首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum are able to infect horses. However, the extend to which Danish horses are infected and seroconvert due to these two bacteria is unknown. The aim of the present study was to evaluate the seroprevalence of B. burgdorferi sensu lato and A. phagocytophilum in Danish horses.  相似文献   

2.
Serum samples were obtained from white-footed mice (Peromyscus leucopus) in tick-infested areas of Connecticut during the period 2001 through 2003 and analyzed for antibodies to Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti. Emphasis was placed on the evaluations of highly specific recombinant VlsE or protein (p) 44 antigens of B. burgdorferi and A. phagocytophilum, respectively, in a newly developed enzyme-linked immunosorbent assay (ELISA) as well as testing sera with whole-cell antigens by conventional ELISA or indirect fluorescent antibody staining methods. Of the 414 mouse sera analyzed, 310 (75%) had antibodies to whole-cell B. burgdorferi, whereas 157 (38%) were positive to the VlsE antigen. The latter nearly equaled the overall antibody prevalence rate (37%) computed when sera were tested separately with the p44 antigen. Mice were exposed to these pathogens and B. microti (antibody prevalence = 25%) in extreme northern Connecticut as well as the southern coastal areas of the state, thus indicating further geographic expansion of these infections. Fifty-three (13%) sera from widely separated sites had antibodies to all three pathogens. With expression and immunological recognition of VlsE and p44 antigens in P. leucopus, separate incorporation of these fusion proteins in an ELISA was very helpful in confirming past or current infections and in identifying specific foci for B. burgdorferi and A. phagocytophilum.  相似文献   

3.
Serum samples obtained from white-tailed deer (Odocoileus virginianus) in Connecticut (n=218) and South Carolina (n=20) (USA) during the period 1992-2002 were analyzed for antibodies to whole-cell or recombinant antigens (i.e., fusion proteins) of Borrelia burgdorferi sensu stricto and Anaplasma phagocytophilum, etiologic agents of Lyme borreliosis and granulocytic ehrlichiosis, respectively. In enzyme-linked immunosorbent assays (ELISAs) with whole-cell B. burgdorferi, the overall seropositivity rate for Connecticut (53%) exceeded that for South Carolina (30%). In separate tests of seven recombinant antigens of B. burgdorferi by an ELISA, seroprevalence for the VlsE antigen was highest (48%) in Connecticut followed by outer surface protein (OspF) (21%), whereas serum reactivities to the protein (p) 41-G antigen (55%) and VlsE (25%) were most frequent for South Carolina sera. In analyses for antibodies to the recombinant protein (p) 44 antigen of A. phagocytophilum, seroprevalences of 52% and 25% were recorded for Connecticut and South Carolina samples, respectively. These findings paralleled those determined by indirect fluorescent antibody staining methods with whole cells (43% and 30%). Moreover, there was good agreement (74%) in results of Western blot analyses and an ELISA when a subset of 39 sera was screened with whole-cell or recombinant p44 antigens of A. phagocytophilum. An ELISA with highly specific recombinant VlsE or p44 antigens can be used in conjunction with other antibody tests to determine whether deer living in different regions of eastern United States were exposed to B. burgdorferi or A. phagocytophilum.  相似文献   

4.
5.
During the spring in 2005 and 2006, 39,095 northward-migrating land birds were captured at 12 bird observatories in eastern Canada to investigate the role of migratory birds in northward range expansion of Lyme borreliosis, human granulocytic anaplasmosis, and their tick vector, Ixodes scapularis. The prevalence of birds carrying I. scapularis ticks (mostly nymphs) was 0.35% (95% confidence interval [CI] = 0.30 to 0.42), but a nested study by experienced observers suggested a more realistic infestation prevalence of 2.2% (95% CI = 1.18 to 3.73). The mean infestation intensity was 1.66 per bird. Overall, 15.4% of I. scapularis nymphs (95% CI = 10.7 to 20.9) were PCR positive for Borrelia burgdorferi, but only 8% (95% CI = 3.8 to 15.1) were positive when excluding nymphs collected at Long Point, Ontario, where B. burgdorferi is endemic. A wide range of ospC and rrs-rrl intergenic spacer alleles of B. burgdorferi were identified in infected ticks, including those associated with disseminated Lyme disease and alleles that are rare in the northeastern United States. Overall, 0.4% (95% CI = 0.03 to 0.41) of I. scapularis nymphs were PCR positive for Anaplasma phagocytophilum. We estimate that migratory birds disperse 50 million to 175 million I. scapularis ticks across Canada each spring, implicating migratory birds as possibly significant in I. scapularis range expansion in Canada. However, infrequent larvae and the low infection prevalence in ticks carried by the birds raise questions as to how B. burgdorferi and A. phagocytophilum become endemic in any tick populations established by bird-transported ticks.  相似文献   

6.
To evaluate the prevalence rate of tick-borne bacterial pathogens, unfed adult Ixodes ricinus ticks were collected from vegetation in 2001, 2003, and 2004 at 18 localities throughout Serbia. A total of 287 ticks were examined by PCR technique for the presence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, and Francisella tularensis. The highest prevalence rate was that for B. burgdorferi sensu lato (42.5%), followed by A. phagocytophilum (13.9%) and F. tularensis (3.8%). The presence of five B. burgdorferi sensu lato genospecies, namely, B. burgdorferi sensu stricto, B. afzelii, B. garinii, B. lusitaniae, and B. valaisiana was identified by restriction fragment length polymorphism (RFLP) analysis. The most frequent B. burgdorferi sensu lato genospecies was B. lusitaniae, followed by B. burgdorferi sensu stricto. Co-infection by B. burgdorferi sensu stricto and B. lusitaniae was frequently observed. Co-infection by B. burgdorferi sensu lato and A. phagocytophilum and co-infection by B. burgdorferi sensu lato and F. tularensis appeared in 24 ticks. Sequencing of p44/msp2 paralogs of Serbian A. phagocytophilum showed that they were unique and distinct from those of A. phagocytophilum in US and UK. This is the first report of B. garinii, B. lusitaniae, B. valaisiana, as well as A. phagocytophilum and F. tularensis infected ticks in Serbia. These findings indicate a public health threat in Serbia of tick-borne diseases caused by B. burgdorferi sensu lato, A. phagocytophilum and F. tularensis.  相似文献   

7.
Lyme borreliosis (LB) group spirochetes, collectively known as Borrelia burgdorferi sensu lato, are distributed worldwide. Wild rodents are acknowledged as the most important reservoir hosts. Ixodes scapularis is the primary vector of B. burgdorferi sensu lato in the eastern United States, and in the southeastern United States, the larvae and nymphs mostly parasitize certain species of lizards. The primary aim of the present study was to determine whether wild lizards in the southeastern United States are naturally infected with Lyme borreliae. Blood samples obtained from lizards in Florida and South Carolina were tested for the presence of LB spirochetes primarily by using B. burgdorferi sensu lato-specific PCR assays that amplify portions of the flagellin (flaB), outer surface protein A (ospA), and 66-kDa protein (p66) genes. Attempts to isolate spirochetes from a small number of PCR-positive lizards failed. However, PCR amplification and sequence analysis of partial flaB, ospA, and p66 gene fragments confirmed numerous strains of B. burgdorferi sensu lato, including Borrelia andersonii, Borrelia bissettii, and B. burgdorferi sensu stricto, in blood from lizards from both states. B. burgdorferi sensu lato DNA was identified in 86 of 160 (54%) lizards representing nine species and six genera. The high infection prevalence and broad distribution of infection among different lizard species at different sites and at different times of the year suggest that LB spirochetes are established in lizards in the southeastern United States.  相似文献   

8.
Lyme borreliosis (LB) group spirochetes, collectively known as Borrelia burgdorferi sensu lato, are distributed worldwide. Wild rodents are acknowledged as the most important reservoir hosts. Ixodes scapularis is the primary vector of B. burgdorferi sensu lato in the eastern United States, and in the southeastern United States, the larvae and nymphs mostly parasitize certain species of lizards. The primary aim of the present study was to determine whether wild lizards in the southeastern United States are naturally infected with Lyme borreliae. Blood samples obtained from lizards in Florida and South Carolina were tested for the presence of LB spirochetes primarily by using B. burgdorferi sensu lato-specific PCR assays that amplify portions of the flagellin (flaB), outer surface protein A (ospA), and 66-kDa protein (p66) genes. Attempts to isolate spirochetes from a small number of PCR-positive lizards failed. However, PCR amplification and sequence analysis of partial flaB, ospA, and p66 gene fragments confirmed numerous strains of B. burgdorferi sensu lato, including Borrelia andersonii, Borrelia bissettii, and B. burgdorferi sensu stricto, in blood from lizards from both states. B. burgdorferi sensu lato DNA was identified in 86 of 160 (54%) lizards representing nine species and six genera. The high infection prevalence and broad distribution of infection among different lizard species at different sites and at different times of the year suggest that LB spirochetes are established in lizards in the southeastern United States.  相似文献   

9.

Background  

Tick-borne pathogens cause emerging zoonoses, and include fastidious organisms such as Anaplasma phagocytophilum. Because of their obligate intracellular nature, methods for mutagenesis and transformation have not been available.  相似文献   

10.
Babesia microti and Borrelia burgdorferi, the respective causative agents of human babesiosis and Lyme disease, are maintained in their enzootic cycles by the blacklegged tick (Ixodes scapularis) and use the white-footed mouse (Peromyscus leucopus) as primary reservoir host. The geographic range of both pathogens has expanded in the United States, but the spread of babesiosis has lagged behind that of Lyme disease. Several studies have estimated the basic reproduction number (R 0) for B. microti to be below the threshold for persistence (<1), a finding that is inconsistent with the persistence and geographic expansion of this pathogen. We tested the hypothesis that host coinfection with B. burgdorferi increases the likelihood of B. microti transmission and establishment in new areas. We fed I. scapularis larva on P. leucopus mice that had been infected in the laboratory with B. microti and/or B. burgdorferi. We observed that coinfection in mice increases the frequency of B. microti infected ticks. To identify the ecological variables that would increase the probability of B. microti establishment in the field, we integrated our laboratory data with field data on tick burden and feeding activity in an R 0 model. Our model predicts that high prevalence of B. burgdorferi infected mice lowers the ecological threshold for B. microti establishment, especially at sites where larval burden on P. leucopus is lower and where larvae feed simultaneously or soon after nymphs infect mice, when most of the transmission enhancement due to coinfection occurs. Our studies suggest that B. burgdorferi contributes to the emergence and expansion of B. microti and provides a model to predict the ecological factors that are sufficient for emergence of B. microti in the wild.  相似文献   

11.
12.
Thirty-five strains of the Lyme disease spirochete Borrelia burgdorferi sensu lato (B. burgdorferi s. l.) were isolated from the blacklegged tick vector Ixodes scapularis in South Carolina, Georgia, Florida, and Rhode Island. They were characterized by PCR-restriction fragment length polymorphism (RFLP) analysis of rrf (5S)-rrl (23S) intergenic spacer amplicons. PCR-RFLP analysis indicated that the strains represented at least 3 genospecies (including a possible novel genospecies) and 4 different restriction patterns. Thirty strains belonged to the genospecies B. burgdorferi sensu stricto (B. burgdorferi s. s.), 4 southern strains were identified as B. bissettii, and strain SCCH-5 from South Carolina exhibited MseI and DraI restriction patterns different from those of previously reported genospecies. Complete sequences of rrf-rrl intergenic spacers from 14 southeastern and northeastern strains were determined and the phylogenetic relationships of these strains were compared. The 14 strains clustered into 3 separate lineages on the basis of sequence analysis. These results were confirmed by phylogenetic analysis based on 16S rDNA sequence analysis.  相似文献   

13.
We examined 198 questing Ixodes ricinus ticks collected in Chisinau City, Republic of Moldova by PCR assays for Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and co-infection of both pathogens, which were detected in 9%, 25.2% and 2.5% of tested ticks, respectively. B. burgdorferi s.l. genotyping revealed the presence of five genospecies with dominance of B. garinii. Our preliminary study provides evidence about occurrence of both pathogens in this populated area, which represent a potential health risk for inhabitants.  相似文献   

14.
15.
EcoHealth - The geographic distributions of Ixodes scapularis (black-legged tick) and the bacterium Borrelia burgdorferi (the causative agent of Lyme disease) are expanding in the USA. To assess...  相似文献   

16.
The manifestations of Lyme disease, caused by Ixodes spp. tick-transmitted Borrelia burgdorferi, range from skin infection to bloodstream invasion into the heart, joints and nervous system. The febrile infection human granulocytic anaplasmosis is caused by a neutrophilic rickettsia called Anaplasma phagocytophilum, also transmitted by Ixodes ticks. Previous studies suggest that co-infection with A. phagocytophilum contributes to increased spirochetal loads and severity of Lyme disease. However, a common link between these tick-transmitted pathogens is dissemination into blood or tissues through blood vessels. Preliminary studies show that B. burgdorferi binds and passes through endothelial barriers in part mediated by host matrix metalloproteases. Since neutrophils infected by A. phagocytophilum are activated to release bioactive metalloproteases and chemokines, we examined the enhanced B. burgdorferi transmigration through vascular barriers with co-infection in vitro. To test whether endothelial transmigration is enhanced with co-infection, B. burgdorferi and A. phagocytophilum-infected neutrophils were co-incubated with EA.hy926 cells (HUVEC-derived) and human brain microvascular endothelial cells in Transwell cultures. Transmigration of B. burgdorferi through endothelial cell barriers was determined and endothelial barrier integrity was measured by transendothelial electrical resistivity. More B. burgdorferi crossed both human BMEC and EA.hy926 cells in the presence of A. phagocytophilum-infected neutrophils than with uninfected neutrophils without affecting endothelial cell integrity. Such a mechanism may contribute to increased blood and tissue spirochete loads.  相似文献   

17.
The density of spirochetes in field-collected or experimentally infected ticks is estimated mainly by assays based on microscopy. In this study, a real-time quantitative PCR (qPCR) protocol targeting the Borrelia burgdorferi-specific recA gene was adapted for use with a Lightcycler for rapid detection and quantification of the Lyme disease spirochete, B. burgdorferi, in field-collected Ixodes scapularis ticks. The sensitivity of qPCR for detection of B. burgdorferi DNA in infected ticks was comparable to that of a well-established nested PCR targeting the 16S-23S rRNA spacer. Of the 498 I. scapularis ticks collected from four northeastern states (Rhode Island, Connecticut, New York, and New Jersey), 91 of 438 (20.7%) nymphal ticks and 15 of 60 (25.0%) adult ticks were positive by qPCR assay. The number of spirochetes in individual ticks varied from 25 to 197,200 with a mean of 1,964 spirochetes per nymphal tick and a mean of 5,351 spirochetes per adult tick. No significant differences were found in the mean numbers of spirochetes counted either in nymphal ticks collected at different locations in these four states (P = 0.23 by one-way analysis of variance test) or in ticks infected with the three distinct ribosomal spacer restriction fragment length polymorphism types of B. burgdorferi (P = 0.39). A high degree of spirochete aggregation among infected ticks (variance-to-mean ratio of 24,877; moment estimate of k = 0.279) was observed. From the frequency distribution data and previously published transmission studies, we estimated that a minimum of 300 organisms may be required in a host-seeking nymphal tick to be able to transmit infection to mice while feeding on mice. These data indicate that real-time qPCR is a reliable approach for simultaneous detection and quantification of B. burgdorferi infection in field-collected ticks and can be used for ecological and epidemiological surveillance of Lyme disease spirochetes.  相似文献   

18.
The density of spirochetes in field-collected or experimentally infected ticks is estimated mainly by assays based on microscopy. In this study, a real-time quantitative PCR (qPCR) protocol targeting the Borrelia burgdorferi-specific recA gene was adapted for use with a Lightcycler for rapid detection and quantification of the Lyme disease spirochete, B. burgdorferi, in field-collected Ixodes scapularis ticks. The sensitivity of qPCR for detection of B. burgdorferi DNA in infected ticks was comparable to that of a well-established nested PCR targeting the 16S-23S rRNA spacer. Of the 498 I. scapularis ticks collected from four northeastern states (Rhode Island, Connecticut, New York, and New Jersey), 91 of 438 (20.7%) nymphal ticks and 15 of 60 (25.0%) adult ticks were positive by qPCR assay. The number of spirochetes in individual ticks varied from 25 to 197,200 with a mean of 1,964 spirochetes per nymphal tick and a mean of 5,351 spirochetes per adult tick. No significant differences were found in the mean numbers of spirochetes counted either in nymphal ticks collected at different locations in these four states (P = 0.23 by one-way analysis of variance test) or in ticks infected with the three distinct ribosomal spacer restriction fragment length polymorphism types of B. burgdorferi (P = 0.39). A high degree of spirochete aggregation among infected ticks (variance-to-mean ratio of 24,877; moment estimate of k = 0.279) was observed. From the frequency distribution data and previously published transmission studies, we estimated that a minimum of 300 organisms may be required in a host-seeking nymphal tick to be able to transmit infection to mice while feeding on mice. These data indicate that real-time qPCR is a reliable approach for simultaneous detection and quantification of B. burgdorferi infection in field-collected ticks and can be used for ecological and epidemiological surveillance of Lyme disease spirochetes.  相似文献   

19.
Penicillin-binding proteins in Borrelia burgdorferi.   总被引:1,自引:0,他引:1       下载免费PDF全文
Penicillin-binding proteins were identified in Borrelia burgdorferi membranes. A 94-kilodalton penicillin-binding protein was the first to be labeled with tritiated penicillin and was the first band to disappear in a competition experiment. Its binding ability was destroyed when membranes were preboiled. In addition, several of these penicillin-binding proteins comigrated with bands previously identified as surface proteins.  相似文献   

20.
The growth rate of Borrelia burgdorferi and Borrelia hermsii in BSK II medium prepared with cysteine-free or cysteine-containing (0.185-5.92 mM) CMRL 1066 medium was studied. In media with cysteine-free CMRL 1066, growth of borreliae was detectable, although it was reduced by approximately 80%. Bacterial growth was maximal when the concentration of cysteine in CMRL 1066 reached 1.48 mM, which represents the standard cysteine concentrations of the medium; higher concentrations inhibited the growth of borreliae. Cysteine incorporation, measured by the uptake of radiolabeled cysteine, showed that cysteine enters B. burgdorferi and B. hermsii cells by passive diffusion. Labeling studies of borreliae with [35S]cysteine indicated that B. burgdorferi has several cysteine-containing proteins, including ones at 22, 30 (OspA), and 34 kDa (OspB), whereas B. hermsii showed only two [35S]cysteine-incorporating proteins, at 22 and 24 kDa, which were exposed onto the outer cell surface. In addition, most of the cysteine-incorporating proteins could be biosynthetically radiolabeled when bacterial cells were grown in vitro with [3H]palmitate, and the differences in cysteine incorporation observed between B. burgdorferi and B. hermsii were found to be correlated with differences in lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号