首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Familial British dementia (FBD) and familial Danish dementia (FDD) are autosomal dominant disorders characterized by cerebrovascular and parenchymal amyloid deposition and neurofibrillary degeneration. In both conditions, the genetic defects cause the loss of the normal stop codon in the precursor BRI, generating novel 34-residue peptides named ABri and ADan in FBD and FDD, respectively. ABri and ADan show a strong tendency to aggregate into non-fibrillar and fibrillar structures at neutral pH and this property seems to be directly related to neurotoxicity. Here we report that a recombinant insulin-degrading enzyme (rIDE) was capable of degrading monomeric ABri and ADan in vitro more efficiently than oligomeric species. These peptides showed high beta-structure content and were more resistant to proteolysis as compared to the BRI wild-type product of 23 amino acids. Specific sites of cleavage within the C-terminal pathogenic extensions raise the possibility that proteolysis of monomeric soluble precursors by IDE may delay ABri and ADan aggregation in vivo.  相似文献   

2.
Different mutations in the BRI(2) gene cause rare neurodegenerative conditions, termed familial British dementia (FBD) and familial Danish dementia (FDD). The mutant genes encode BRI-L and BRI-D, the precursors of fibrillogenic ABri and ADan peptides, respectively. We previously reported that furin processes both BRI-L and its wild type counterpart, BRI, resulting in the secretion of C-terminal peptides; elevated levels of peptides were generated from BRI-L. In the present study, we show that inducible expression of alpha1-antitrypsin Portland, a furin inhibitor, inhibits the endoproteolysis of BRI and BRI-L in a dose-dependent manner. Moreover, comparison of the activities of several proprotein convertases reveals that furin is most efficient in endoproteolysis of BRI and BRI-L; PACE4, PC6A, PC6B, and LPC show much lower activities. Interestingly, LPC also exhibits enhanced cleavage of BRI-L compared with BRI. Finally, we demonstrate that BRI-D is also processed by furin and, like BRI-L, the cleavage of BRI-D is more efficient than that of BRI. Interestingly, while the ABri peptide is detected both intracellularly and in the medium, the ADan peptide accumulates predominantly in intracellular compartments. We propose that intracellular accumulation of amyloidogenic ADan or ABri peptides results in the neuronal damage leading to FDD and FBD, respectively.  相似文献   

3.
Familial British dementia (FBD) is an early onset inherited disorder that, like familial Alzheimer's disease (FAD), is characterized by progressive dementia, amyloid deposition in the brain, and neurofibrillary degeneration of limbic neurons. The primary structure of the amyloid subunit (ABri) extracted from FBD brain tissues (Vidal, R., Frangione, B., Rostagno, A., Mead, S., Revesz, T., Plant, G., and Ghiso, J. (1999) Nature 399, 776-781) is entirely different and unrelated to any previously known amyloid protein. Patients with FBD have a single nucleotide substitution at codon 267 in the BRI2 gene, resulting in an arginine replacing the stop codon and a longer open reading frame of 277 amino acids instead of 266. The ABri peptide comprises the 34 C-terminal residues of the mutated precursor ABriPP-277 and is generated via furin-like proteolytic processing. Here we report that carriers of the Stop-to-Arg mutation have a soluble form of the amyloid peptide (sABri) in the circulation with an estimated concentration in the range of 20 ng/ml, several fold higher than that of soluble Abeta. In addition, ABri species identical to those identified in the brain were also found as fibrillar components of amyloid deposits predominantly in the blood vessels of several peripheral tissues, including pancreas and myocardium. We hypothesize that the high concentration of the soluble de novo created amyloidogenic peptide and/or the insufficient tissue clearance are the main causative factors for the formation of amyloid deposits outside the brain. Thus, FBD constitutes the first documented cerebral amyloidosis associated with neurodegeneration and dementia in which the amyloid deposition is also systemic.  相似文献   

4.
Familial Danish dementia is an early onset autosomal dominant neurodegenerative disorder linked to a genetic defect in the BRI2 gene and clinically characterized by dementia and ataxia. Cerebral amyloid and preamyloid deposits of two unrelated molecules (Danish amyloid (ADan) and beta-amyloid (Abeta)), the absence of compact plaques, and neurofibrillary degeneration indistinguishable from that observed in Alzheimer disease (AD) are the main neuropathological features of the disease. Biochemical analysis of extracted amyloid and preamyloid species indicates that as the solubility of the deposits decreases, the heterogeneity and complexity of the extracted peptides exponentially increase. Nonfibrillar deposits were mainly composed of intact ADan-(1-34) and its N-terminally modified (pyroglutamate) counterpart together with Abeta-(1-42) and Abeta-(4-42) in approximately 1:1 mixture. The post-translational modification, glutamate to pyroglutamate, was not present in soluble circulating ADan. In the amyloid fractions, ADan was heavily oligomerized and highly heterogeneous at the N and C terminus, and, when intact, its N terminus was post-translationally modified (pyroglutamate), whereas Abeta was mainly Abeta-(4-42). In all cases, the presence of Abeta-(X-40) was negligible, a surprising finding in view of the prevalence of Abeta40 in vascular deposits observed in sporadic and familial AD, Down syndrome, and normal aging. Whether the presence of the two amyloid subunits is imperative for the disease phenotype or just reflects a conformational mimicry remains to be elucidated; nonetheless, a specific interaction between ADan oligomers and Abeta molecules was demonstrated in vitro by ligand blot analysis using synthetic peptides. The absence of compact plaques in the presence of extensive neuro fibrillar degeneration strongly suggests that compact plaques, fundamental lesions for the diagnosis of AD, are not essential for the mechanism of dementia.  相似文献   

5.
Oligomerization of amyloid beta (Abeta) peptides is the decisive event in the development of Alzheimer's disease (AD), the most common neurogenerative disorder in developed countries. Recent evidence links this conformation-driven process to primary- and secondary-structure modifications of Abeta. The N and C terminus of deposited Abeta has been shown to possess conspicuous heterogeneity. While the C-terminally longer form of Abeta, i.e., Abeta (42), is considered more amyloidogenic, the role of the N-terminal modifications, e.g., truncation and glutamate cyclization accounting for the majority of the deposited peptides, is less understood. In the present study, we characterized the oligomerization and seeding capacity of pGlu-amyloid peptides using two unrelated techniques based on flow cytometry or flourescence dye binding. Under different conditions and irrespective of the C terminus of Abeta, i.e., Abeta40 or 42, pGlu-modified peptides displayed an up to 250-fold accelerated initial formation of aggregates compared to unmodified Abeta. The accelerated seed formation is accompanied by a change in the oligomerization kinetics because of N-terminal pGlu formation. Furthermore, the formation of mixed aggregates consisting of either pGlu-Abeta (3-42) or ADan or ABri and Abeta (1-42) was investigated by Abeta fluorescence labeling in flow cytometry. The results suggest that pGlu-modified peptides are potential seeding species of aggregate formation in vivo. The data presented here and the abundance of pGlu peptides in amyloidoses, such as FBD and AD, suggest pGlu-amyloid peptides as a species with biophysical characteristics that might be in particular crucial for the initiation of the disease.  相似文献   

6.
British amyloid (ABri) peptide is precipitated as amyloid fibrils in pathological lesions which are characteristic of familial British dementia. Unlike for other amyloidogenic peptides which have been implicated in neurodegenerative disease, for example, Abeta in Alzheimer's disease and alpha synuclein in Parkinson's disease, nothing is yet known as to whether metals mediate the formation of ABri amyloid fibrils. We show herein that a concentration of ABri, which had not previously been shown to spontaneously form amyloid, formed fibrils when incubated for 12 months at 37 degrees C. The additional presence of Al(III), in particular, or Fe(III) increased significantly both the number and the size of the fibrillar amyloid deposits which were very similar in appearance to amyloid described in hippocampal plaques in familial British dementia. Co-incubation of ABri with either Zn(II) or Cu(II) precipitated the peptide but did not result in the formation of amyloid fibrils.  相似文献   

7.
BRI2 is a protein that when mutated causes familial British and familial Danish dementias. Upon cleavage, the mutated BRI2 proteins release the peptides ABri and ADan, which are amyloidogenic and accumulate in the brains of patients. Although BRI2 has an unknown function, several reports indicate that it could play multiple roles. For example, the fact that it exists at the cell surface as a homodimer indicates that it could be involved in cell signaling events by acting as a receptor. BRI2 also interacts with amyloid precursor protein (APP), involved in Alzheimer's disease (AD). In cell cultures and mouse models of AD, BRI2 inhibits APP processing and reduces amyloid β peptide deposition. The interaction between the two proteins could be responsible for the neuropathological similarities between familial British/Danish dementias and AD. The study of BRI2, which is central in familial British and Danish dementia, could unravel underlying molecular mechanisms of neurodegeneration.  相似文献   

8.
Familial British dementia (FBD) is an inherited neurodegenerative disease believed to result from a mutation in the BRI2 gene. Post-translational processing of wild type BRI2 and FBD-BRI2 result in the production of a 23-residue long Bri peptide and a 34-amino acid long ABri peptide, respectively, and ABri is found deposited in the brains of individuals with FBD. Similarities in the neuropathology and clinical presentation shared by FBD and Alzheimer disease (AD) have led some to suggest that ABri and the AD-associated amyloid β-protein (Aβ) are molecular equivalents that trigger analogous pathogenic cascades. But the sequences and innate properties of ABri and Aβ are quite different, notably ABri contains two cysteine residues that can form disulfide bonds. Thus we sought to determine whether ABri was neurotoxic and if this activity was regulated by oxidation and/or aggregation. Crucially, the type of oxidative cross-linking dramatically influenced both ABri aggregation and toxicity. Cyclization of Bri and ABri resulted in production of biologically inert monomers that showed no propensity to assemble, whereas reduced ABri and reduced Bri aggregated forming thioflavin T-positive amyloid fibrils that lacked significant toxic activity. ABri was more prone to form inter-molecular disulfide bonds than Bri and the formation of covalently stabilized ABri oligomers was associated with toxicity. These results suggest that extension of the C-terminal of Bri causes a shift in the type of disulfide bonds formed and that structures built from covalently cross-linked oligomers can interact with neurons and compromise their function and viability.  相似文献   

9.
Familial Danish dementia (FDD) is a rare neurodegenerative disorder, which is pathologically characterized by widespread cerebral amyloid angiopathy, parenchymal protein deposits and neurofibrillary degeneration. FDD is associated with mutation in the BRI gene. In FDD a decamer duplication between codons 265 and 266 in the 3' region of the BRI gene originates an amyloid peptide named ADan, 11 residues longer than the wild-type peptide produced from the normal BRI gene. ADan deposits have been found widely distributed in the CNS of FDD cases. The deposits of ADan are predominantly non-fibrillar aggregates. We show here that synthetic ADan forms oligomers in vitro, seen by Tricine-PAGE and gel filtration, and higher aggregates, which are seen by atomic force spectroscopy and electron microscopy as carrot-shaped objects that bunch together. Here we report that oligomeric ADan is toxic to neuronal cell lines. We find that the soluble non-fibrillar oligomeric species of both the reduced and oxidized forms of ADan are toxic. These results support the idea that the non-fibrillar soluble aggregates are the pathogenic species, which may play a central role in the pathogenesis of FDD, and imply that similar mechanism may also be involved in other neurodegenerative diseases associated with amyloid deposits.  相似文献   

10.
Familial British dementia (FBD) is an autosomal dominant neurodegenerative disorder, with biochemical and pathological similarities to Alzheimer's disease. FBD is associated with a point mutation in the stop codon of the BRI gene. The mutation extends the length of the wild-type protein by 11 amino acids, and following proteolytic cleavage, results in the production of a cyclic peptide (ABri) 11 amino acids longer than the wild-type (WT) peptide produced from the normal gene BRI. ABri was found to be the main component of amyloid deposits in FBD brains. However, pathological examination of FBD brains has shown the presence of ABri as non-fibrillar deposits as well as amyloid fibrils. Taken together, the genetic, pathological and biochemical data support the hypothesis that ABri deposits play a central role in the pathogenesis of FBD. Here we report that ABri, but not WT peptide, can oligomerise and form amyloid-like fibrils. We show for the first time that ABri induces apoptotic cell death, whereas WT is not toxic to cells. Moreover, we report the novel findings that non-fibrillar oligomeric species of ABri are more toxic than protofibrils and mature fibrils. These findings provide evidence that non-fibrillar oligomeric species are likely to play a critical role in the pathogenesis of FBD and suggest that a similar process may also operate in other neurodegenerative diseases.  相似文献   

11.
Pyroglutamate (pGlu)-modified amyloid peptides have been identified in sporadic and familial forms of Alzheimer's disease (AD) and the inherited disorders familial British and Danish Dementia (FBD and FDD). In this study, we characterized the aggregation of amyloid-β protein Aβ37, Aβ38, Aβ40, Aβ42 and ADan species in vitro, which were modified by N-terminal pGlu (pGlu-Aβ3-x, pGlu-ADan) or possess the intact N-terminus (Aβ1-x, ADan). The pGlu-modification confers rapid formation of oligomers and short fibrillar aggregates. In accordance with these observations, the pGlu-modified Aβ38, Αβ40 and Αβ42 species inhibit hippocampal long term potentiation of synaptic response, but pGlu-Aβ3-42 showing the highest effect. Among the unmodified Aβ peptides, only Aβ1-42 exhibites such propensity, which was similar to pGlu-Aβ3-38 and pGlu-Aβ3-40. Likewise, the amyloidogenic peptide pGlu-ADan impaired synaptic potentiation more pronounced than N-terminal unmodified ADan. The results were validated using conditioned media from cultivated HEK293 cells, which express APP variants favoring the formation of Aβ1-x, Aβ3-x or N-truncated pGlu-Aβ3-x species. Hence, we show that the ability of different amyloid peptides to impair synaptic function apparently correlates to their potential to form oligomers as a common mechanism. The pGlu-modification is apparently mediating a higher surface hydrophobicity, as shown by 1-anilinonaphtalene-8-sulfonate fluorescence, which enforces potential to interfere with neuronal physiology.  相似文献   

12.
Familial British dementia (FBD) is a rare neurodegenerative disorder and shares features with Alzheimer's disease, including amyloid plaque deposits, neurofibrillary tangles, neuronal loss, and progressive dementia. Immunohistochemical and biochemical analysis of plaques and vascular amyloid of FBD brains revealed that a 4 kDa peptide named ABri is the main component of the highly insoluble amyloid deposits. In FBD patients, the ABri peptide is produced as a result of a point mutation in the usual stop codon of the BRI gene. This mutation produces a BRI precursor protein 11 amino acids longer than the wild-type protein. Mutant and wild-type precursor proteins both undergo furin cleavage between residues 243 and 244, producing a peptide of 34 amino acids in the case of ABri and 23 amino acids in the case of the wild-type (WT) peptide. Here we demonstrate that the intramolecular disulfide bond in ABri and the C-terminal extension are required to elongate initially formed dimers to oligomers and fibrils. In contrast, the shorter WT peptide did not aggregate under the same conditions. Conformational analyses indicate that the disulfide bond and the C-terminal extension of ABri are required for the formation of beta-sheet structure. Soluble nonfibrillar ABri oligomers were observed prior to the appearance of mature fibrils. A molecular model of ABri containing three beta-strands, and two beta-hairpins annealed by a disulfide bond, has been constructed, and predicts a hydrophobic surface which is instrumental in promoting oligomerization.  相似文献   

13.
Alzheimer disease and familial British dementia are neurodegenerative diseases that are characterized by the presence of numerous amyloid plaques in the brain. These lesions contain fibrillar deposits of the beta-amyloid peptide (Abeta) and the British dementia peptide (ABri), respectively. Both peptides are toxic to cells in culture, and there is increasing evidence that early "soluble oligomers" are the toxic entity rather than mature amyloid fibrils. The molecular mechanisms responsible for this toxicity are not clear, but in the case of Abeta, one prominent hypothesis is that the peptide can induce oxidative damage via the formation of hydrogen peroxide. We have developed a reliable method, employing electron spin resonance spectroscopy in conjunction with the spin-trapping technique, to detect any hydrogen peroxide generated during the incubation of Abeta and other amyloidogenic peptides. Here, we monitored levels of hydrogen peroxide accumulation during different stages of aggregation of Abeta-(1-40) and ABri and found that in both cases it was generated as a short "burst" early on in the aggregation process. Ultrastructural studies with both peptides revealed that structures resembling "soluble oligomers" or "protofibrils" were present during this early phase of hydrogen peroxide formation. Mature amyloid fibrils derived from Abeta-(1-40) did not generate hydrogen peroxide. We conclude that hydrogen peroxide formation during the early stages of protein aggregation may be a common mechanism of cell death in these (and possibly other) neurodegenerative diseases.  相似文献   

14.
The role of complement in Alzheimer's disease pathology   总被引:12,自引:0,他引:12  
Complement proteins are integral components of amyloid plaques and cerebral vascular amyloid in Alzheimer brains. They can be found at the earliest stages of amyloid deposition and their activation coincides with the clinical expression of Alzheimer's dementia. This review will examine the origins of complement in the brain and the role of beta-amyloid peptide (Abeta) in complement activation in Alzheimer's disease, an event that might serve as a nidus of chronic inflammation. Pharmacology therapies that may serve to inhibit Abeta-mediated complement activation will also be discussed.  相似文献   

15.
Familial British dementia, a rare autosomal dominant neurodegenerative disorder, shares features with Alzheimer's disease, including amyloid plaque deposits, neurofibrillary tangles, neuronal loss,progressive dementia, but clinically presents with additional physical defects [1,2]. A mutation in the termination codon of the BRI gene produces a BRI precursor protein 11 amino acids longer than the wild-type protein [3,4]. Mutant and wild-type precursor proteins both may undergo furin cleavage between residues 243 and 244, producing a peptide of 34 amino acids in the case of ABri and 23 amino acids long in the case of the wild type peptide. The ABri 4kDa peptide is the main component of the amyloid deposits found in familial British dementia brains. A decamer duplication in the 3- region of the BRI gene originates the peptide Adan that is associated with dementia in Familial Danish dementia (FDD), similar to BDD clinically, but with additional hearing and eyesight loss [5]. The resulting reading frame is extended to 277 amino acid residues, and cleavage by furin releases a peptide of 34 residues, which is identical to Abri and WT in its N-terminal 22-residues, but contains a distinct C-terminal 10 residues composed of mainly hydrophobic residues. Here we demonstrate that C-terminal extensions of Abri and Adan are required to elongate initially-formed dimers to neurotoxic soluble oligomers and fibrils. In contrast, the shorter wild-type peptide does not aggregate under the same conditions and is not toxic. Conformational analyses indicate triple-beta-sheet structures. Soluble nonfibrillar oligomers of oxidised ABri and reduced Adan were observed in solution (pH7.4) of peptides prior to the appearance of mature fibrils.  相似文献   

16.
Therapeutic Strategies for Alzheimer’s Disease   总被引:1,自引:0,他引:1  
Therapeutic approaches for Alzheimer's disease (AD) are guided by four disease characteristics: amyloid plaques, neurofibrillar tangles (NFT), neurodegeneration, and dementia. Amyloid plaques are composed largely of 4 kDa beta-amyloid (Abeta) peptides, with the more amyloidogenic, 42 amino acid form (Abeta42) as the primary species. Because multiple, rare mutations that cause early-onset, familial AD lead to increased production or aggregation of Abeta42, amyloid therapeutics aim to reduce the amount of toxic Abeta42 aggregates. Amyloid-based therapies include gamma-secretase inhibitors and modulators, BACE inhibitors, aggregation blockers, catabolism inducers, and anti-Abeta biologics. Tangles are composed of paired helical filaments of hyperphosphorylated tau protein. Tau-based therapeutics include kinase inhibitors, microtubule stabilizers, and catabolism inducers. Therapeutic strategies for neurodegeneration target multiple mechanisms, including excitotoxicity, mitochondrial dysfunction, oxidative damage, and inflammation or stimulation of neuronal viability. Although not disease modifying, cognition enhancers are important to treat the symptom of dementia. Strategies for cognition enhancement include cholinesterase inhibitors, and other approaches to enhance the signaling of cholinergic and glutamatergic neurons. In summary, plaques, tangles, neurodegeneration and dementia guide the development of multiple therapeutic approaches for AD and are the subject of this review.  相似文献   

17.
18.
One of the familial forms of Alzheimer's disease (AD) encodes the amyloid-beta precursor protein (AbetaPP) substitution mutation V717F. This mutation is relevant to AD research, since it has been utilized to generate transgenic mice models to study AD pathology and therapeutic interventions. Amyloid beta (Abeta) peptides were obtained from the cerebral tissue of three familial AD subjects carrying the AbetaPP V717F mutation. A combination of ultracentrifugation, size-exclusion, and reverse-phase high performance liquid chromatography, tryptic and cyanogen bromide hydrolysis, amino acid analysis, and matrix-assisted laser desorption ionization and surface-enhanced laser desorption ionization mass spectrometry was used to characterize the familial AD mutant Abeta peptides. The AbetaPP V717F mutation, located 4-6 residues beyond the wild-type AbetaPP gamma-secretase cleavage site, yielded longer Abeta peptides with C termini between residues 43 and 54. In the cerebral cortex these peptides aggregated into thin water- and SDS-insoluble amyloid bundles that condensed into flocculent spherical plaques. In the leptomeningeal arteries the amyloid was deposited in moderate amounts and was primarily composed of the shorter and more soluble Abeta species ending at residues 40, 42, and 44. The single V717F mutation in AbetaPP results in distinctive and drastic changes in the length and tertiary structure of Abeta peptides, which appear to be responsible for the earlier clinical manifestations of dementia and death of these patients.  相似文献   

19.
A case for a non-transgenic animal model of Alzheimer's disease   总被引:1,自引:0,他引:1  
Alzheimer's disease (AD) is associated with an early impairment in memory and is the major cause of dementia in the elderly. beta-Amyloid (Abeta) is believed to be a primary factor in the pathogenic pathway leading to dementia. Mounting evidence suggests that this syndrome begins with subtle alterations in synaptic efficacy prior to extensive neuronal degeneration and that the synaptic dysfunction could be caused by diffusible oligomeric assemblies of Abeta. This paper reviews the findings from behavioral analysis, electrophysiology, neuropathology and nootropic drug screening studies involving exogenous administration of Abeta in normal rodent brains. This non-transgenic model of amyloid pathology in vivo is presented as a complementary alternative model to transgenic mice to study the cellular and molecular pathways induced by amyloid, which in turn may be a causal factor in the disruption of cognition. The data reviewed here confirm that the diffusible form of Abeta rapidly induces synaptic dysfunction and a secondary process involving cellular cascades induced by the fibrillar form of amyloid. The time-course of alteration in memory processes implicates at least two different mechanisms that may be targeted with selective therapies aimed at improving memory in some AD patients.  相似文献   

20.
The ABri is a 34 residue peptide that is the major component of amyloid deposits in familial British dementia. In the amyloid deposits, the ABri peptide adopts aggregated beta-pleated sheet structures, similar to those formed by the Abeta peptide of Alzheimer's disease and other amyloid forming proteins. As a first step toward elucidating the molecular mechanisms of the beta-amyloidosis, we explored the ability of the environmental variables (pH and peptide concentration) to promote beta-sheet fibril structures for synthetic ABri peptides. The secondary structures and fibril morphology were characterized in parallel using circular dichroism, atomic force microscopy, negative stain electron microscopy, Congo red, and thioflavin-T fluorescence spectroscopic techniques. As seen with other amyloid proteins, the ABri fibrils had characteristic binding with Congo red and thioflavin-T, and the relative amounts of beta-sheet and amyloid fibril-like structures are influenced strongly by pH. In the acidic pH range 3.1-4.3, the ABri peptide adopts almost exclusively random structure and a predominantly monomeric aggregation state, on the basis of analytical ultracentrifugation measurements. At neutral pH, 7.1-7.3, the ABri peptide had limited solubility and produced spherical and amorphous aggregates with predominantly beta-sheet secondary structure, whereas at slightly acidic pH, 4.9, spherical aggregates, intermediate-sized protofibrils, and larger-sized mature amyloid fibrils were detected by atomic force microscopy. With aging at pH 4.9, the protofibrils underwent further association and eventually formed mature fibrils. The presence of small amounts of aggregated peptide material or seeds encourage fibril formation at neutral pH, suggesting that generation of such seeds in vivo could promote amyloid formation. At slightly basic pH, 9.0, scrambling of the Cys5-Cys22 disulfide bond occurred, which could lead to the formation of covalently linked aggregates. The presence of the protofibrils and the enhanced aggregation at slightly acidic pH is consistent with the behavior of other amyloid-forming proteins, which supports the premise that a common mechanism may be involved in protein misfolding and beta-amyloidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号