首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Spectroscopic and calorimetric melting studies of 28 DNA hairpins were performed. These hairpins form by intramolecular folding of 16 base self‐complementary DNA oligomer sequences. Sequence design dictated that the hairpin structures have a six base pair duplex linked by a four base loop and that the first five base pairs in the stem are the same in every molecule. Only loop sequence and identity of the duplex base pair closing the loop vary for the set of hairpins. For these DNA samples, melting studies were carried out to investigate effects of the variables on hairpin stability. Stability of the 28 oligomers was ascertained from their temperature‐induced melting transitions in buffered 115 mM Na+ solvent, monitored by ultraviolet absorbance and differential scanning calorimetry (DSC). Experiments revealed the melting temperatures of these molecules range from 32.4 to 60.5°C and are concentration independent over strand concentrations of 0.5 to 260 μM; thus, as expected for hairpins, the melting transitions are apparently unimolecular. Model independent thermodynamic transition parameters, ΔHcal, ΔScal, and ΔGcal, were determined from DSC measurements. Model dependent transition parameters, ΔHvH, ΔSvH, and ΔGvH were estimated from a van't Hoff (two‐state) analysis of optical melting transitions. Results of these studies reveal a significant sequence dependence to DNA hairpin stability. Thermodynamic parameters evaluated by either procedure reveal the transition enthalpy, ΔHcalHvH) can differ by as much as 20 kcal/mol depending on sequence. Similarly, values of the transition entropy ΔScalSvH) can differ by as much as 60 cal/Kmol (eu) for different molecules. Differences in free energies ΔGcalGvH) are as large as 4 kcal/mol for hairpins with different sequences. Comparisons between the model independent calorimetric values and the thermodynamic parameters evaluated assuming a two‐state model reveal that 10 of the 28 hairpins display non‐two‐state melting behavior. The database of sequence‐dependent melting free energies obtained for the hairpins was employed to extract a set of n‐n (nearest‐neighbor) sequence dependent loop parameters that were able to reproduce the input data within error (with only two exceptions). Surprisingly, this suggests that the thermodynamic stability of the DNA hairpins can in large part be reasonably represented in terms of sums of appropriate nearest‐neighbor loop sequence parameters. © 1999 John Wiley & Sons, Inc. Biopoly 50: 425–442, 1999  相似文献   

2.
An early step in the morphogenesis of the double-stranded DNA (dsDNA) bacteriophage HK97 is the assembly of a precursor shell (prohead I) from 420 copies of a 384-residue subunit (gp5). Although formation of prohead I requires direct participation of gp5 residues 2-103 (Δ-domain), this domain is eliminated by viral protease prior to subsequent shell maturation and DNA packaging. The prohead I Δ-domain is thought to resemble a phage scaffolding protein, by virtue of its highly α-helical secondary structure and a tertiary fold that projects inward from the interior surface of the shell. Here, we employ factor analysis of temperature-dependent Raman spectra to characterize the thermostability of the Δ-domain secondary structure and to quantify the thermodynamic parameters of Δ-domain unfolding. The results are compared for the Δ-domain within the prohead I architecture (in situ) and for a recombinantly expressed 111-residue peptide (in vitro). We find that the α-helicity (∼ 70%), median melting temperature (Tm = 58 °C), enthalpy (ΔHm = 50 ± 5 kcal mol− 1), entropy (ΔSm = 150 ± 10 cal mol− 1 K− 1), and average cooperative melting unit (〈nc〉 ∼ 3.5) of the in situ Δ-domain are altered in vitro, indicating specific interdomain interactions within prohead I. Thus, the in vitro Δ-domain, despite an enhanced helical secondary structure (∼ 90% α-helix), exhibits diminished thermostability (Tm = 40 °C; ΔHm = 27 ± 2 kcal mol− 1; ΔSm = 86 ± 6 cal mol− 1 K− 1) and noncooperative unfolding (〈nc〉 ∼ 1) vis-à-vis the in situ Δ-domain. Temperature-dependent Raman markers of subunit side chains, particularly those of Phe and Trp residues, also confirm different local interactions for the in situ and in vitro Δ-domains. The present results clarify the key role of the gp5 Δ-domain in prohead I architecture by providing direct evidence of domain structure stabilization and interdomain interactions within the assembled shell.  相似文献   

3.
To characterize driving forces and driven processes in formation of a large-interface, wrapped protein-DNA complex analogous to the nucleosome, we have investigated the thermodynamics of binding the 34-base pair (bp) H′ DNA sequence to the Escherichia coli DNA-remodeling protein integration host factor (IHF). Isothermal titration calorimetry and fluorescence resonance energy transfer are applied to determine effects of salt concentration [KCl, KF, K glutamate (KGlu)] and of the excluded solute glycine betaine (GB) on the binding thermodynamics at 20 °C. Both the binding constant Kobs and enthalpy ΔH°obs depend strongly on [salt] and anion identity. Formation of the wrapped complex is enthalpy driven, especially at low [salt] (e.g., ΔHoobs = − 20.2 kcal·mol− 1 in 0.04 M KCl). ΔH°obs increases linearly with [salt] with a slope (dΔH°obs/d[salt]), which is much larger in KCl (38 ± 3 kcal·mol− 1 M− 1) than in KF or KGlu (11 ± 2 kcal·mol− 1 M− 1). At 0.33 M [salt], Kobs is approximately 30-fold larger in KGlu or KF than in KCl, and the [salt] derivative SKobs = dlnKobs/dln[salt] is almost twice as large in magnitude in KCl (− 8.8 ± 0.7) as in KF or KGlu (− 4.7 ± 0.6).A novel analysis of the large effects of anion identity on Kobs, SKobs and on ΔH°obs dissects coulombic, Hofmeister, and osmotic contributions to these quantities. This analysis attributes anion-specific differences in Kobs, SKobs, and ΔH°obs to (i) displacement of a large number of water molecules of hydration [estimated to be 1.0(± 0.2) × 103] from the 5340 Å2 of IHF and H′ DNA surface buried in complex formation, and (ii) significant local exclusion of F and Glu from this hydration water, relative to the situation with Cl, which we propose is randomly distributed. To quantify net water release from anionic surface (22% of the surface buried in complexation, mostly from DNA phosphates), we determined the stabilizing effect of GB on Kobs: dlnKobs/d[GB]  = 2.7 ± 0.4 at constant KCl activity, indicating the net release of ca. 150 H2O molecules from anionic surface.  相似文献   

4.
α-Amylase from Sorghum bicolor, is reversibly unfolded by chemical denaturants at pH 7.0 in 50 mM Hepes containing 13.6 mM calcium and 15 mM DTT. The isothermal equilibrium unfolding at 27 °C is characterized by two state transition with ΔG (H2O) of 16.5 kJ mol−1 and 22 kJ mol−1, respectively, at pH 4.8 and pH 7.0 for GuHCl and ΔG (H2O) of 25.2 kJ mol−1 at pH 4.8 for urea. The conformational stability indicators such as the change in excess heat capacity (ΔCp), the unfolding enthalpy (Hg) and the temperature at ΔG = 0 (Tg) are 17.9 ± 0.7 kJ mol−1 K−1, 501.2 ± 18.2 kJ mol1 and 337.3 ± 6.9 K at pH 4.8 and 14.3 ± 0.5 kJ mol−1 K−1, 509.3 ± 21.7 kJ mol−1 and 345.4 ± 4.8 K at pH 7.0, respectively. The reactivity of the conserved cysteine residues, during unfolding, indicates that unfolding starts from the ‘B’ domain of the enzyme. The oxidation of cysteine residues, during unfolding, can be prevented by the addition of DTT. The conserved cysteine residues are essential for enzyme activity but not for the secondary and tertiary fold acquired during refolding of the denatured enzyme. The pH dependent stability described by ΔG (H2O) and the effect of salt on urea induced unfolding confirm the role of electrostatic interactions in enzyme stability.  相似文献   

5.
This study examines the relationship between the DNA binding thermodynamics and the enzymatic activity of the Klenow and Klentaq Pol I DNA polymerases from Escherichia coli and Thermus aquaticus. Both polymerases bind DNA with nanomolar affinity at temperatures down to at least 5 °C, but have lower than 1% enzymatic activity at these lower temperatures. For both polymerases it is found that the temperature of onset of significant enzymatic activity corresponds with the temperature where the enthalpy of binding (ΔHbinding) crosses zero (TH) and becomes favorable (negative). This TH/activity upshift temperature is 15 °C for Klenow and 30 °C for Klentaq. The results indicate that a negative free energy of DNA binding alone is not sufficient to proceed to catalysis, but that the enthalpic versus entropic balance of binding may be a modulator of the temperature dependence of enzymatic function. Analysis of the temperature dependence of the catalytic activity of Klentaq polymerase using expanded Eyring theory yields thermodynamic patterns for ΔG, ΔH, and TΔS that are highly analogous to those commonly observed for direct DNA binding. Eyring analysis also finds a significant ΔCp of formation of the activated complex, which in turn indicates that the temperature of maximal activity, after which incorporation rate slows with increasing temperature, will correspond with the temperature where the activation enthalpy (ΔH) switches from positive to negative.  相似文献   

6.
The Pressure Dependence of the Helix-Coil Transition Temperature (Tm) of Poly[d(G-C)] was studied as a function of sodium ion concentration in phosphate buffer. The molar volume change of the transition (ΔV) was calculated using the Clapeyron equation and calorimetrically determined enthalpies. The ΔV of the transition increased from +4.80 (±0.56) to +6.03 (±0.76) mL mol?1 as the sodium ion concentration changed from 0.052 to 1.0M. The van't Hoff enthalpy of the transition calculated from the half-width of the differentiated transition displayed negligible pressure dependence: however, the value of this parameter decreased with increasing sodium ion concentration, indicating a decrease in the size of the cooperative unit. The volume change of the transition exhibits the largest magnitude of any double-stranded DNA polymer measured using this technique. For poly[d(G-C)] the magnitude of the change in ΔV with sodium ion concentration (0.94 ± 0.05 mL mol?1) is approximately one-half that observed for either poly[d(A-T)] or poly (dA)·poly(dT). The ΔV values are interpreted as arising from changes in the hydration of the polymer due to the release of counterions and changes in the stacking of the bases of the coil form. As a consequence of solvent electrostriction, the release of counterions makes a net negative contribution to the total ΔV, implying that disruption of the slacking interactions contributes a positive volume change to the total ΔV. The larger magnitude of the ΔV compared with that of other double-stranded polymers may be due in part to the high helix-coil transition temperature of poly[d(G-C)], which will attenuate the contribution of electrostriction to the total volume change. The data in addition show that in the absence of other cellular components, the covalent structure of DNA is stabile under conditions of temperature and pressure more extreme than those experienced by any known organism. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
The hydrophobic hydration processes have been analysed under the light of a mixture model of water that is assumed to be composed by clusters (W5)I, clusters (W4)II and free water molecules WIII. The hydrophobic hydration processes can be subdivided into two Classes A and B. In the processes of Class A, the transformation A(− ξwWI → ξwWII + ξwWIII + cavity) takes place, with expulsion from the bulk of ξw water molecules WIII, whereas in the processes of Class B the opposite transformation B(− ξwWIII − ξwWII → ξwWI − cavity) takes place, with condensation into the bulk of ξw water molecules WIII. The thermal equivalent dilution (TED) principle is exploited to determine the number ξw. The denaturation (unfolding) process belongs to Class A whereas folding (or renaturation) belongs to Class B. The enthalpy ΔHden and entropy ΔSden functions can be disaggregated in thermal and motive components, ΔHden = ΔHtherm + ΔHmot, and ΔSden = ΔStherm + ΔSmot, respectively. The terms ΔHtherm and ΔStherm are related to phase change of water molecules WIII, and give no contribution to free energy (ΔGtherm = 0). The motive functions refer to the process of cavity formation (Class A) or cavity reduction (Class B), respectively and are the only contributors to free energy ΔGmot. The folded native protein is thermodynamically favoured (ΔGfold ≡ ΔGmot < 0) because of the outstanding contribution of the positive entropy term for cavity reduction, ΔSred ? 0. The native protein can be brought to a stable denatured state (ΔGden ≡ ΔGmot < 0) by coupled reactions. Processes of protonation coupled to denaturation have been identified. In thermal denaturation by calorimetry, however, is the heat gradually supplied to the system that yields a change of phase of water WIII, with creation of cavity and negative entropy production, ΔSfor ? 0. The negative entropy change reduces and at last neutralises the positive entropy of folding. In molecular terms, this means the gradual disruption by cavity formation of the entropy-driven hydrophobic bonds that had been keeping the chains folded in the native protein. The action of the chemical denaturants is similar to that of heat, by modulating the equilibrium between WI, WII, and WIII toward cavity formation and negative entropy production. The salting-in effect produced by denaturants has been recognised as a hydrophobic hydration process belonging to Class A with cavity formation, whereas the salting-out effect produced by stabilisers belongs to Class B with cavity reduction.Some algorithms of denaturation thermodynamics are presented in the Appendices.  相似文献   

8.
The energetics of the individual reaction steps in the catalytic cycle of photosynthetic water oxidation at the Mn4Ca complex of photosystem II (PSII) are of prime interest. We studied the electron transfer reactions in oxygen-evolving PSII membrane particles from spinach by a photothermal beam deflection technique, allowing for time-resolved calorimetry in the micro- to millisecond domain. For an ideal quantum yield of 100%, the enthalpy change, ΔH, coupled to the formation of the radical pair (where YZ is Tyr-161 of the D1 subunit of PSII) is estimated as −820 ± 250 meV. For a lower quantum yield of 70%, the enthalpy change is estimated to be −400 ± 250 meV. The observed nonthermal signal possibly is due to a contraction of the PSII protein volume (apparent ΔV of about −13 Å3). For the first time, the enthalpy change of the O2-evolving transition of the S-state cycle was monitored directly. Surprisingly, the reaction is only slightly exergonic. A value of ΔH(S3 ⇒ S0) of −210 meV is estimated, but also an enthalpy change of zero is within the error range. A prominent nonthermal photothermal beam deflection signal (apparent ΔV of about +42 Å3) may reflect O2 and proton release from the manganese complex, but also reorganization of the protein matrix.  相似文献   

9.
Substitution reaction of fac-[FeII(CN)2(CO)3I] with triphenylphosphine (PPh3) produced mono phosphine substituted complex cis-cis-[FeII(CN)2(CO)2(PPh3)I]. Crystal structure of the product showed that carbonyl positioned trans- to iodide was replaced by PPh3. The substitution reaction was monitored by quantitative infrared spectroscopic method, and the rate law for the substitution reaction was determined to be rate = k[[FeII(CN)2(CO)2(PPh3)I]][PPh3]. Transition state enthalpy and entropy changes were obtained from Eyring equation k = (kBT/h)exp(−ΔH/RT + ΔS/R) with ΔH = 119(4) kJ mol−1 and ΔS = 102(10) J mol−1 K−1. Positive transition state entropy change suggests that the substitution reaction went through a dissociative pathway.  相似文献   

10.
Allosteric communications are important in coordination of the reactions in the tryptophan (Trp) synthase α2β2 multienzyme complex. We have measured the conformational equilibria of l-Ser and l-Trp complexes, using absorption and fluorescence spectrophotometry with hydrostatic pressure equilibrium perturbation. The effects of monovalent cations, disodium α-glycerophosphate (Na2GP), indoleacetylglycine (IAG), and benzimidazole (BZI), as well as of βE109D and βD305A mutations, on Keq for the conformational equilibria were determined. The l-Ser external aldimine-aminoacrylate equilibrium (Keq = [external aldimine]/[aminoacrylate]) has the largest value with Na+ (0.12), followed by K+ (0.04), Li+ (7.6 × 10−4), Rb+ (4.3 × 10−4), NH4+ (2.3 × 10−4), no cation (2.0 × 10−4) and Cs+ (1.6 × 10−5). α-Site ligands, Na2GP and IAG, have modest 3- to 40-fold effects on Keq in the direction of aminoacrylate, but BZI in the presence of Na+ gives a low value of Keq comparable to that obtained with Cs+. There is no additivity of free energy for Na2GP and BZI, suggesting a common pathway for allosteric communications for both ligands. The values of ΔVo range from −126 mL/mol for the Na+ complex to −204 mL/mol for the Na+ complex with BZI. The βD305A mutation changes the Keq by a factor of at least 105 (26.7 kJ/mol) and nearly abolishes allosteric communications. There are also dramatic decreases in the magnitude of both ΔVo and ΔS for the l-Ser external aldimine-aminoacrylate equilibrium for βD305A Trp synthase, consistent with a large decrease in solvation accompanying the conformational change in βD305A Trp synthase relative to wild-type Trp synthase. The βE109D mutation has more modest but significant effects on Keq, which differ with the ligand, ranging from 40-fold for GP to 2200-fold for BZI, even though βGlu-109 is not directly involved in allosteric communications. The effect of GP on the external aldimine-quinonoid intermediate equilibrium of the Trp synthase-l-Trp complex is similar to that of GP on the Trp synthase-l-Ser external aldimine-aminoacrylate equilibrium. These results have allowed a quantitative comparison of the allosteric effects of ligand and mutations in Trp synthase. These allosteric effects are finely tuned to control the synthesis of l-Trp without resulting in substrate or product inhibition.  相似文献   

11.
We determined the homogeneous nucleation temperature depression, ΔTf,hom, the equilibrium melting point depression, ΔTm, and the value λ, which can be obtained from the linear relationship ΔTf,hom = λΔTm, for aqueous solutions of PEG (200-20,000 g mol−1), PVP (10,000, 35,000, 40,000 g mol−1), and dextran (10,000 g mol−1) in the concentration range 0-40 wt% using the emulsion method. The molecular weight dependence of Tf,hom, Tm, and λ in PEG aqueous solutions was found to change in the vicinity of Mw 600-1540 at all concentrations. In addition, it was confirmed that for all of the polymers studied, there was a good linear relationship between λ and the logarithmic value of the self-diffusion coefficient D0 of the solute molecule. These results indicate that the parameters that describe non-equilibrium freezing, such as Tf,hom and λ, are dependent on solution properties such as viscosity and self-diffusion of solute molecules.  相似文献   

12.
The X-ray crystal structures of two related trans-N2S2 copper macrocycles are reported. One was isolated with the copper in the divalent form and the other with copper in its univalent form affording a valuable insight into the changes of geometry and metrical parameters that occur during redox processes in macrocyclic copper complexes. A variable temperature NMR study of the copper(I) complex is reported, indicative of a chair-boat conformational change within the alkyl chain backbone of the macrocycle. It was possible to extract the relevant kinetic and thermodynamic parameters (ΔG, 57.8 kJ mol−1; ΔH, 52.1 kJ mol−1; ΔS, −19.2 J K−1 mol−1) for this process at 298 K. DFT molecular orbital calculations were used to confirm these observations and to calculate the energy difference (26.2 kJmol−1) between the copper(I) macrocycle in a planar and a distorted tetrahedral disposition.  相似文献   

13.
Dynamics and function of proteins are governed by the structural and energetic properties of the different states they adopt and the barriers separating them. In earlier work, native-state triplet–triplet energy transfer (TTET) on the villin headpiece subdomain (HP35) revealed an equilibrium between a locked native state and an unlocked native state, which are structurally similar but have different dynamic properties. The locked state is restricted to low amplitude motions, whereas the unlocked state shows increased conformational flexibility and undergoes local unfolding reactions. This classified the unlocked state as a dry molten globule (DMG), which was proposed to represent an expanded native state with loosened side-chain interactions and a solvent-shielded core. To test whether the unlocked state of HP35 is actually expanded compared to the locked state, we performed high-pressure TTET measurements. Increasing pressure shifts the equilibrium from the locked toward the unlocked state, with a small negative reaction volume for unlocking (ΔV0 = − 1.6 ± 0.5 cm3/mol). Therefore, rather than being expanded, the unlocked state represents an alternatively packed, compact state, demonstrating that native proteins can exist in several compact folded states, an observation with implications for protein function. The transition state for unlocking/locking, in contrast, has a largely increased volume relative to the locked and unlocked state, with respective activation volumes of 7.1 ± 0.4 cm3/mol and 8.7 ± 0.9 cm3/mol, indicating an expansion of the protein during the locking/unlocking transition. The presented results demonstrate the existence of both compact, low-energy and expanded, high-energy DMGs, prompting a broader definition of this state.  相似文献   

14.
Thermodynamic parameters for the unfolding of as well as for the binding of Ca2+ to goat α-lactalbumin (GLA) and bovine α-lactalbumin (BLA) are deduced from isothermal titration calorimetry in a buffer containing 10 mM Tris-HCl, pH 7.5 near 25°C. Among the different parameters available, the heat capacity increments (ΔCp) offer the most direct information for the associated conformational changes of the protein variants. The ΔCp values for the transition from the native to the molten globule state are rather similar for both proteins, indicating that the extent of the corresponding conformational change is nearly identical. However, the respective ΔCp values for the binding of Ca2+ are clearly different. The data suggest that a distinct protein region is more sensitive to a Ca2+-dependent conformational change in BLA than is the case in GLA. By analysis of the tertiary structure we observed an extensive accumulation of negatively charged amino acids near the Ca2+-binding site of BLA. In GLA, the cluster of negative charges is reduced by the substitution of Glu-11 by Lys. The observed difference in ΔCp values for the binding of Ca2+ is presumably in part related to this difference in charge distribution.  相似文献   

15.
The dissociation kinetics of the europium(III) complex with H8dotp ligand was studied by means of molecular absorption spectroscopy in UV region at ionic strength 3.0 mol dm−3 (Na,H)ClO4 and in temperature region 25-60 °C. Time-resolved laser-induced fluorescence spectroscopy (TRLIFS) was employed in order to determine the number of water molecules in the first coordination sphere of the europium(III) reaction intermediates and the final products. This technique was also utilized to deduce the composition of reaction intermediates in course of dissociation reaction simultaneously with calculation of rate constants and it demonstrates the elucidation of intimate reaction mechanism. The thermodynamic parameters for the formation of kinetic intermediate (ΔH0 = 11 ± 3 kJ mol−1, ΔS0 = 41 ± 11 J K−1 mol−1) and the activation parameters (Ea = 69 ± 8 kJ mol−1, ΔH = 67 ± 8 kJ mol−1, ΔS = −83 ± 24 J K−1 mol−1) for the rate-determining step describing the complex dissociation were determined. The mechanism of proton-assisted reaction was proposed on the basis of the experimental data.  相似文献   

16.
The influence on the melting of calf thymus and plasmid DNA of cationic lipids of the type used in gene therapy was studied by ultraviolet spectrophotometry and differential scanning calorimetry. It was found that various membrane-forming cationic lipids are able to protect calf thymus DNA against denaturation at 100°C. After interaction with cationic lipids, the differential scanning calorimetry melting profile of both calf thymus and plasmid DNA revealed two major components, one corresponding to a thermolabile complex with transition temperature, Tm(labile), close to that of free DNA and a second corresponding to a thermostable complex with a transition temperature, Tm(stable), at 105 to 115°C. The parameter Tm(stable) did not depend on the charge ratio, R(±). Instead, the amount of thermostable DNA and the enthalpy ratio ΔH(stable)H(labile) depended upon R(±) and conditions of complex formation. In the case of O-ethyldioleoylphosphatidylcholine, the cationic lipid that was the main subject of the investigation, the maximal stabilization of DNA exceeded 90% between R(±) = 1.5 and 3.0. Several other lipids gave at least 75% protection in the range R(±) = 1.5 to 2.0. Centrifugal separation of the thermostable and thermolabile fractions revealed that almost all the transfection activity was present at the thermostable fraction. Electron microscopy of the thermostable complex demonstrated the presence of multilamellar membranes with a periodicity 6.0 to 6.5 nm. This periodic multilamellar structure was retained at temperatures as high as 130°C. It is concluded that constraint of the DNA molecules between oppositely charged membrane surfaces in the multilamellar complex is responsible for DNA stabilization.  相似文献   

17.
We use a variety of biophysical techniques to determine thermodynamic profiles, including hydration, for the unfolding of DNA stem-loop motifs (hairpin, a three-way junction and a pseudoknot) and their interaction with netropsin and random cationic copolymers. The unfolding thermodynamic data show that their helix-coil transition takes place according to their melting domains or sequences of their stems. All hairpins adopted the B-like conformation and their loop(s) contribute with an immobilization of structural water. The thermodynamic data of netropsin binding to the 5′-AAATT-3′/TTTAA site of each hairpin show affinities of ~ 106- 7 M− 1, 1:1 stoichiometries, exothermic enthalpies of − 7 to − 12 kcal mol− 1 (− 22 kcal mol− 1 for the secondary site of the three-way junction), and water releases. Their interaction with random cationic copolymers yielded higher affinities of ~ 106 M− 1 with the more hydrophobic hairpins. This information should improve our current picture of how sequence and loops control the stability and melting behavior of nucleic acid molecules.  相似文献   

18.
The effect of temperature (20-70 °C) on the gelatinization and retrogradation of potato starch-water mixtures (10-70%, w/w) treated with high hydrostatic pressure (HHP) (400-1000 MPa) was investigated. Gelatinization enthalpy change (ΔHgel) and re-gelatinization enthalpy change of retrograded crystalline part (ΔHretro) of the HHP-treated starch were evaluated using differential scanning calorimetry. The value of ΔHgel of 10-20% (w/w) mixtures decreased with increased pressure and temperature, while ΔHgel of 30-50% (w/w) mixtures decreased to certain values with increased pressure and the values depended on treatment temperature. With higher temperature and pressure conditions, ΔHgel of 10-40% (w/w) mixtures reached zero, but ΔHgel of 50-70% (w/w) mixtures did not. Retrogradation was observed with HHP-treated 20-60% (w/w) mixtures and the value of ΔHretro depended on the starch content, pressure, and temperature. The value of ΔHretro trended to increase with increase in starch content. In addition, retrogradation was promoted by HHP treatment at low temperature. Gelatinizaiton and retrogradation behaviors of HHP-treated (400-1000 MPa) potato starch-water mixtures (10-70%, w/w) at 20-70 °C were summerized in a series of state diagrams.  相似文献   

19.
S Makino  H Noguchi 《Biopolymers》1971,10(7):1253-1260
The measurements were made for the volume and the sound velocity changes (ΔV and ΔU) on titrating the sodium salt of poly (S-carboxymethyl L -cysteine) with dilute HCl. For the reaction, ? COO? + H+ → ? COOH, ΔV per mole of H+ bound was + 12. 7 ml and +11. 4 ml in salt-free and 0. 2 M NaCl solutions, respectively. Corresponding ΔU was about ?13 cm/sec in salt-free polymer solution where 11.5 mM carboxylate ion reacts with equimolar hydrogen ion. ΔV associated with the coil-to-β transition was found to be +2. 35 ml in H2O and +1. 90 ml in 0. 2 M NaCl per mole of amino acid residue, respectively. These values are larger than those obtained for the coil-to-helix transition of poly (L -glutamic acid). ΔU for the transition was about ?30 cm/sec in salt-free solution of polymer concentration 0.0115 mole/liter. Possible sources of ΔV and ΔU for reaction; coil → β, are (1) the formation of void volume and (2) the changes in the extent of solvation in amide linkage and in side chain.  相似文献   

20.
Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compared our results with those of previous studies and reached the following conclusions: (1) Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mol per -CH2- group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per -CH2- group). (2) Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kilocalories per mole) Phe18 (3.9), Met13 (3.1), Phe7 (2.9), Phe11 (2.7), and Leu21 (2.7). (3) Based on the Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a -CH2- group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. (4) The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. (5) For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds contribute 40 ± 4% to protein stability. (6) Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominantly by hydrophobic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号