively, whereas the concentration of MAG was unchanged or slightly increased. Similar quantitative results were obtained for the sciatic nerves and spinal roots of 7-month-old quaking mice. Immunoblots showed that the principal MAG band from the brainstems, sciatic nerves, and spinal roots of the quaking mice had a higher than normal apparent Mr. In addition, there was a minor component reacting with anti-MAG antiserum in the brainstems of the quaking mice that had a slightly lower Mr than control MAG and was not detected in the normal mice. The results for the quaking mice are compared with those from similar studies on other mutants with dysmyelination of the CNS and PNS.  相似文献   

15.
Abstract: The localization and mechanism of thymidine and deoxyuridine transport in the central nervous system were studied in vivo and in vitro . Previous studies have shown that thymidine enters brain from blood in part via the CSF. In vitro , isolated adult bovine cerebral microvessels, which readily concentrated and phosphorylated deoxyglucose, were unable to concentrate thymidine and deoxyuridine. In vivo , [3H]thymidine (0.2 μ M ) and [3H]deoxyuridine(0.4 μ M ) were not extracted more readily than [14C]sucrose in a single pass through the cerebral circulation of rats. In vivo , [3H]thyrnidine retention in CSF and brain after entry from blood was increased when the efflux of [3H]thymidine from CSF and the phosphorylation of [3H]thymidine in brain were depressed by the intraventricular injection of unlabeled thymidine. These studies and previous work suggest that the transfer of thymidine (and deoxyuridine) through the blood-brain barrier in either direction must be extremely low. The present studies are consistent with the postulate that thymidine is transported by an active transport system in the choroid plexus that transfers thymidine from blood into the CSF; from the CSF, the thymidine enters brain cells and is phosphorylated.  相似文献   

16.
Periodic induction of focal electrical seizure [afterdischarge (AD)] is an absolute prerequisite for the development of kindling, an animal model of complex partial epilepsy. Once established, it is a permanent condition. The mechanism(s) that translate ADs, which last tens of seconds, into life-long alterations in the CNS is unclear. Cellular immediate-early genes have been implicated in the conversion of short-term stimuli to long-term alterations in cellular phenotypes by regulating target gene expression. We have investigated the contribution of one such early gene, c-fos, to this process. The relationship between ADs and expression of c-fos gene in the rat hippocampus, a key structure in kindling development, was studied by analysis of mRNA levels. The low constitutive expression of c-fos mRNA in the hippocampus was not altered by kindling. There was an "all-or-none" relationship between induction of c-fos and the duration of AD. The threshold for induction was approximately 30 s of AD. Above-threshold ADs induced c-fos in both naive and kindled animals to the same extent and with identical temporal profiles. Although the expression of c-fos is unchanged with kindling, c-fos may nonetheless contribute to many long-term changes of kindling, both adaptive and epileptogenic.  相似文献   

17.
1. The responses of periphery (PNS) and central nervous systems (CNS) towards nerve injury are different: while injured mammalian periphery nerons can successfully undergo regeneration, axons in the central nervous system are usually not able to regenerate.2. In the present study, the genes which were differentially expressed in the PNS and CNS following nerve injury were identified and compared by microarray profiling techniques.3. Sciatic nerve crush and hemisection of the spinal cord of adult mice were used as the models for nerve injury in PNS and CNS respectively.4. It was found that of all the genes examined, 14% (80/588) showed changes in expression following either PNS or CNS injury, and only 3% (18/588) showed changes in both types of injuries.5. Among all the differentially expressed genes, only 8% (6/80) exhibited similar changes in gene expression (either up- or down-regulation) following injury in both PNS and CNS nerve injuries.6. Our results indicated that microarray expression profiling is an efficient and useful method to identify genes that are involved in the regeneration process following nerve injuries, and several genes which are differentially expressed in the PNS and/or CNS following nerve injuries were identified in the present study.  相似文献   

18.
2',3'-Cyclic nucleotide 3'-phosphodiesterase activity was examined in brains and spinal cords of normal and myelin-deficient Wistar rats. While the activity in normal brains increased from 0.2 mumol/min/mg protein (units) at 6-10 days to 3.5 units at 25 days of postnatal age, the activity in the myelin-deficient rat remained at 0.2-0.3 units over the same period. In spinal cord, the normal activities were 5.7 and 10.9 units at 12 and 20 days, respectively, whereas they declined in the myelin-deficient rat from 1.06 to 0.79 units for the same age points. 5'-Nucleotidase activities in brain and spinal cord were normal in the myelin deficient rat at both ages.  相似文献   

19.
The distribution of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) molecular forms and their solubility characteristics were examined, using density gradient centrifugation, in various regions of the postmortem human CNS. Total AChE activity varied extensively (50-fold) among the regions investigated, being highest in the telencephalic subcortical structures (caudate nucleus and nucleus of Meynert); intermediate in the substantia nigra, cerebellum, and spinal cord; and least in the fornix and cortical regions (hippocampus and temporal and parietal cortex). Total BChE activity was, in contrast, much more evenly distributed, with only a threefold variation between the regions studied. Although the patterns of molecular forms of each enzyme were broadly similar among the different areas, regional variations in the distribution and abundance of the various forms of AChE were much greater than those of BChE. Thus, although the tetrameric G4 form of AChE constituted the majority of the total AChE activity in all regions examined, the ratio of the G4 form to the monomeric G1 form, the latter of which constituted the majority of the remaining activity, varied markedly, ranging from 21 in the caudate nucleus to 1.7 in the temporal cortex. In addition to the G4 and G1 forms of AChE, the dimeric G2 form was observed in the nucleus of Meynert and a fast-sedimenting (16S) species was found in samples of both the parietal cortex and spinal cord. In contrast, the G4 and G1 forms of BChE were the only molecular species observed in the different areas and the G4:G1 ratio varied from 3.3 in the substantia nigra to 0.9 in the temporal cortex. Regarding the solubility characteristics of the individual AChE and BChE molecular forms, the majority of the G4 form of AChE was extractable only in the presence of detergent, indicating a predominantly membrane-bound localization of this species. The smaller AChE forms (G1 and G2) and both the G1 and G4 forms of BChE were all relatively evenly distributed between soluble and membrane-bound species. These findings are discussed in relation to neurochemical and neuroanatomical, particularly cholinergic, features of the regions examined.  相似文献   

20.
Protein kinase C interactive protein (PKCI; also known as histidine triad protein, HINT1) is a small intracellular protein widely expressed in tissues from both the peripheral and CNS. Although the structure of this protein is well characterized, the functional aspect and cellular distribution of the protein remain unknown, especially in CNS. To analyze the expression pattern of PKCI/HINT1 we used antibodies against either the whole recombinant protein or a peptide epitope of PKCI/HINT1. We find widespread of PKCI/HINT1 expression in the mouse CNS by Western blot and immunostaining. Our data indicates that PKCI/HINT1 is present broadly throughout the regions of CNS with relatively high abundance in olfactory system, cerebral cortex, hippocampus and part of thalamus, hypothalamus, midbrain, pons and medulla. On the cellular level, PKCI/HINT1 immunoreactivity is primarily located in neurons and neuronal processes. This study provides the anatomical evidence for the potential roles of PKCI/HINT1 in neuronal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号