首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By comparing the hydration thermodynamics of benzene with that of a hypothetical aliphatic hydrocarbon having the same accessible surface area (ASA) of benzene, Makhatadze and Privalov concluded that the whole difference is due to the weak H-bonds that water forms with the aromatic ring. The formation of such H-bonds would be characterized by a negative Gibbs energy change, slightly increasing in magnitude with temperature, and a positive entropy change over a large temperature range. The latter thermodynamic feature is not physically reliable for the formation of H-bonds. In the present article, by using a statistical mechanical dissection scheme of hydration, a microscopic interpretation for the numbers obtained by Makhatadze and Privalov is proposed. The difference in hydration Gibbs energy should be attributed to the different strength of van der Waals interactions that benzene can do with water, owing to the larger polarizability of the aromatic ring with respect to an aliphatic hydrocarbon of equal size. In addition, the difference in hydration entropy should account for the different extent of H-bond reorganization upon the insertion of benzene and the corresponding aliphatic hydrocarbon in water.  相似文献   

2.
To investigate the structural and thermodynamic basis of the binding of solvent at internal sites within proteins a number of mutations were constructed in T4 lysozyme. Some of these were designed to introduce new solvent-binding sites. Others were intended to displace solvent from preexisting sites. In one case Val-149 was replaced with alanine, serine, cysteine, threonine, isoleucine, and glycine. Crystallographic analysis shows that, with the exception of isoleucine, each of these substitutions results in the binding of solvent at a polar site that is sterically blocked in the wild-type enzyme. Mutations designed to perturb or displace a solvent molecule present in the native enzyme included the replacement of Thr-152 with alanine, serine, cysteine, valine, and isoleucine. Although the solvent molecule was moved in some cases by up to 1.7 A, in no case was it completely removed from the folded protein. The results suggest that hydrogen bonds from the protein to bound solvent are energy neutral. The binding of solvent to internal sites within proteins also appears to be energy neutral except insofar as the bound solvent may prevent a loss of energy due to potential hydrogen bonding groups that would otherwise be unsatisfied. The introduction of a solvent-binding site appears to require not only a cavity to accommodate the water molecule but also the presence of polar groups to help satisfy its hydrogen-bonding potential. It may be easier to design a site to accommodate two or more water molecules rather than one as the solvent molecules can then hydrogen-bond to each other. For similar reasons it is often difficult to design a point mutation that will displace a single solvent molecule from the core of a protein.  相似文献   

3.
Summary Nuclear Overhauser effects (NOE) were measured between water protons and protons of the glutamic acid side chain of the bicyclic decapeptide in aqueous solution. Positive NOEs were observed between the CH2 group of Glu and the water resonance, with similar NOE intensities at pH 2.0 and pH 6.3 in both the laboratory frame and the rotating frame of reference. These results indicate that the residence times of the hydration water molecules near the side-chain methylene protons are shorter than 500 ps for both the charged form and the uncharged form of Glu, and hence comparable to the water residence times near uncharged amino acid side chains. Furthermore, this study shows that the acidic proton in protonated carboxylic acid groups is not likely to interfere with the observation of polypeptide-hydration water NOEs, which is in contrast to the hydroxyl protons of the side chains of serine, threonine and tyrosine.Abbreviations NOE nuclear Overhauser effect - NOESY NOE spectroscopy in the laboratory frame - ROESY NOE spectroscopy in the rotating frame - ID one-dimensional - 2D two-dimensional - HPLC high-pressure liquid chromatography  相似文献   

4.
目的 评价预防造影剂肾病(CIN)不同口服水化时机选择的效果,为降低CIN发生率提供依据.方法 运用计算机检索PubMed、EMbase、The Cochrane Library、中国知网、万方数据库、维普数据库以及中国生物医学文献数据库关于口服水化预防造影剂肾病的随机对照试验(RCT),检索时间从建库至2020年9月...  相似文献   

5.
A systematic method for the analysis of the hydration structure of proteins is demonstrated on the case study of lysozyme. The method utilises multiple structural data of the same protein deposited in the protein data bank. Clusters of high water occupancy are localised and characterised in terms of their interaction with protein. It is shown that they constitute a network of interconnected hydrogen bonds anchored to the protein molecule. The high occupancy of the clusters does not directly correlate with water–protein interaction energy as was originally hypothesised. The highly occupied clusters rather correspond to the nodes of the hydration network that have the maximum number of hydrogen bonds including both the protein atoms and the surrounding water clusters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The interrelationship between water desorption isotherms and the humidity dependences of the Young's modulus and volume strains of different lysozyme crystals and films has been analysed. The strain of protein samples is shown to be dependent on their elastic properties and to be induced by Laplace's pressure which can be calculated from the Thomson (Kelvin) relation. The energy of the mechanical deformation of protein samples expended for repacking and deformation of protein molecules considerably contributes to the integral change of free energy upon dehydration. Solid protein samples should be considered as deformable porous materials whose water sorption isotherms are determined not only by the number and properties of individual hydration centres but also by the macroscopic properties of protein solids.  相似文献   

7.
Solvent-binding sites were compared in 10 different crystal forms of phage T4 lysozyme that were refined using data from 2.6 A to 1.7 A resolution. The sample included 18 crystallographically independent lysozyme molecules. Despite different crystallization conditions, variable crystal contacts, changes due to mutation, and varying attention to solvent during crystallographic refinement, 62% of the 20 most frequently occupied sites were conserved. Allowing for potential steric interference from neighboring molecules in the crystal lattice, this fraction increased to 79% of the sites. There was, however, no solvent-binding site that was occupied in all 18 lysozyme molecules. A buried double site was occupied in 17 instances and 2 other internal sites were occupied 15 times. Apart from these buried sites, the most frequently occupied sites were often at the amino-termini of alpha-helices. Solvent molecules at the most conserved sites tended to have crystallographic thermal factors lower than average, but atoms with low B-factors were not restricted to these sites. Although superficial inspection may suggest that only 50-60% (or less) of solvent-binding sites are conserved in different crystal forms of a protein, it appears that many sites appear to be empty either because of steric interference or because the apparent occupancy of a given site can vary from crystal to crystal. The X-ray method of identifying sites is somewhat subjective and tends to result in specification only of those solvent molecules that are well ordered and bound with high occupancy, even though there is clear evidence for solvent bound at many additional sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Protein hydration studied with homonuclear 3D1H NMR experiments   总被引:3,自引:0,他引:3  
Summary Homonuclear 3D1H NOESY-TOCSY and 3D1H ROESY-TOCSY experiments were used to resolve and assign nuclear Overhauser effect (NOE) cross peaks between the water signal and individual polypeptide proton resonances in H2O solutions of the basic pancreatic trypsin inhibitor. Combined with a novel, robust water-suppression technique, positive and negative intermolecular NOEs were detected at 4°C. The observation of positive NOEs between water protons and protein protons enables more precise estimates of the very short residence times of the water molecules in the hydration sites on the protein surface.  相似文献   

9.
10.
Water is an essential part of protein binding sites and mediates interactions to ligands. Its displacement by ligand parts affects the free binding energy of resulting protein-ligand complexes. Therefore the characterization of solvation properties is important for design. Of particular interest is the propensity of localized water to be favorably displaced by a ligand. This review discusses two popular computational approaches addressing these questions, namely WaterMap based on statistical mechanics analysis of MD simulations and 3D RISM based on integral equation theory of liquids. The theoretical background and recent applications in structure-based design will be presented.  相似文献   

11.
H-bonding in protein hydration revisited   总被引:1,自引:0,他引:1  
H-bonding between protein surface polar/charged groups and water is one of the key factors of protein hydration. Here, we introduce an Accessible Surface Area (ASA) model for computationally efficient estimation of a free energy of water-protein H-bonding at any given protein conformation. The free energy of water-protein H-bonds is estimated using empirical formulas describing probabilities of hydrogen bond formation that were derived from molecular dynamics simulations of water molecules at the surface of a small protein, Crambin, from the Abyssinian cabbage (Crambe abyssinica) seed. The results suggest that atomic solvation parameters (ASP) widely used in continuum hydration models might be dependent on ASA for polar/charged atoms under consideration. The predictions of the model are found to be in qualitative agreement with the available experimental data on model compounds. This model combines the computational speed of ASA potential, with the high resolution of more sophisticated solvation methods.  相似文献   

12.
The space in the unit cell of a metmyoglobin crystal not occupied by myoglobin atoms was filled with water using Monte Carlo calculations. Independent calculations with different amounts of water have been performed. Structure factors were calculated using the water coordinates thus obtained and the known coordinates of the myoglobin atoms. A comparison with experimental structure factors showed that both the low and the high resolution regime could be well reproduced with 814 Monte Carlo water molecules per unit cell with a B-value of 50 Å2. The Monte Carlo water molecules yield a smaller standard R-value (0.166) than using a homogeneous electron density for the simulation of the crystal water (R = 0.212). A reciprocal space refinement of the water and the protein coordinates has been performed. Monte Carlo calculations can be used to obtain information for crystallographically invisible parts of the unit cell and yield better coordinates for the visible part in the refinement. Correspondence to: F. Parak  相似文献   

13.
Enthalpies of sublimation, DeltaH degrees (subl) and of solution in water, DeltaH degrees (sol) were determined for a series of crystalline 1,3-dimethyl-uracil derivatives substituted at the C5-ring carbon atom with alkyl groups (-C(n)H(2n+1), n = 2-4) and some of their C(5.6)-cyclooligomethylene analogues (-(CH2)(n)-, n = 3-5). From these data. enthalpies of hydration DeltaH degrees (hydr)= DeltaH degrees (sol) - DeltaH degrees (subl) were calculated and corrected for energies of cavity formation in pure liquid water in order to obtain enthalpies of interaction, DeltaH degrees (int) of the solutes with their hydration shells. The latter are discussed together with the recalculated DeltaH degrees (int) for variously methylated uracils, obtained previously according to a simplified correction procedure, in terms of perturbations in the energy and scheme of hydration of the diketopyrimidine ring brought about by alkyl substitution. It was found that each -CH2-group added with an alkyl substitution contributes favorably about -20 kJ mol(-1) toDeltaH degrees (int).This contribution is partially cancelled by the unfavorable contribution to DeltaH degrees (int) connected with removal of some water molecules bound in the first and subsequent hydration layers by an alkyl substituent. This is particularly evident on substitution at the polar side of the diketopyrimidine ring on which water molecules are expected to be bound specifically.  相似文献   

14.
Piotr Setny 《Proteins》2020,88(12):1578-1591
Crystal structures of diverse protein kinase catalytic subunits reveal a number of water molecules whose positions within the protein core are better preserved than amino acid types in many functionally important locations. It remains unknown whether they play any particular role, and whether their removal, disturbing local interaction patterns to no smaller degree than amino acid mutations, can affect kinase stability and function. In this study, we apply an array of computational approaches to characterize hydration of kinase catalytic subunits. First, we systematically screen multiple crystal structures with the use of a simplified hydration model in order to determine the distribution of internal solvent and the degree of its conservation. Second, we analyze water structure, dynamics and binding affinity to buried hydration sites in a number of kinases, also taking into account their variable functional state. We find that a large portion of buried solvent is dynamic, possibly contributing to kinase conformational changes related to the activation process. In turn, binding free energies of some of tightly bound conserved water molecules to different kinases tend to shift in a similar manner following the change of their functional state. This finding highlights the likely specific role of internal solvent in fine tuning local protein plasticity.  相似文献   

15.
The ability of seeds to withstand dehydration indicates that their membranes may maintain structural integrity even when dry. Analysis of polar lipids (the principal lipidic constituents of the membranes) from soybean seeds (Glycine-max (L.) Merr.) by X-ray diffraction indicated that even in the dehydrated state the lipids retained a lamellar (bilayer) configuration. As the degree of hydration was raised, evidence of some structural alteration (apparent as an abrupt increase in bilayer spacing) was obtained from diffraction patterns of both the extracted lipid and particles of seed tissue. In seed tissue this increase in bilayer spacing occurred at a hydration level just above that at which free water could be detected by nuclear-magnetic-resonance analysis. The water content at which the increase in bilayer spacing occurred was higher in the seed tissue than in the extracted polar lipids, probably because other cell components restricted the availability of free water in the seed.Abbreviation NMR nuclear-magnetic resonance  相似文献   

16.
Structural data produced by a 2-ns molecular dynamics (MD) simulation on Geobacillus alanine racemase (AlaR; PDB: 1SFT) was used to study hydration around the two AlaR active sites. AlaR is a crucial enzyme for bacterial cell wall biosynthesis. It has been shown previously that the potency of an inhibitor can be increased by incorporating a functional group or atom that displaces hydration sites close to the substrate binding pocket of its target enzyme. The complete linkage algorithm was used for cluster analysis of the active site water positions from 126 solvent configurations sampled at regular intervals from the 2-ns MD simulation. Crystal waters in the 1SFT X-ray structure occupy most of the tightly bound water sites that were discovered. We show here that tightly bound water sites can be identified by cluster analysis of MD-generated coordinates starting with data supplied by a single X-ray structure, and we predict a highly conserved hydration site close to the carboxyl oxygen of L-Ala substrate. This approach holds promise for accelerating the drug design process. We also discuss an analysis of the well-known notion of residence time and introduce a new measure called retention time.  相似文献   

17.
The function and dynamics of proteins depend on their direct environment, and much evidence has pointed to a strong coupling between water and protein motions. Recently however, neutron scattering measurements on deuterated and natural-abundance purple membrane (PM), hydrated in H(2)O and D(2)O, respectively, revealed that membrane and water motions on the ns-ps time scale are not directly coupled below 260 K (Wood et al. in Proc Natl Acad Sci USA 104:18049-18054, 2007). In the initial study, samples with a high level of hydration were measured. Here, we have measured the dynamics of PM and water separately, at a low-hydration level corresponding to the first layer of hydration water only. As in the case of the higher hydration samples previously studied, the dynamics of PM and water display different temperature dependencies, with a transition in the hydration water at 200 K not triggering a transition in the membrane at the same temperature. Furthermore, neutron diffraction experiments were carried out to monitor the lamellar spacing of a flash-cooled deuterated PM stack hydrated in H(2)O as a function of temperature. At 200 K, a sudden decrease in lamellar spacing indicated the onset of long-range translational water diffusion in the second hydration layer as has already been observed on flash-cooled natural-abundance PM stacks hydrated in D(2)O (Weik et al. in J Mol Biol 275:632-634, 2005), excluding thus a notable isotope effect. Our results reinforce the notion that membrane-protein dynamics may be less strongly coupled to hydration water motions than the dynamics of soluble proteins.  相似文献   

18.
Water-conducting properties of lipids during pollen hydration   总被引:3,自引:0,他引:3  
Based on the authors’ previous work an attempt has been made to study water flow in the lipid matrix during pollen hydration. The present study has demonstrated that in the presence of small amounts of water, the type of lipids used defined the time of hydration of pollen in vivo on the stigma and in vitro. Several approaches were used including cryo‐scanning electron microscopy, magnetic resonance imaging and Fourier transform infrared microspectroscopic imaging, with the purpose of detecting very small amounts of water. The results show that no water is detectable in the lipid matrix. It was observed and concluded that the water for pollen hydration accumulates as a thin layer at the contact side between pollen and stigma, during the normal process of pollination in plant species with a wet stigma. However, using the same species deprived of the stigma by cell ablation, it was shown that the layer of water observed in wild‐type plants is not necessary for pollen hydration.  相似文献   

19.
Hydration of an isolated rat tail tendon fiber was found to cause its torsion. A similar effect was observed upon changing the specimen temperature in the 12–38°C range. The direction and the angle of rotation of the distal end of the fiber did not depend on its length (12–80 mm). Rather, they depended on the prevalence of clockwise-or counterclockwise-driving collagen units, the distribution of which in the tendon fiber was apparently probabilistic. The phenomenon of collagen bundle rotation is considered in the context of the mechanism of mechanoreceptor stimulation by temperature shifts.  相似文献   

20.
Cluster analysis is presented as a technique for analyzing the conservation and chemistry of water sites from independent protein structures, and applied to thrombin, trypsin, and bovine pancreatic trypsin inhibitor (BPTI) to locate shared water sites, as well as those contributing to specificity. When several protein structures are superimposed, complete linkage cluster analysis provides an objective technique for resolving the continuum of overlaps between water sites into a set of maximally dense microclusters of overlapping water molecules, and also avoids reliance on any one structure as a reference. Water sites were clustered for ten superimposed thrombin structures, three trypsin structures, and four BPTI structures. For thrombin, 19% of the 708 microclusters, representing unique water sites, contained water molecules from at least half of the structures, and 4% contained waters from all 10. For trypsin, 77% of the 106 microclusters contained water sites from at least half of the structures, and 57% contained waters from all three. Water site conservation correlated with several environmental features: highly conserved microclusters generally had more protein atom neighbors, were in a more hydrophilic environment, made more hydrogen bonds to the protein, and were less mobile. There were significant overlaps between thrombin and trypsin conserved water sites, which did not localize to their similar active sites, but were concentrated in buried regions including the solvent channel surrounding the Na+ site in thrombin, which is associated with ligand selectivity. Cluster analysis also identified water sites conserved in thrombin but not trypsin, and vice versa, providing a list of water sites that may contribute to ligand discrimination. Thus, in addition to facilitating the analysis of water sites from multiple structures, cluster analysis provides a useful tool for distinguishing between conserved features within a protein family and those conferring specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号