首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabbit spleen cells can incorporate a small but measurable amount of radioactively labeled rabbit lymph node RNA. At saturation, each cell can incorporate 4 × 1010 D of RNA that are resistant to the action of added RNase. Part of the incorporated 3H-RNA is protected from substantial degradation inside the cell for at least a few hours since high mol. wt (S > 12) 3H-RNA can be obtained from host cells upon re-extraction. Incorporated RNA was found in all three subcellular fractions analysed and had a nucleotide composition similar to that of input RNA. When bacterial RNA is used, the incorporation is significantly reduced and the incorporated RNA is rapidly degraded inside the cell. The presence of actinomycin D does not affect these results, indicating that the radioactivity inside the cells is not due to de novo synthesis utilizing degraded RNA.  相似文献   

2.
Summary The synergistic antitumor effect of interleukin-2(IL-2)-cultured tumor-bearer spleen cells (cultured lymphocytes) and immune fresh spleen cells was examined. Tumor-bearer cultured lymphocytes were obtained by culturing BALB/c spleen cells from syngeneic MOPC104E-tumor-bearing mice for 11 days with crude IL-2 and a soluble tumor extract. These cultured lymphocytes had weak antitumor activity when transferred i.p. into tumor-bearing mice that had been inoculated i.p. with 105 tumor cells 5 days previously. Immune fresh spleen cells, obtained from mice in complete remission after the treatment with cyclophosphamide, also had weak antitumor activity when transferred at the same schedule. The cultured cells and the fresh cells, mixed together before transfer, significantly augmented the therapeutic effect. At least 1×107 tumor-bearer cultured lymphocytes and 4×107 immune cells were needed for the synergistic effect. A tumor-specific combination was needed for both cultured and fresh cells. The effective subpopulation of tumor-bearer cultured lymphocytes was a cytotoxic one from an Lyt2+ precursor, and that of the immune fresh spleen cells was noncytotoxic, Lytl+ and Lyt2+ T-cells.A similar synergistic effect was also observed during in vitro coculture of tumor-bearer and immune cells. Cytotoxicity, as assessed by the 51Cr-release test, of tumor-bearer IL-2-cultured lymphocytes was maintained most effectively after 3 or 4 days of culture without IL-2 when the lymphocytes were cocultured with immune fresh spleen cells and tumor cells.  相似文献   

3.
Stimulation of DNA and RNA synthesis did not occur in mixed macrophage cultures (MMC) consisting of macrophages growing in different allogeneic combinations, compared with syngeneic cultures. Incubation of immune macrophages with either macrophages bearing those alloantigens used for immunization or unrelated alloantigens led to suppression of 3HTdR incorporation. Specific killing, studied by 86Rb uptake, was effected by immune macrophages growing in contact with target macrophages bearing the sensitizing alloantigens. Repeated immunization was found to be important for optimal macrophage cytotoxic capacity. Cell crowding was important for maximum killing effect, and no killing occurred when immune macrophages were separated from the specific allogeneic target cells. Immune spleen cells were capable of arming nonimmune macrophages and rendering them cytotoxic. This suggests that macrophage cytotoxicity may be due to a product(s) derived from lymphocytes and attached to the macrophage surface.  相似文献   

4.
Novikoff rat hepatoma cells (subline NlSl-67) in suspension culture incorporate 3H-5-uridine into the acid-soluble nucleotide pool more rapidly than into RNA, resulting in the accumulation of labeled UTP in the cells. When labeled uridine is removed from the medium after 20 minutes or 4.75 hours of labeling, the rate of incorporation of label from the nucleotide pool into RNA decreases to less than 10% of the original rate within five to ten minutes, in spite of the presence of a large pool of labeled UTP in the cells, and incorporation ceases completely if an excess of unlabeled uridine is present during the chase. Upon addition of 14C-uridine to 3H-uridine pulse-labeled, chased cells, the 14C begins to be incorporated into RNA without delay and at a rate predetermined by the concentration of 14C-uridine in the medium and without affecting the fate of the free 3H-nucleotides labeled during the pulse-period. The results are interpreted to indicate that uridine is incorporated into at least two different pools, only one of which serves as primary source of nucleotides for RNA synthesis. During active synthesis of RNA, the latter pool of free nucleotides is very small and rapidly exhausted when uridine is removed from the medium. However, UTP accumulates in this pool when cells are labeled at 4–6°, since at this temperature RNA synthesis is blocked while uridine is still phosphorylated by the cells, and the UTP is rapidly incorporated into RNA during a subsequent ten-minute chase at 37°. From these types of experiments it is estimated that only 20–25% of the total uridine nucleotides formed in the cells from uridine in the medium is directly available for RNA synthesis and that the remainder becomes available only at a slow rate. Evidence is presented which suggests that one uridine nucleotide pool is located in the cytoplasm and another in the nucleus and that mainly the nuclear pool supplies nucleotides for RNA synthesis. The size of the latter pool is under strict regulatory control, since preincubation of the cells with 0.5 mM unlabeled uridine has little or no effect on the subsequent incorporation of 3H-uridine, although it results in an increase of the overall cellular uridine nucleotide content to at least 5 mM. Other results indicate that adenosine is also incorporated into two independent nucleotide pools, whereas the cells normally appear to possess a single thymidine nucleotide pool.  相似文献   

5.
The frequency of incorporation of the cytokinin N6-[p-3H]benzyladenine into major RNA species of tobacco (Nicotiana tabacum cv W 38) cells steadily increased as a function of its concentration in the culture medium, up to a 10 micromolar cytostatic overdose. During a 55-hour incubation of cells with 0.4 micromolar benzyladenine (BA), which is the optimal concentration for cell division, the incorporation frequency increased to one BA per 1.5 to 2.0 × 104 conventional bases in total RNA. Frequencies of BA incorporation into 18S and 25S rRNA and into RNA precursors were very similar, 2- to 3-fold higher than the frequency of BA incorporation into the 4S + 5S RNA fraction. In cells incubated with 10 micromolar BA, the rate of RNA synthesis between 24 and 55 hours was lower than at optimal growth conditions; 18S and 25S rRNA synthesis was depressed more than the synthesis of 4S + 5S RNA. At 55 hours, BA was incorporated into total RNA at the steady state frequency of one per 1,300 conventional bases. All major RNA species were BA-labeled to approximately the same level, except that the labeling of the RNA precursors was 2-fold higher than the labeling of mature RNA species. These results may reflect an alteration in the processing of the RNA precursors at supra-optimal cytokinin concentration.  相似文献   

6.
C. M. Bray  J. Dasgupta 《Planta》1976,132(2):103-108
Summary RNA synthesis and protein synthesis in embryonic axis tissue of viable pea (Pisum arvense L. var. N.Z. maple) seed commences during the first hour of germination. Protein synthesis in axis tissue of non-viable pea seed is barely detectable during the first 24 h after the start of imbibition. Nonviable axis tissue incorporates significant levels of [3H]uridine into RNA during this period but the level of incorporation does not increase significantly over the first 24 h of imbibition. In axis tissue of non-viable seed during the first hour of imbibition most of the [3H]uridine was incorporated into low molecular weight material migrating in advance of the 4S and 5S RNA species in polyacrylamide gels but some radioactivity was incorporated into a discrete species of RNA having a molecular weight of 2.7×106. After 24 h, non-viable axis tissue incorporates [3H]uridine into ribosomal RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and a heterogeneous RNA species of molecular weight ranging from 2.2×106 to 2.7×106. No 4S or 5S RNA synthesis is detectable after 24 h of imbibition in non-viable axis tissue. Axis tissue of viable pea seed synthesises rRNA, 4S and 5S RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and the rRNA precursor species at both periods of germination studied. Loss of viability in pea seed appears to be accompanied by the appearance of lesions in the processing of rRNA precursor species and a significant loss of RNA synthesising activity.Abbreviations rRNA ribosomal RNA - TCA trichloroacetic acid - SLS sodium lauryl sulphate - PPO 2,5 Diphenyloxazole - POPOP 1,4-Bis-2-(4-methyl-5-penyloxazolyl)-benzene  相似文献   

7.
Summary The labelling of nucleic acids of growing cells of the blue-green algae Anacystis nidulans and Synechocystis aquatilis by radioactive precursors has been studies. A. nidulans cells most actively incorporate radioactivity from [2-14C]uracil into both RNA and DNA, while S. aquatilis cells incorporate most effectively [2-14C]uracil and [2-14C]thymine.Deoxyadenosine does not affect incorporation of label from [2-14C]thymidine into DNA, but weakly inhibits [2-14C]thymine incorporation into both nucleic acids and significantly suppresses the incorporation of [2-14C]uracil.The radioactivity from [2-14C]uracil and [2-14C]thymine is found in RNA uracil and cytosine and DNA thymine and cytosine. The radioactivity of [2-14C]thymidine is incorporated into DNA thymine and cytosine. These results and data of comparative studies of nucleic acid labelling by [2-14C]thymine and [5-methyl-14C]thymine suggest that the incorporation of thymine and thymidine into nucleic acids of A. nidulans and S. aquatilis is accompanied by demethylation of these precursors. In this respect blue-green algae resemble fungi and certain green algae.  相似文献   

8.
Gerhard Richter 《Planta》1973,113(1):79-95
Summary Six high molecular weight, rapidly labelled RNA species were detected in freely suspended callus cells of Petroselinum sativum by means of isotope labelling and electrophoretic separation in agarose-polyacrylamide gels. On the basis of their migration in the latter the RNA species were calculated to have the following molecular weights: 2.9×106, 2,4×106, 1.9×106, 1.4×106, 1.0×106 and 0.75×106 daltons. Thus they can clearly be distinguished from the two ribosomal RNA species (1.3×106 and 0.7×106 daltons). During incubation of the cells with [3H]methyl-methionine as a methyl donator all six components incorporated radioactivity rapidly. With [3H]nucleosides or [3H]orotic acid as precursors the 2.9×106 and the 2.4×106 daltons RNA were labelled within 10 min, while the other high molecular weight species appeared after about 20 min of labelling.Prolongation to 45–120 min resulted in accumulation of radioactivity preferentially in the 1.4×106 and 0.75×106 daltons RNA and in the ribosomal RNA species. The results of cell fractionation experiments provide evidence that these rapidly labelled high molecular weight RNA species are synthesized in the cell nucleus. The kinetics of their synthesis together with the other data obtained strongly support the suggestion that these RNA species function as precursors in the processing of ribosomal RNA. The possible mechanism of this process is discussed.
Verwendete Abkürzungen EDTA Äthylendiamintetraessigsäure - DNase Desoxyribonuclease - Imp./min epm - MAK methyliertes Albumin an Kieselgur - POPOP 1,4- bis (4-Methyl-5-Phenyloxazol)-Benzol - PPO 2,5-Diphenyloxazol - RNase Ribonuclease - S Sedimentationskoeffizient in Svedberg-Einheiten - SDS Natriumdodecylsulfat - TPE Tris-Phosphat-EDTA-Puffer - Tris Tris-(hydroxymethyl)-aminomethan - Upm rpm  相似文献   

9.
Extracellular adenosine was incorporated into nucleotides of bovine chromaffin cells maintained in primary culture. In intact chromaffin tissue, a very low incorporation was found (0.8 pmol/106 cells/h at an adenosine concentration of 11.45 μM), which increased 282 times in freshly isolated chromaffin cells. When maintained in primary culture, this value decreased to a value similar to that of chromaffin tissue, but later on, and in the presence of nerve growth factor (NGF), a time dependent increase of adenosine incorporation was observed which, in 84-h old cells reached up to 54 times more than that found in intact tissue. This incorporation might reflect changes in the adenosine transport at the cell membrane level, furthered by NGF effect. Incorporation, which was time-dependent, was weakly modified by stimulation of cells with 10?4 M acetylcholine. However, acetylcholine-induced release of labelled nucleotides from chromaffin granules was observed, probably in relation to granule maturation.  相似文献   

10.
Ribonucleic acid-permeable mutant of Escherichia coli   总被引:4,自引:0,他引:4  
An RNA-permeable mutant was isolated from a tryptophan amber auxotrophic strain of Escherichia coli after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. The rationale of the isolation was based on the suppression of an amber mutation. A strain was selected, which could grow in minimal medium supplemented with transfer RNA prepared from an suI-carrying strain but not from an su strain. This mutant incorporated3H-labeled bulk RNA into the cells at a rate 40 times higher than did the parent strain. The level of tryptophan requirement, susceptibility to the lytic action of lysozyme and RNase activity in the culture medium of the mutant strain did not differ from those of the parent strain. The mutant strain incorporated 3H-labeled ribosomal RNA equally as well as it incorporated 3H-labeled transfer RNA and the incorporation was competitively inhibited by any species of cold RNA. However, the fate of 3H-labeled rRNA after incorporation resulted in degradation to yield acid-soluble fragments whereas tRNA after incorporation remained intact in the cell.  相似文献   

11.
Summary The incorporation of [3H]-5-uridine into cytoplasmic 18S and 28S ribosomal ribonucleic acid (rRNA) was examined in Colcemid-synchronized strain L cells during G1 and S phases of the cell cycle in the presence of 5×10−5 m uridine, which was determined to be the saturating concentration for this system. The data show that in S phase a significant increase occurs in the level of [3H]-5-uridine incorporation into each rRNA species. During a 90-min exposure period, S phase cells incorporate 3.4 times as much [3H]-5-uridine into 18S rRNA and 1.9 times as much into 28S rRNA as do G1 cells. The time required for maturation of the ribosomal RNA species during G1 and during S phase is the same, with 18S rRNA appearing in the cytoplasm in 20 min and 28S rRNA in 40 min.  相似文献   

12.
7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxodG) is a well-known marker of oxidative stress. We report a mechanistic analysis of several pathways by which 8-oxodG is converted to nucleotide triphosphates and incorporated into both DNA and RNA. Exposure of MCF-7 cells to [14C]8-oxodG combined with specific inhibitors of several nucleotide salvage enzymes followed with accelerator mass spectrometry provided precise quantitation of the resulting radiocarbon-labeled species. Concentrations of exogenously dosed nucleobase in RNA reached one per 106 nucleotides, 5–6-fold higher than the maximum observed in DNA. Radiocarbon incorporation into DNA and RNA was abrogated by Immucillin H, an inhibitor of human purine nucleoside phosphorylase (PNP). Inhibition of ribonucleotide reductase (RR) decreased the radiocarbon content of the DNA, but not in RNA, indicating an important role for RR in the formation of 8-oxodG-derived deoxyribonucleotides. Inhibition of deoxycytidine kinase had little effect on radiocarbon incorporation in DNA, which is in contrast to the known ability of mammalian cells to phosphorylate dG. Our data indicate that PNP and RR enable nucleotide salvage of 8-oxodG in MCF-7 cells, a previously unrecognized mechanism that may contribute to mutagenesis and carcinogenesis.  相似文献   

13.
Analysis of the biological effects of specific DNA alkylations by simple alkylating agents is complicated by the variety of sites involved. It is, therefore, of value to be able to incorporate into cellular DNA nucleosides alkylated in a single position, e.g., O6-methyldeoxyguanosine. Such cellular incorporation is particularly difficult to achieve because this nucleoside is rapidly demethylated by adenosine deaminase. We have attempted to achieve such incorporation into the DNA of V79 cells by using coformycin, an inhibitor of adenosine deaminase, and by forcing the cells to depend on exogenous purines by the use of medium containing aminopterin. The DNA of V79 cells exposed to O6-methyl-[8-3H]deoxyguanosine (2.4 μM, sp. act. 14 500 Ci/mole) showed an incorporation level of 4 × 10−8 nucleotides. When 1000-fold higher concentrations were employed (3–15 mM, sp. act. 1.6 Ci/mole), significant cytotoxicity and inhibition of DNA synthesis was observed. However, because it was not economically feasible to administer high specific activity O6-methyldeoxyguanosine to the cells at these concentrations, we could not determine the amount of labeled nucleoside incorporated into DNA. Examination of the frequency of 6-thioguanine-resistant cells in these treated populations showed no significant increase above the background level. Comparison of the cytotoxic effect of O6-methyldeoxyguanosine with deoxyadenosine showed that the toxicity induced by O6-methyldeoxyguanosine could have resulted from mimicry of deoxyadenosine, rather than by incorporation of the alkylated nucleoside itself.  相似文献   

14.
1. Liver cells in suspension are shown to incorporate several RNA precursors into their RNA. 2. The incorporation of [32P]phosphate and [14C]adenine into the RNA of the cell suspension is usually of the same order as that in the perfused (or unperfused) liver slices. However, the initial lag in the incorporation of adenine into the RNA of the cell suspensions is much longer than that obtained for the tissue slices, and the optimum incorporation of adenine in the former, unlike that in the latter, needs exogenous glucose and probably a high concentration of phosphate. 3. The cell suspensions also differ from the tissue slices in being unable to incorporate [14C]orotic acid into their RNA, and resemble tumour tissues in incorporating uracil into their RNA at a rate significantly higher than that obtained with the tissue slices. 4. The above differences in the metabolic behaviour of liver-cell suspensions and tissue slices are considered to be due to the different levels of organization of the liver cells in the two tissue preparations.  相似文献   

15.
Results from kinetic studies on the incorporation of 3H-5-uridine and 3H-8-adenosine into the acid-soluble nucleotide poor and nucleic acids by Novikoff hepatoma cells (subline N1S1-67) in suspension culture indicate that the uridine transport reaction is saturated at about 100 μM and that for adenosine at about 10 μM nucleoside in the medium, and that above 100 μM simple diffusion becomes the predominant mode of entry of both nucleosides into the cell. The Km of the transport reactions is approximately 1.3 × 10?5 M for uridine and 6 × 10?6 M for adenosine. The incorporation of these nucleosides into both the nucleotide pool and into nucleic acids seems to be limited by the rate of entry of the nucleic acid synthesis from the rate of incorporation of nucleosides. Other complicating factors are a change with time of labeling in the relative proporation of nucleoside incorporated into DNA and into the individual nucleotides of RNA, the splitting of uridine to uracil by th ecells, the deamination of adenosine kto inosine and the subsequent cleavage of inosine to hypoxanthine. Various lines of evidence are presented which indicate that the overall nucleotide pools of the cells are very small under normal growth conditions. During growth in the presence of 200 μM uridine or adenosine, however, the cells continue to convert the nucleosides into intracellular nucleotides much more rapidly than required for nucleic acid synthesis. This results in an accumulation of free uridine and adenosine nucleotides in the cells, the maximum amounts of which are at least equivalent to the amount of these nucleotides in total cellular RNA.  相似文献   

16.
Summary Immunization of C57BL/6 mice with MMC-treated syngeneic lymphoma cells, MBL-2, caused the generation of antitumor effector cells in vivo and the immunized mice permanently rejected viable MBL-2 lymphoma cells. Both plastic nonadherent T cells and plastic adherent MØ obtained from MBL-2 immunized mouse peritoneal exudate cells revealed strong cytotoxic activity against MBL-2 lymphoma cells, whereas immune spleen cells were not highly active against MBL-2 lymphoma cells in vitro. However, systemic adoptive transfer of immune spleen cells into the MBL-2-bearing mice by i.v. infusion in conjunction with i.p. cyclophosphamide (100 mg/kg) treatment cured the mice of tumor. This therapeutic efficacy of immune spleen cells was reflected by the number of transferred effector cells and over 5×107 immune spleen cells were required to cure the mice completely. The cells mediating in vivo rejection of MBL-2 lymphoma cells were Thy 1.2+ T cells. This ACIT was specific against MBL-2 lymphoma cells and had no effect on the growth of other syngeneic tumors, B16 melanoma or BMC6A fibrosarcoma. In vivo administration of recombinant interleukin 2 (r-IL 2) combined with ACIT greatly modulated the cure rate of tumor-bearing mice. In addition, we found that slowly released r-IL 2 administratered from an ALZET miniosmotic pump was more effective in augmenting the therapeutic efficacy of immune spleen cells in ACIT than a single injection of the same total dose of r-IL 2.  相似文献   

17.
18.
A study of the incorporation of l-[6-3H]fucose and d-[6-3H]glucosamine hydrochloride was conducted during the development of the cellular slime mold Dictyostelium discoideum 1-H. Autoradiographs revealed that pulse-labeled vegetative amoebae incorporated [3H]fucose intracytoplasmically within 15 min. The majority of the cells had randomly scattered silver grains but the remainder were distinguished by a dense localized labeling which suggested that oligo or polysaccharide synthesis was occurring. The localized pattern of labeling attributed to active synthesis declines at aggregation and early conus formation. As the pseudoplasmodium makes the developmental transition from the conus to the culmination stages the localized pattern of [3H]fucose labeling was restricted to the prespore cells while the prestalk cells were devoid of label. Prespore vacuoles were not present at the onset of this transition and consequently [3H]fucose incorporation occurred in the cells prior to their differentiation into prespore cells. In contrast to cells composing earlier stages, mature spores exhibited [3H]fucose-containing substances at the cell surface. At appropriate stages certain cells actively synthesize slime and stalk sheath which were labeled with either [3H]fucose or [3H]glucosamine.Prestalk isolates were obtained by transecting migrating slugs. [3H]Fucose was incorporated within 10 min among the basal cells of the isolate in the localized pattern typically found in prespore cells. The incorporation of [3H]fucose occurred prior to prespore differentiation as certain preparations were devoid of prespore vacuoles. Prespore isolates differentiate prestalk cells which have lost the capacity to incorporate [3H]fucose. This investigation suggests that cell contacts and interactions may affect the incorporation of [3H]fucose.  相似文献   

19.
INCORPORATION of 3H-thymidine into antibody-producing haemolytic plaque-forming cells (p.f.c.) has been interpreted as evidence of DNA synthesis in a proliferating population of antibody-synthesizing cells1–6. Although 3H-5-uridine has been used as the most specific label available for RNA7, 8, there are cells in which its specificity as an RNA precursor is not absolute; because of incorporation into DNA9, 10 through 3H-5-deoxycytidine. The autoradiographic modification2 of the Jerne-Nordin plaque technique11 provides a powerful tool for studying nucleic acid synthesis in a small population of antibody-producing cells amidst large populations of non-antibody-producing cells. Tritiated thymidine and 3H-5-uridine are incorporated specifically into DNA and RNA respectively in this system, though not all RNA in p.f.c. is degradable by ribonuclease. The work described here indicates that resistant RNA is associated with DNA and is more abundant in antibody-producing cells than in non-antibody-producing cells. These findings may offer a clue to mechanisms of antibody formation.  相似文献   

20.
Summary Metabolic activity ofA. aegypti cells grown in vitro has been studied by incorporation of3H-uridine and14C-leucine. “Chase” experiments with unlabeled precursors, and the use of actinomycin D and puromycin, showed that3H-uridine was incorporated into cellular RNA, and that14C-leucine was incorporated into protein of these cells. Incorporation of3H-uridine was inhibited when actinomycin D was used at a concentration of 10 μg/ml, and14C-leucine incorporation was inhibited to the same extent by puromycin at a concentration of 100 μg/ml medium. Contribution No. 148.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号