首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Lin SH  Lee JC 《Biochemistry》2002,41(39):11857-11867
The binding of adenosine 3',5'-cyclic monophosphate (cAMP) and its nonfunctional analogue, guanosine 3',5'-cyclic monophosphate (cGMP), to the adenosine 3',5'-cyclic monophosphate receptor protein (CRP) from Escherichia coli was investigated by means of fluorescence and isothermal titration calorimetry (ITC) at pH 7.8 and 25 degrees C. A biphasic fluorescence titration curve was observed, confirming the previous observation reported by this laboratory (Heyduk and Lee (1989) Biochemistry 28, 6914-6924). However, the triphasic titration curve obtained from the ITC study suggests that the cAMP binding to CRP is more complicated than the previous conclusion that CRP binds sequentially two molecules of cAMP with negative cooperativity. The binding data can best be represented by a model for two identical interactive high-affinity sites and one low-affinity binding site. Unlike cAMP, the binding of cGMP to CRP exhibits no cooperativity between the high-affinity sites. The effects of mutations on the bindings of cAMP and cGMP to CRP were also investigated. The eight CRP mutants studied were K52N, D53H, S62F, T127L, G141Q, L148R, H159L, and K52N/H159L. These sites are located neither in the ligand binding site nor at the subunit interface. The binding was monitored by fluorescence. Although these mutations are at a variety of locations in CRP, the basic mechanism of CRP binding to cyclic nucleotides has not been affected. Two cyclic nucleotide molecules bind to the high-affinity sites of CRP. The cooperativity of cAMP binding is affected by mutation. It ranges from negative to positive cooperativity. The binding of cGMP shows none. With the exception of the T127L mutant, the free energy change for DNA-CRP complex formation increases linearly with increasing free energy change associated with the cooperativity of cAMP binding. This linear relationship implies that the protein molecule modulates the signal in the binding of cAMP, even though the mutation is not directly involved in cAMP or DNA binding. In addition, the significant differences in the amplitude of fluorescent signal indicate that the mutations also affect the surface characteristics of CRP. These results imply that these mutations are not perturbing specific pathways of signal transmission. Instead, these results are more consistent with the concept that CRP exists as an ensemble of native states, the distribution of which can be altered by these mutations.  相似文献   

2.
Dai J  Lin SH  Kemmis C  Chin AJ  Lee JC 《Biochemistry》2004,43(28):8901-8910
Mutagenesis of various amino acids in Escherichia coli cyclic AMP receptor protein (CRP) has been shown to modulate protein compressibility and dynamics [Gekko et al. (2004) Biochemistry 43, 3844-3852]. Cooperativity of cAMP binding to CRP and the apparent DNA binding affinity are perturbed [Lin and Lee (2002) Biochemistry 41, 11857-11867]. The aim of this study is to explore the effects of mutation on the surface chemistry of CRP and to define the consequences of these changes in affecting specific DNA sequence recognition by CRP. Furthermore, the role of the interplay between mutation and specific identity of the bound cyclic nucleotide in this DNA recognition was explored. In the current study, effects of eight site-specific mutations (K52N, D53H, S62F, T127L, G141Q, L148R, H159L, and K52N/H159L) on DNA recognition of four sequences (Class I (site PI of lac), Class II (site PI of gal), and synthetic sequences that are hybrids of Classes I and II sites) modulated by three different cyclic nucleotides (cAMP, cCMP, and cGMP) were investigated. All mutations altered the surface chemistry of CRP as evidenced by the change in elution properties of these proteins from different matrixes. While T127L, S62F, K52N, and H159L exhibited unexpected behavior under combinations of specific experimental conditions, such as the identity of bound cyclic nucleotide and DNA sequence, in general, results showed that the affinities of CRP for DNA were sequence-dependent, increasing in the order of lacgal26 < gal26 < lac26 < gallac26 for all the mutants in the presence of 200 microM cAMP. The apparent association constants significantly increased in the order of no cyclic nucleotide approximately cGMP < cCMP < cAMP for all the examined DNA sequences. Linear correlation between the DeltaG for CRP-DNA complex formation and the cooperativity energy for cAMP binding was observed with gallac26, gal26, and lacgal26; however, the slope of this linear correlation is DNA sequence dependent. Structural information was presented to rationalize the interplay between CRP sequence and cyclic nucleotides in defining the recognition of DNA sequences.  相似文献   

3.
4.
Gekko K  Obu N  Li J  Lee JC 《Biochemistry》2004,43(13):3844-3852
Amino acid substitutions at distant sites in the Escherichia coli cyclic AMP receptor protein (CRP) have been shown to affect both the nature and magnitude of the energetics of cooperativity of cAMP binding, ranging from negative to positive. In addition, the binding to DNA is concomitantly affected. To correlate the effects of amino acid substitutions on the functional energetics and global structural properties in CRP, the partial specific volume (v(o)), the coefficient of adiabatic compressibility (beta(s)(o)), and the rate of amide proton exchange were determined for the wild-type and eight mutant CRPs (K52N, D53H, S62F, T127L, G141Q, L148R, H159L, and K52N/H159L) by using sound velocity, density measurements, and hydrogen-deuterium exchange as monitored by Fourier transform infrared spectroscopy at 25 degrees C. These mutations induced large changes in v(o) (0.747-0.756 mL/g) and beta(s)(o) (6.89-9.68 Mbar(-1)) compared to the corresponding values for wild-type CRP (v(o)= 0.750 mL/g and beta(s)(o)= 7.98 Mbar(-1)). These changes in global structural properties correlated with the rate of amide proton exchange. A linear correlation was established between beta(s)(o) and the energetics of cooperativity of binding of cAMP to the high-affinity sites, regardless of the nature of cooperativity, be it negative or positive. This linear correlation indicates that the nature and magnitude of cooperativity are a continuum. A similar linear correlation was established between compressibility and DNA binding affinity. In addition, linear correlations were also found among the dynamics of CRP and functional energetics. Double mutation (K52N/H159L) at positions 52 and 159, whose alpha-carbons are separated by 34.6 A, showed nonadditive effects on v(o) and beta(s)(o). These results demonstrate that a small alteration in the local structure due to amino acid substitution is dramatically magnified in the overall protein dynamics which plays an important role in modulating the allosteric behavior of CRP.  相似文献   

5.
6.
7.
Conformational-energy calculations have been carried out in order to determine favorable packing arrangements within a group of α-helices. The influence of side chains and of the number of interacting α-helices on the mode of packing was analyzed. In this work, our earlier methods for computing the packing energy of a pair of α-helices [Chou, K.-C., Némethy, G. & Scheraga, H. A. (1984) J. Am. Chem. Soc. 106 , 3161–3170] have been extended to treat the interactions among several helices. Also, new algorithms allow the matching of standard peptide geometry to x-ray coordinates of helical complexes and the analysis of interrelations between several helices. As a specific test case, the packing of three neighboring α-helices, viz., the A, G, and H helices of sperm whale myoglobin, was considered. Minimum-energy arrangements were computed for the separate A-H and the G-H α-helix pairs as well as for the A-G-H three-helix complex. For the packing of the nearly antiparallel G and H α-helices, the same optimal structure was obtained in two- and three-helix complexes, indicating that a single packing arrangement is specifically favored by interhelix interactions. For the pair of nearly perpendicular A and H α-helices, interactions are less specific, so that there is no unique optimal structure in the two-helix complex; in the three-helix complex, however, a specific mode of packing is favored even for the A-H pair. This result indicates that the presence of other nearby α-helices can influence the packing of a given α-helix pair. The computed arrangement of the A-G-H complex is very close to that of the crystallographically determined structure. These results can be used to make deductions about the likely sequence of events in protein folding, where, in this particular case, it appears that the G-H helix pair may form first and then induce proper orientation of the A helix.  相似文献   

8.
9.
S F Leu  C H Baker  E J Lee  J G Harman 《Biochemistry》1999,38(19):6222-6230
The lacP DNA binding and activation characteristics of CRP having amino acid substitutions at position 127 were investigated. Wild-type (WT) and T127C CRP footprinted lacP DNA in the presence of DNase I in a cAMP-dependent manner. The T127G, T127I, and T127S forms of CRP failed to footprint lacP both in the absence and in the presence of cAMP. Consistent with these data, WT and T127C CRP:cAMP complexes exhibited high affinity for the lacP CRP site whereas T127G, T127I, or T127S CRP:cAMP complexes exhibited low affinity for the lacP CRP site. CRP:cAMP:RNA polymerase (RNAP) complexes formed at lacP in reactions that contained WT, T127C, T127G, T127I, or T127S CRP. These results demonstrate that allosteric changes important for cAMP-mediated CRP activation are differentially affected by amino acid substitution at position 127. Proper cAMP-mediated reorientation of the DNA binding helices required either threonine or cysteine at position 127. However, cAMP-dependent interaction of CRP with RNAP was accomplished regardless of the amino acid at position 127. RNAP:lacP complexes that supported high-level lac RNA synthesis formed rapidly in reactions that contained WT or T127C CRP whereas RNAP:lacP complexes that supported only low-level lac RNA synthesis formed at slower rates in reactions that contained T127I or T127S CRP. The T127G CRP:cAMP:RNAP:lacP complex failed to activate lacP. The results of this study lead us to conclude that threonine 127 plays an important role in transduction of the signal from the CRP cyclic nucleotide binding pocket that promotes proper orientation of the DNA binding helices and only a minor, if any, role in the functional exposure of the CRP RNAP interaction domain.  相似文献   

10.
Oligonucleotide-directed mutagenesis was employed to generate mutants of the cAMP receptor protein (CRP) of Escherichia coli. The mutant proteins were purified to homogeneity and tested for stability and DNA binding. It is shown that mutations at the position of Arg180 abolish specific DNA binding, whereas those at the position Arg185 have very little effect. Both positions have previously been implicated as crucial for the specific interaction between CRP and DNA. The Ser128----Ala mutant shows a slight reduction in DNA binding affinity relative to wild-type. All mutants investigated show similar stability profiles to wild-type CRP with respect to thermolysin proteolysis as a function of temperature.  相似文献   

11.
The positively charged lysine at the C-terminals of three long α-helices (5-15, 25-35, and 88-99) was replaced with alanine (K13A, K33A, K97A) or aspartic acid (K13D, K33D, K97D) in hen lysozyme by genetic engineering. The denaturation transition point (Tm) and Gibbs energy change ΔG of the mutant lysozymes decreased remarkably, suggesting that the positive charge at the C-terminals of helices is involved in the stabilization of the helix dipole. On the other hand, the non-charged asparagine at the N-terminal of the long α-helices (25-35 and 88-99) was replaced with negatively charged aspartic acid (N27D and N93D). The Tm and ΔG of N27D increased, suggesting that the dipole moment of the N-terminal of the helices is diminished by replacement with negatively charged amino acid strengthening the stability of the helices. The stabilities of those hen egg white lysozymes mutated at the N- or C-terminal sites of the three long α-helices were related with their secretion amounts in yeast (Pichia pastoris). The secretion amounts of these mutant lysozymes in yeast were closely correlated with their stability.  相似文献   

12.
Folding and stability of helical proteins: Carp myogen   总被引:1,自引:0,他引:1  
In this work we use our very simple general representation of protein structures to study the mainly helical protein carp myogen. The representation, which treats the amino acid side-chains as simple spheres, is further simplified by rigidly fixing residues in α-helices. With this model we are able to reproduce the geometry and energetic stability of the native myogen conformation. Studies of the formation of α-helical sub-assemblies showed that the simulated folding of two and four-helix systems worked well, reaching compact native-like conformations with a good rate of success. Greater problems were encountered with the whole molecule (six helices), possibly due to the omission of entropic effects or to simulating the folding too rapidly. Finally, studies of the conformation of a pair of helices when isolated and when part of the whole molecule native conformation showed that long-range interactions have an unexpectedly strong influence on the conformation of the pair of helices.  相似文献   

13.
The 3', 5' cyclic adenosine monophosphate (cAMP) binding pocket of the cAMP receptor protein (CRP) of Escherichia coli was mutagenized to substitute leucine, glutamine, or aspartate for glutamate 72; and lysine, histidine, leucine, isoleucine, or glutamine for arginine 82. Substitutions were made in wild-type CRP and in a CRP*, or cAMP-independent, form of the protein to assess the effects of the amino acid substitutions on CRP structure. Cells containing the binding pocket residue-substituted forms of CRP were characterized through beta-galactosidase activity and by measurement of cAMP binding activity. This study confirms a role for both glutamate 72 and arginine 82 in cAMP binding and activation of CRP. Glutamine or leucine substitution of glutamate 72 produced forms of CRP having low affinity for the cAMP and unresponsive to the nucleotide. Aspartate substituted for glutamate 72 produced a low affinity cAMP-responsive form of CRP. CRP has a stringent requirement for the positioning of the position 72 glutamate carboxyl group within the cyclic nucleotide binding pocket. Results of this study also indicate that there are differences in the binding requirements of cAMP and cGMP, a competitive inhibitor of cAMP binding to CRP.  相似文献   

14.
Shi Y  Wang S  Schwarz FP 《Biochemistry》2000,39(24):7300-7308
The allosteric activation of the T127-->L mutant of 3',5'-cyclic adenosine monophosphate (cAMP) receptor protein (CRP) by cAMP changes from an exothermic, independent two-site binding mechanism at pH 7.0 to an endothermic, interacting two-site binding mechanism at pH 5.2, similar to that observed for CRP at pH 7.0 and 5.2. Since the T127-->L mutation at the subunit interface of the CRP dimer creates a more perfect leucine-zipper motif, it is believed to increase the intersubunit association and the stability of the CRP, as is observed by the higher thermal stability of the T127L mutant relative to that of CRP in differential scanning calorimetry (DSC) measurements. The DSC scans also exhibit a single thermal denaturation transition for CRP and a S128A mutant from pH 5.2 to 7. 0, while the broader transition peak of the T127L mutant becomes resolvable into two transitions below pH < or =5.2. Circular dichroism measurements on T127L and CRP at pH 7.0 and 5.2 show changes in the tertiary structure of both proteins with the exception of the tertiary structure around the two tryptophan residues in the amino-terminal domain. Although gel electrophoresis of the proteolysis (pH 5.2) products of T127L, CRP, and their cAMP- and cGMP-ligated complexes shows the subunit band and an amino-terminal domain fragment band, the fully allosterically activated complexes of T127L and CRP show the amino-terminal domain fragment band but not the subunit band. The results are interpreted in terms of the allosteric activation of CRP by cAMP by a conformational change from an "open" to a "closed" form of CRP, which involves changes in the tertiary structure of the carboxyl-terminal domains that are partially induced by an increase in the intersubunit association in T127L. While T127L retains its intersubunit association from pH 5.2 to 7.0, changes occur in the carboxyl-terminal domain so that the endothermic, allosteric activation mechanism of CRP by cAMP is restored in T127L at pH 5.2.  相似文献   

15.
Escherichia coli cyclic AMP Receptor Protein (CRP) undergoes conformational changes with cAMP binding and allosterically promotes CRP to bind specifically to the DNA. In that, the structural and dynamic properties of apo CRP prior to cAMP binding are of interest for the comprehension of the activation mechanism. Here, the dynamics of apo CRP monomer/dimer and holo CRP dimer were studied by Molecular Dynamics (MD) simulations and Gaussian Network Model (GNM). The interplay of the inter-domain hinge with the cAMP and DNA binding domains are pre-disposed in the apo state as a conformational switch in the CRP''s allosteric communication mechanism. The hinge at L134-D138 displaying intra- and inter-subunit coupled fluctuations with the cAMP and DNA binding domains leads to the emergence of stronger coupled fluctuations between the two domains and describes an on state. The flexible regions at K52-E58, P154/D155 and I175 maintain the dynamic coupling of the two domains. With a shift in the inter-domain hinge position towards the N terminus, nevertheless, the latter correlations between the domains loosen and become disordered; L134-D138 dynamically interacts only with the cAMP and DNA binding domains of its own subunit, and an off state is assumed. We present a mechanistic view on how the structural dynamic units are hierarchically built for the allosteric functional mechanism; from apo CRP monomer to apo-to-holo CRP dimers.  相似文献   

16.
17.
C Pampeno  J S Krakow 《Biochemistry》1979,18(8):1519-1525
Reaction of the cAMP (cyclic adenosine 3'--5'-monophosphate) receptor protein (CRP) of Escherichia coli with the bifunctional reagent o-phenylenedimaleimide (oPDM) results in the cross-linking of the two subunits of a CRP protomer. In the presence of cAMP the rate of cross-linking increases. CRP modified with oPDM retains [3H]cAMP binding activity but loses [3H]d(I-C)n binding activity. Proteolysis of cross-linked CRP gives distinct sodium dodecyl sulfate-polyacrylamide gel electrophoretic patterns depending upon whether cAMP was present during the reaction with oPDM. CRP cross-linked in the absence of cAMP retains the same relative resistance to proteolysis as unmodified CRP. The presence of 0.1 mM cAMP during proteolysis results in the production of two fragments, one of approximately 13 000 daltons and a second of approximately 20 000 daltons. CRP cross-linked with oPDM in the presence of cAMP (then dialyzed to remove cAMP) remains sensitive to alpha-chymotrypsin digestion even in the absence of added cAMP producing only the 13 000-dalton fragment. It is suggested that the nature of the oPDM cross-link is a consequence of the conformational state of CRP.  相似文献   

18.
Cyclic AMP is a ubiquitous secondary message that regulates a large variety of functions. The protein structural motif that binds cAMP is highly conserved with the exception of loops 3 and 4, whose structure and length are variable. The cAMP receptor protein of Escherichia coli, CRP, was employed as a model system to elucidate the functional roles of these loops. Based on the sequence differences between CRP and cyclic nucleotide gated channel, three mutants of CRP were constructed: deletion (residues 54-56 in loop 3 were deleted), insertion (loop 4 was lengthened by 5 residues between Glu-78 and Gly-79) and double mutants. The effects of these mutations on the structure and function of CRP were monitored. Results show that the deletion and insertion mutations do not significantly change the secondary structure of CRP, although the tertiary and quaternary structures are perturbed. The functional data indicate that loop 3 modulates the binding affinities of cAMP and DNA. Although the lengthened loop 4 may have some fine-tuning functions, the specific function of the original loop 4 of CRP remains uncertain. The function consequences of mutation in loop 3 of CRP are similar to that of site A and site B in the regulatory subunits of cyclic AMP-dependent protein kinases. Thus, the roles played by loop 3 in CRP may represent a more common mechanism employed by cyclic nucleotide binding domain in modulating ligand binding affinity and intramolecular communication.  相似文献   

19.
B J Lee  H Aiba  Y Kyogoku 《Biochemistry》1991,30(37):9047-9054
The identification and assignment of the proton magnetic resonances of some aliphatic and aromatic amino acid residues of cyclic AMP receptor protein (CRP) are reported. The signals of the leucine and valine residues at around 0 ppm were identified on the basis of intermolecular nuclear Overhauser effects, deuterium labeling, and partial proteolytic digestion. On the addition of cAMP, methyl proton signals due to Val-49 and three leucine residues were detected as upfield-shifted signals at around -0.2 ppm. These signals can be used as indicators of the proper binding of cAMP because they are not observed on the addition of cGMP or 2'-deoxy-cAMP. They are also not observed on cAMP binding to mutant CRP*5 (Ser-62-Phe), which can only be activated by a high concentration of cAMP, but they are observed on cAMP binding to other mutant CRP*s (four species), which can be activated by lower concentrations of cAMP. The resonance of some aromatic protons, i.e., C-2H of two tryptophans, C-2H and C-4H of six histidines, and C-2,6H and C-3,5H of six tyrosine residues in CRP, were assigned by means of deuterium labeling and NOE measurements. The 1H NMR spectrum of labeled CRP [Trp(ring-d5), Phe(ring-d5), and Tyr(3,5-d2)] showed good resolution in the aromatic region. The addition of cAMP to this CRP in D2O caused pronounced line broadening of resonances arising from the residues in the cAMP-binding domain, but the resonances of the DNA-binding domain were not affected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Are lipid interactions with membrane proteins best described in terms of the physical properties of the lipid bilayer or in terms of direct molecular interactions between particular lipid molecules and particular sites on a protein? A molecular interpretation is more challenging because it requires detailed knowledge of the 3D structure of a membrane protein, but recent studies have suggested that a molecular interpretation is necessary. Here, the idea is explored that lipid molecules modify the ways that transmembrane α-helices pack into bundles, by penetrating between the helices and by binding into clefts between the helices, and that these effects on helix packing will modulate the activity of a membrane protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号