首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The “hydrophobic hydration processes” can be satisfactorily interpreted on the basis of a common molecular model for water, consisting of two types of clusters, namely WI and WII accompanied by free molecules WIII. The principle of thermal equivalent dilution (TED) is the potent tool (Ergodic Hypothesis) employed to monitor the water equilibrium and to determine the number ξw of water molecules WIII involved in each process. The hydrophobic hydration processes can be subdivided into two Classes: Class A includes those processes for which the transformation A(−ξwWI → ξwWII + ξwWIII + cavity) takes place with the formation of a cavity, by expulsion of ξw water molecules WIII whereas Class B includes those processes for which the opposite transformation B(−ξwWII − ξwWIII → ξwWI − cavity) takes place with reduction of the cavity, by condensation of ξw water molecules WIII. The number ξw depends on the size of the reactants and measures the extent of the change in volume of the cavity. Disaggregating the thermodynamic functions ΔHapp and ΔSapp as the functions of T (or lnT) and ξw has enabled the separation of the thermodynamic functions into work and thermal components. The work functions ΔGWork, ΔHWork and ΔSWork only refer specifically to the hydrophobic effects of cavity formation or cavity reduction, respectively. The constant self-consistent unitary (ξw = 1) work functions obtained from both large and small molecules indicate that the same unitary reaction is taking place, independent from the reactant size. The thermal functions ΔHTh and ΔSTh refer exclusively to the passage of state of water WIII.Essential mathematical algorithms are presented in the appendices.  相似文献   

2.
The widely held view that the maximum efficiency of a photosynthetic pigment system is given by the Carnot cycle expression (1 − T/Tr) for energy transfer from a hot bath (radiation at temperature Tr) to a cold bath (pigment system at temperature T) is critically examined and demonstrated to be inaccurate when the entropy changes associated with the microscopic process of photon absorption and photochemistry at the level of single photosystems are considered. This is because entropy losses due to excited state generation and relaxation are extremely small (ΔS ? T/Tr) and are essentially associated with the absorption-fluorescence Stokes shift. Total entropy changes associated with primary photochemistry for single photosystems are shown to depend critically on the thermodynamic efficiency of the process. This principle is applied to the case of primary photochemistry of the isolated core of higher plant photosystem I and photosystem II, which are demonstrated to have maximal thermodynamic efficiencies of ξ > 0.98 and ξ > 0.92 respectively, and which, in principle, function with negative entropy production. It is demonstrated that for the case of ξ > (1 − T/Tr) entropy production is always negative and only becomes positive when ξ < (1 − T/Tr).  相似文献   

3.
Specific adsorption capacity of Sepharose 4B in affinity chromatography for two purified galactose-binding lectins, designated as IIIL and IIIH, from the seed of Ricinus communis (castor bean) was measured from 7 to 24°C. The adsorption coefficients for these two protein fractions as a function of temperature were also obtained. It was found that there is a characteristic transition of adsorption coefficient at 18°C for both lectins. Adsorption coefficients between Sepharose 4B and these two lectins were also expressed in terms of ΔG, ΔH, andΔS. It is suggested that the difference in the temperature dependence of the binding energy of these two lectins may be used for their separation at selected temperature.  相似文献   

4.
Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compared our results with those of previous studies and reached the following conclusions: (1) Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mol per -CH2- group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per -CH2- group). (2) Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kilocalories per mole) Phe18 (3.9), Met13 (3.1), Phe7 (2.9), Phe11 (2.7), and Leu21 (2.7). (3) Based on the Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a -CH2- group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. (4) The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. (5) For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds contribute 40 ± 4% to protein stability. (6) Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominantly by hydrophobic interactions.  相似文献   

5.
An early step in the morphogenesis of the double-stranded DNA (dsDNA) bacteriophage HK97 is the assembly of a precursor shell (prohead I) from 420 copies of a 384-residue subunit (gp5). Although formation of prohead I requires direct participation of gp5 residues 2-103 (Δ-domain), this domain is eliminated by viral protease prior to subsequent shell maturation and DNA packaging. The prohead I Δ-domain is thought to resemble a phage scaffolding protein, by virtue of its highly α-helical secondary structure and a tertiary fold that projects inward from the interior surface of the shell. Here, we employ factor analysis of temperature-dependent Raman spectra to characterize the thermostability of the Δ-domain secondary structure and to quantify the thermodynamic parameters of Δ-domain unfolding. The results are compared for the Δ-domain within the prohead I architecture (in situ) and for a recombinantly expressed 111-residue peptide (in vitro). We find that the α-helicity (∼ 70%), median melting temperature (Tm = 58 °C), enthalpy (ΔHm = 50 ± 5 kcal mol− 1), entropy (ΔSm = 150 ± 10 cal mol− 1 K− 1), and average cooperative melting unit (〈nc〉 ∼ 3.5) of the in situ Δ-domain are altered in vitro, indicating specific interdomain interactions within prohead I. Thus, the in vitro Δ-domain, despite an enhanced helical secondary structure (∼ 90% α-helix), exhibits diminished thermostability (Tm = 40 °C; ΔHm = 27 ± 2 kcal mol− 1; ΔSm = 86 ± 6 cal mol− 1 K− 1) and noncooperative unfolding (〈nc〉 ∼ 1) vis-à-vis the in situ Δ-domain. Temperature-dependent Raman markers of subunit side chains, particularly those of Phe and Trp residues, also confirm different local interactions for the in situ and in vitro Δ-domains. The present results clarify the key role of the gp5 Δ-domain in prohead I architecture by providing direct evidence of domain structure stabilization and interdomain interactions within the assembled shell.  相似文献   

6.
The X-ray crystal structures of two related trans-N2S2 copper macrocycles are reported. One was isolated with the copper in the divalent form and the other with copper in its univalent form affording a valuable insight into the changes of geometry and metrical parameters that occur during redox processes in macrocyclic copper complexes. A variable temperature NMR study of the copper(I) complex is reported, indicative of a chair-boat conformational change within the alkyl chain backbone of the macrocycle. It was possible to extract the relevant kinetic and thermodynamic parameters (ΔG, 57.8 kJ mol−1; ΔH, 52.1 kJ mol−1; ΔS, −19.2 J K−1 mol−1) for this process at 298 K. DFT molecular orbital calculations were used to confirm these observations and to calculate the energy difference (26.2 kJmol−1) between the copper(I) macrocycle in a planar and a distorted tetrahedral disposition.  相似文献   

7.
The relationship between local thermal comfort, local skin wettedness (wlocal) and local galvanic skin conductance (GSC) in four body segments during two different exercise intensities was compared in 10 males. In a balanced order, participants walked at 35% VO2max for 45 min (WALK) (29.0±1.9°C, 29.8±3.6% RH, no wind) in one test and in a separate test ran at 70% VO2max for 45 min (RUN) (26.2±2.1°C, 31.1±7.0% RH, no wind). During both tests, participants wore a loose fitting 100% polyester long sleeve top and trouser ensemble with a low resistance to heat and vapour transfer (total thermal resistance of 0.154 m2 K W−1 and total water vapour resistance of 35.9 m2 Pa W−1). wlocal, change from baseline in GSC (ΔGSC) and local thermal comfort were recorded every 5 min. The results suggest that both wlocal and ΔGSC are strong predictors of thermal comfort during the WALK when sweat production is low and thermal discomfort minimal (r2>0.78 and r2>0.71, respectively). Interestingly, during the RUN wlocal plateaued at ~0.6 to 0.8 due to the high sweat production, whilst ΔGSC gradually increased throughout the experiment. ΔGSC had a similar relationship with thermal comfort to wlocal during the RUN (r2>0.95 and r2>0.94, respectively). Despite the strength of these relationships, the ability of wlocal to predict local thermal comfort accurately dramatically reduces in the exponential part of the curve. In a situation of uncompensated heat stress such as high metabolic rate in hot climate, where sweat production is high, ΔGSC shows to be a better predictor of local thermal comfort than wlocal. The wlocal data shows regional differences in the threshold which triggers local discomfort during the WALK than RUN; lower values are found for upper arms (0.22±0.03 and 0.28 ±0.22) and upper legs (0.22±0.11 and 0.22±0.10), higher values for upper back (0.30±0.12 and 0.36 ±0.10) and chest (0.27±0.10 and 0.39 ±0.32), respectively. However, no regional differences in the threshold of discomfort are found in the ?GSC data. Instead, the data suggests that the degree of discomfort experienced appears to be related to the amount of sweat within and around the skin (as indirectly measured by ΔGSC) at each body site.  相似文献   

8.
This study examines the relationship between the DNA binding thermodynamics and the enzymatic activity of the Klenow and Klentaq Pol I DNA polymerases from Escherichia coli and Thermus aquaticus. Both polymerases bind DNA with nanomolar affinity at temperatures down to at least 5 °C, but have lower than 1% enzymatic activity at these lower temperatures. For both polymerases it is found that the temperature of onset of significant enzymatic activity corresponds with the temperature where the enthalpy of binding (ΔHbinding) crosses zero (TH) and becomes favorable (negative). This TH/activity upshift temperature is 15 °C for Klenow and 30 °C for Klentaq. The results indicate that a negative free energy of DNA binding alone is not sufficient to proceed to catalysis, but that the enthalpic versus entropic balance of binding may be a modulator of the temperature dependence of enzymatic function. Analysis of the temperature dependence of the catalytic activity of Klentaq polymerase using expanded Eyring theory yields thermodynamic patterns for ΔG, ΔH, and TΔS that are highly analogous to those commonly observed for direct DNA binding. Eyring analysis also finds a significant ΔCp of formation of the activated complex, which in turn indicates that the temperature of maximal activity, after which incorporation rate slows with increasing temperature, will correspond with the temperature where the activation enthalpy (ΔH) switches from positive to negative.  相似文献   

9.
α-Amylase from Sorghum bicolor, is reversibly unfolded by chemical denaturants at pH 7.0 in 50 mM Hepes containing 13.6 mM calcium and 15 mM DTT. The isothermal equilibrium unfolding at 27 °C is characterized by two state transition with ΔG (H2O) of 16.5 kJ mol−1 and 22 kJ mol−1, respectively, at pH 4.8 and pH 7.0 for GuHCl and ΔG (H2O) of 25.2 kJ mol−1 at pH 4.8 for urea. The conformational stability indicators such as the change in excess heat capacity (ΔCp), the unfolding enthalpy (Hg) and the temperature at ΔG = 0 (Tg) are 17.9 ± 0.7 kJ mol−1 K−1, 501.2 ± 18.2 kJ mol1 and 337.3 ± 6.9 K at pH 4.8 and 14.3 ± 0.5 kJ mol−1 K−1, 509.3 ± 21.7 kJ mol−1 and 345.4 ± 4.8 K at pH 7.0, respectively. The reactivity of the conserved cysteine residues, during unfolding, indicates that unfolding starts from the ‘B’ domain of the enzyme. The oxidation of cysteine residues, during unfolding, can be prevented by the addition of DTT. The conserved cysteine residues are essential for enzyme activity but not for the secondary and tertiary fold acquired during refolding of the denatured enzyme. The pH dependent stability described by ΔG (H2O) and the effect of salt on urea induced unfolding confirm the role of electrostatic interactions in enzyme stability.  相似文献   

10.
Substitution reaction of fac-[FeII(CN)2(CO)3I] with triphenylphosphine (PPh3) produced mono phosphine substituted complex cis-cis-[FeII(CN)2(CO)2(PPh3)I]. Crystal structure of the product showed that carbonyl positioned trans- to iodide was replaced by PPh3. The substitution reaction was monitored by quantitative infrared spectroscopic method, and the rate law for the substitution reaction was determined to be rate = k[[FeII(CN)2(CO)2(PPh3)I]][PPh3]. Transition state enthalpy and entropy changes were obtained from Eyring equation k = (kBT/h)exp(−ΔH/RT + ΔS/R) with ΔH = 119(4) kJ mol−1 and ΔS = 102(10) J mol−1 K−1. Positive transition state entropy change suggests that the substitution reaction went through a dissociative pathway.  相似文献   

11.
In adaptation biology the discovery of intracellular osmolyte molecules that in some cases reach molar levels, raises questions of how they influence protein thermodynamics. We've addressed such questions using the premise that from atomic coordinates, the transfer free energy of a native protein (ΔGtrN) can be predicted by summing measured water-to-osmolyte transfer free energies of the protein's solvent exposed side chain and backbone component parts. ΔGtrD is predicted using a self avoiding random coil model for the protein, and ΔGtrD − ΔGtrN, predicts the m-value, a quantity that measures the osmolyte effect on the N ? D transition. Using literature and newly measured m-values we show 1:1 correspondence between predicted and measured m-values covering a range of 12 kcal/mol/M in protein stability for 46 proteins and 9 different osmolytes. Osmolytes present a range of side chain and backbone effects on N and D solubility and protein stability key to their biological roles.  相似文献   

12.
The complex of [Eu(2,4-DClBA)3(bipy)]2 (2,4-DClBA = 2,4-dichlorobenzoate; bipy = 2,2′-bipyridine) was obtained and characterized by elemental analysis, IR spectra, UV spectra, luminescence spectra, 1H NMR spectra, single crystal X-ray diffraction and TG-DTG techniques. Two Eu3+ ions are connected by four carboxylate groups through bridging bidentate and bidentate chelating-bridging mode. The coordination number of europium ion is nine. The thermal decomposition behavior of the title complex under a static air atmosphere can be discussed by TG-DTG, SEM and IR techniques. The non-isothermal kinetics was investigated by using double equal-double steps method and Starink method. The mechanism function of the first decomposition step was determined. Meanwhile, the thermodynamic parameters (ΔH, ΔG and ΔS) and kinetic parameters (activation energy E and the pre-exponential factor A) were also calculated.  相似文献   

13.
Thin-layer spectroelectrochemical techniques were used to determine the entropy change for the reduction of the three siderophores ferrioxamine B, ferrichrome, and ferrichrome A. The entropy changes were found to be large and negative. The ΔS° values obtained are: ferrioxamine B. pH 10.2, ΔS° = ?33.3 ± 0.4 eu; pH 9.0, ΔS° = ?26.9 ± 0.9 eu; pH 8.0, ΔS° = ?23.3 ± 1.2 eu; ferrichrome, pH 10.0, ΔS° = ?42.6 ± 0.5 eu; pH 9.1, ΔS° = ?35.8 ± 0.4 eu; pH 7.3, ΔS° = ?74.5 ± 3.4 eu; ferrichrome A, pH 10.1, ΔS° = ?35.6 ± 0.9 eu; pH 9.1, ΔS° = ?34.3 ± 0.9 eu; pH 7.9, ΔS° = ?31.7 ± 0.9 eu. These values are adjusted to the scale on which S°H + = 0. The large decreases in entropy upon reduction are attributed to an increase in the solvent ordering around the ferrous complex. Upon reduction, the rigid structure of the ferric chelate is loosened and previously sequestered amide groups are made available for solvent interactions. This increased interaction with solvent causes an increase in the order of the water around the molecule and this is responsible for the observed entropy changes. Variations in ΔS° values and the pH dependencies of these values are attributed to structural peculiarities of the individual siderophores.  相似文献   

14.
Electrostatic interactions have a central role in some biological processes, such as recognition of charged ligands by proteins. We characterized the binding energetics of yeast triosephosphate isomerase (TIM) with phosphorylated inhibitors 2-phosphoglycollate (2PG) and phosphoglycolohydroxamate (PGH). We determined the thermodynamic parameters of the binding process (Kb, ΔGb, ΔHb, ΔSb and ΔCp) with different concentrations of NaCl, using fluorimetric and calorimetric titrations in the conventional mode of ITC and a novel method, multithermal titration calorimetry (MTC), which enabled us to measure ΔCp in a single experiment. We ruled out specific interactions of Na+ and Cl- with the native enzyme and did not detect significant linked protonation effects upon the binding of inhibitors. Increasing ionic strength (I) caused Kb, ΔGb and ΔHb to become less favorable, while ΔSb became less unfavorable. From the variation of Kb with I, we determined the electrostatic contribution of TIM−2PG and TIM−PGH to ΔGb at I = 0.06 M and 25 °C to be 36% and 26%, respectively. The greater affinity of PGH for TIM is due to a more favorable ΔHb compared to 2PG (by 19-24 kJ mol-1 at 25 °C). This difference is compatible with PGH establishing up to five more hydrogen bonds with TIM. Both binding ΔCps were negative, and less negative with increasing ionic strength. ΔCps at I = 0.06 M were much more negative than predicted by surface area models. Water molecules trapped in the interface when ligands bind to protein could explain the highly negative ΔCps. Thermodynamic binding functions for TIM−2PG changed more with ionic strength than those for TIM−PGH. This greater dependence is consistent with linked, but compensated, protonation equilibriums yielding the dianionic species of 2PG that binds to TIM, process that is not required for PGH.  相似文献   

15.
A new, to our knowledge, group contribution method based on the group contribution method of Mavrovouniotis is introduced for estimating the standard Gibbs free energy of formation (ΔfG′°) and reaction (ΔrG′°) in biochemical systems. Gibbs free energy contribution values were estimated for 74 distinct molecular substructures and 11 interaction factors using multiple linear regression against a training set of 645 reactions and 224 compounds. The standard error for the fitted values was 1.90 kcal/mol. Cross-validation analysis was utilized to determine the accuracy of the methodology in estimating ΔrG′° and ΔfG′° for reactions and compounds not included in the training set, and based on the results of the cross-validation, the standard error involved in these estimations is 2.22 kcal/mol. This group contribution method is demonstrated to be capable of estimating ΔrG′° and ΔfG′° for the majority of the biochemical compounds and reactions found in the iJR904 and iAF1260 genome-scale metabolic models of Escherichia coli and in the Kyoto Encyclopedia of Genes and Genomes and University of Minnesota Biocatalysis and Biodegradation Database. A web-based implementation of this new group contribution method is available free at http://sparta.chem-eng.northwestern.edu/cgi-bin/GCM/WebGCM.cgi.  相似文献   

16.
The kinetics of the complexation of Ni(II) with 1,10-phenanthroline(phen), 4,7-dimethyl-1,10-phenanthroline(dmphen), and 5-nitro-1,10-phenanthroline(NO2phen) in acetonitrile-water mixed solvents of acetonitrile mole fraction xAN = 0, 0.05, 0.1, 0.2 and 0.3 at 288, 293, 298 and 303 K have been studied by stopped-flow method at ionic strength of 1.0 (NaClO4) and pH 7.4. The corresponding activation enthalpy, entropy, and free energy were determined from the observed rate constants. The complexation of Ni(II) with the three ligands has comparable observed rate constants; in pure water the observed rate constants are (×103 dm3 mol−1 s−1) 2.31, 2.57, and 1.38 for phen, dmphen and NO2phen, respectively. The corresponding activation parameters for the three ligands are, however, considerably different; in pure water the ΔHS (kJ mol−1/J K−1 mol−1) are 44.7/−30.2, 19.5/−114.1, and 32.2/−76.9 for phen, dmphen, and NO2phen, respectively. The effects of solvent composition on the kinetics are also markedly different for the three ligands. The ΔH and ΔS showed a minimum at xAN = 0.1 for phen; for dmphen and NO2phen, however, maxima at xAN = 0.2 were observed. Nevertheless, there is an effective enthalpy-entropy compensation for the ΔHS of all the three ligands, demonstrating the significant effects of the changes in solvation and solvent structure on the complexation kinetics. As the rate-determining step of Ni(II) complexation is the dissociation of a water molecule from Ni(II), the solvent and ligand dependencies in the Ni(II) complexation kinetics are ascribed to the change in solvation status of the ligands and the altered solvent structures upon changing solvent composition.  相似文献   

17.
The linkage isomers, (OC)5M[κ1-PPh2 CH2CH(PPh2)2] 1 and (OC)5M[κ1-PPh2 CH(PPh2)CH2PPh2] 2 (M = Cr, Mo and W) exist in equilibrium at room temperature. Equilibrium constants for 1Cr ? 2Cr, 1Mo ? 2Mo and 1W ? 2W at 25 °C in CDCl3 are 2.61, 5.0 and 4.74, respectively. Enthalpy favors the forward reaction (ΔH = −13.5, −12 and −12.2 kJ mol−1, respectively) while entropy favors the reverse reaction (ΔS = −37.6, −28 and −28.2 J K−1 mol−1, respectively). Isomerization is much faster than chelation with 1Mo ? 2Mo ? 1W ? 2W > 1Cr ? 2Cr. Enthalpies of activation for 1Cr ? 2Cr and 1W ? 2W are 119.0 and 92.6 kJ mol−1, respectively, and entropies of activation are 1.4 and −28.2 J K−1 mol−1, respectively. Isomerization is 104 times faster for these complexes than for (OC)5M[κ1-PPh2CH2CH2P(p-tolyl)2]. A novel mechanism is proposed to account for the rate differences. The X-ray crystal structure of 2W shows that the phosphorus atom of the short phosphine arm lies very close to a carbon atom of the W(CO)4 equatorial plane (3.40 Å) which could allow “through-space” coupling, accounting in part for the observation of long-range JPC and JPW coupling. The X-ray structure of (OC)5W[κ1-PPh2 C(CH2)PPh2] 5W has been determined for comparison to 2W.  相似文献   

18.
The kinetic, thermodynamic and isotherm modeling studies were carried out on adsorptive removal of Victoria blue (VB) dye using activated carbon, Ba/alginate and modified carbon/Ba/alginate polymer beads. The feasibility of sorption process was determined by varying the experimental parameters viz., dye concentration (4–20 mg L−1), contact time (10–90 min), pH (3–10), adsorbent dose (0.5–2.5 g) and temperature (303–343 K). Freundlich and Langmuir isotherms were determined and ascertained with the dimensionless separation factor (RL). Lagergren's pseudo-first order, pseudo-second order and intraparticle diffusion model equations were used to analyze the kinetics of the adsorption process. The thermodynamic consistency of adsorption was found with Gibbs free energy (ΔG°), changes in enthalpy (ΔH°) and entropy (ΔS°) were calculated using the Van’t Hoff plot. The polymer beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR) and their morphology was determined by scanning electron microscopy (SEM).  相似文献   

19.
Metal-oxygen bonding complexes (M = MgII, MnII, NiII, MoVI, WVI, PdII, SbIII, BiIII, FeIII, TiIV, KI, BaII, ZrIV and HfIV) with a hinokitiol (Hhino; 2-hydroxy-4-isopropylcyclohepta-2,4,6-trienone or β-thujaplicin) ligand, which has two unequivalent oxygen donor atoms, were synthesized and characterized by elemental analysis, TG/DTA, FT-IR and solution (1H and 13C) NMR spectroscopy. Single-crystal X-ray structure analysis revealed various molecular structures for the complexes, which were classified into several families of family, i.e. type A [MII(hino)2(L)]2 (M = MgII, MnII, NiII; L = EtOH or MeOH), with a dimeric structure consisting of one bridging hino anion, one chelating hino anion and one alcohol or water molecule, type B, with the octahedral, cis-dioxo, bis-chelate complexes cis-[MVIO2(hino)2] (M = MoVI, WVI), type C, with square planar complex [MII(hino)2] (M = PdII), type D, with tris-chelate, 7-coordinate complexes with one inert electron pair [MIII(hino)3] (M = SbIII, BiIII), type D′, with the bis-chelate, pseudo-6-coordinate complexes with one inert electron pair [MIII(hino)2X] (M = SbIII, X = Br), type E, with tris-chelate, 6-coordinate complexes with Δ and Λ isomers [MIII(hino)3] (M = FeIII), type E′ of bis-chelate, 6-coordinate complex [MIV(hino)2X2] (M = TiIV, X = Cl), type F, with water-soluble alkali metal salts [MI(hino)] (M = KI), and type H, with tetrakis-chelate, 8-coordinate complexes [MIV(hino)4](M = ZrIV, HfIV). These structural features were compared with those of metal complexes with a related ligand, tropolone (Htrop). The antimicrobial activities of these complexes, evaluated in terms of minimum inhibitory concentration (MIC; μg mL−1) in two systems, were compared to elucidate the relationship between structure and antimicrobial activity.  相似文献   

20.
Despite the importance of VIII in biology, only three VIII complexes of naturally occurring amino acids have been structurally characterized. We report the structure of the first vanadium complex incorporating a glycine ligand, [V(Gly)3] · 2DMSO, which crystallizes in a monoclinic system with space group Cc, a = 8.9186(5) Å, b = 21.5347(9) Å, c = 9.9064(5) Å and β = 110.536(3)°. The X-ray structural data show the central VIII metal octahedrally coordinated by three bidentate glycinato ligands arranged a mer configuration, with both Δ and Λ enantiomers present in the unit cell. The bulk sample was isolated as [V(Gly)3] · DMSO · NaCl. Structural comparisons are made with the corresponding homoleptic glycinato complexes of CoIII, CrIII and NiII. The structure of trans-[V(OH2)4Cl2]Cl · 2H2O has also been re-determined. This latter complex crystallizes in a monoclinic system in the P2(1)/c space group, a = 6.4381(9) Å, b = 6.3843(9) Å, c = 11.7980(17) Å and β = 98.057(2)°. The vanadium atom lies at a crystallographic inversion centre within the distorted octahedron formed by the four water and two chloride ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号