首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Complement activation in amyloid plaques in Alzheimer's dementia   总被引:10,自引:0,他引:10  
Amyloid plaques in Alzheimer's dementia contain complement factors C1q, C4 and C3. In the present study we demonstrate complement activation in amyloid plaques using immunoenzymatical techniques and specific antibodies against subunits of individual complement components and activated complement products. Amyloid plaques contain C1q and activated C3 fragments (C3c and C3d, g) but no C1s and C3a. These findings demonstrate that the complement components are not passively bound to the amyloid plaque structures but are the result of an activation process. The role of complement activation in the genesis of senile plaques is discussed.  相似文献   

2.
3.
The mechanisms by which tissue injury after acute myocardial infarction occurs have not been fully elucidated, but considerable evidence suggests that activation of complement plays an important role in the pathophysiology. Reperfusion of the ischemic myocardium is strictly necessary to rescue the exposed tissue from eventual death. However, reversion of the blood supply is also associated with reperfusion injury contributing to tissue injury. Activation of the complement system has indisputable beneficial effects in the immune defense and in the clearance of damaged tissue and apoptotic cells, but excessive activation of the system may lead to uncontrolled tissue damage. This review focuses on the role of complement activation, with focus on the lectin pathway, endothelial dysfunction and cardiovascular diseases, including ischemic heart disease and diabetic angiopathy. Finally, potential therapeutic strategies targeting the complement system are discussed.  相似文献   

4.
Rearrangement of chromosome 21 in Alzheimer's disease   总被引:3,自引:0,他引:3  
We have analyzed the DNA from four patients suffering from a dementia of the Alzheimer type and of four controls of identical age. Estimates of the copy numbers of two genes located on chromosome 21, SOD1 and ETS2, gave the following results: in all the cases there was duplication of ETS2 whereas SOD1 was normal. These preliminary results indicate that the segment of chromosome 21(q21----q22.1) is rearranged in all the four patients who were investigated.  相似文献   

5.
Wilson disease (WD) is an autosomal recessive disorder resulting in copper accumulation to toxic levels. Patients may present with neurologic, hepatic, or hematologic disease at any age between the first and fifth decade of life. Because of clinical heterogeneity, genetic heterogeneity in the etiology of the disease has been proposed. Recently, linkage of the WD locus to loci on 13q has been demonstrated in five Middle-Eastern kindreds. We have used esterase D and several polymorphic markers on 13q to investigate linkage in WD pedigrees from the United States and Canada. Ten kindreds, three with hepatic and seven with neurologic presentations, were informative, yielding a lod score of 2.189 at a recombination fraction of .06 with probe 7F12 at D13S1. Patients were generally of mixed European background, but one particularly informative pedigree was Hispanic. Our data confirm the provisional assignment of the gene for WD to 13q. More specifically, our findings indicate that, irrespective of ethnic background or clinical presentation, the linkage to 13q will be present in most pedigrees. The relative lack of linkage heterogeneity indicates that closely linked polymorphic loci on 13q can be useful in prenatal and presymptomatic diagnosis and in heterozygote detection.  相似文献   

6.
In our earlier results, we demonstrated that cells expressing the complement C5aR are vulnerable since abnormal activation of C5aR caused apoptosis of these cells. In this study, we demonstrate that activation of C5aR by antisense homology box (AHB) peptides synthesized in multiple antigenic peptide form and representing putative interaction sites of the C5a/C5aR evoked calcium influx in TGW neuroblastoma cells. Dose-dependent inhibition of the response was found when the cells were pretreated with C5a, suggesting that C5aR was involved in this process. In addition, pretreatment with monomeric forms of the AHB peptides resulted in attenuation of the calcium signals, supporting the idea of the role of C5aR in this process. Cells of a neuron-rich primary culture and pyramidal cells of rat brain slices also responded to the AHB peptide activation with an increase in the intracellular calcium level, showing that calcium metabolism might be affected in these cells. TUNEL staining demonstrated that C5aR-mediated apoptosis could be induced both in cells of the primary culture as well as in cortical pyramidal neurons of the rat brain. In addition, we investigated expression of C5aR in the hippocampal and cortical neurons of human brains of healthy and demented patients using two anti-human C5aR Abs. Pyramidal cells of the hippocampus and cortex and granular cells of the hippocampus were immunopositive on staining. Although staining was also positive in the vascular dementia brain, it disappeared in the brain with Alzheimer's disease. These results provide further support that C5aR may be involved in neurodegeneration.  相似文献   

7.
8.
Complement activation in heart diseases. Role of oxidants   总被引:6,自引:0,他引:6  
Increasing evidence demonstrated that atherosclerosis is an immunologically mediated disease. Myocardial ischemia/reperfusion injury is accompanied by an inflammatory response contributing to reversible and irreversible changes in tissue viability and organ function. Three major components are recognized as the major contributing factors in reperfusion injury. These are: (1) molecular oxygen; (2) cellular blood elements (especially the neutrophils); and (3) components of the activated complement system. The latter two often act in concert. Endothelial and leukocyte responses are involved in tissue injury, orchestrated primarily by the complement cascade. Anaphylatoxins and assembly of the membrane attack complex contribute directly and indirectly to further tissue damage. Tissue damage mediated by neutrophils can be initiated by complement fragments, notably C5a, which are potent stimulators of neutrophil superoxide production and adherence to coronary artery endothelium. The complement cascade, particularly the alternative pathway, is activated during myocardial ischemia/reperfusion. Complement fragments such as the anaphylatoxins C3a and C5a, are produced both locally and systematically, and the membrane attack complex is deposited on cell membranes and subsequent release of mediators such as histamine and platelet activating factor (PAF), thereby causing an increase in vascular permeability with concomitant manifestation of cellular edema. Complement increases the expression of CD18 on the neutrophils and increases P-selectin expression on the surface of the endothelium. Mitochondria may be a source of molecules that activate complements during ischemia/reperfusion injury to myocardium, providing therewith a stimulus for infiltration of polymorphonuclear leukocytes. Tissue salvage can be achieved by depletion of complement components, thus making evident a contributory role for the complement cascade in ischemia/reperfusion injury. The complexities of the complement cascade provide numerous sites as potential targets for therapeutic interventions designed to modulate the complement response to injury. The latter is exemplified by the ability of soluble form of complement receptor 1 (sCR1) to decrease infarct size in in vitro models of ischemia/reperfusion injury. The mechanism(s) that initiates complement activation is not clearly known, although loss of CD59 (protectin) from cells compromised by ischemia/reperfusion may contribute to direct damage of the coronary vascular bed by the terminal complement complex. Therapeutic approaches to ischemia/reperfusion injury in general, and especially those involving complements, are at the very beginning and their potential benefits have still to be adequately evaluated. It may be noted that complement activation has both positive and negative effects and, therefore, might be modulated rather than abruptly blunted.  相似文献   

9.
10.
11.
The univalent hapten, nonadeca lysyl epsilon-Dnp-lysine, binds tightly to rabbit anti-2,4-dinitrophenyl antibody, and the complex has a sedimentation coefficient of 6.7, characteristic of a single antibody molecule. In this communication, we show that this complex is a good activator of the serum complement system. For activation to occur, the univalent hapten must contain the specific group which binds to the antibody, and also the polycationic chain. In addition, activation requires a functional complement-binding region on the intact antibody molecule. The classical pathway appears to be involved since the first, fourth, and second components of complement are markedly depleted when the complement system is activated by this univalent hapten-antibody complex.  相似文献   

12.
Premature centromere division (PCD) represents a loss of control over the sequential separation and segregation of chromosome centromeres. Although first described in aging women, PCD on the X chromosome (PCD,X) is markedly elevated in peripheral blood lymphocytes of individuals suffering from Alzheimer disease (AD). The present study evaluated PCD,X, using a fluorescent in situ hybridization method, in interphase nuclei of frontal cerebral cortex neurons from sporadic AD patients and age-matched controls. The average frequency of PCD,X in AD patients (8.60 ± 1.20%) was almost three times higher ( p  < 0.01) than in the control group (2.96 ± 1.20). However, consistent with previous studies, no mitotic cells were found in neurons in either AD or control brain, suggesting an intrinsic inability of post-mitotic neurons to divide. In view of the fact that it has been well-documented that neurons in AD can re-enter into the cell division cycle, the findings presented here of increased PCD advance the hypothesis that deregulation of the cell cycle may contribute to neuronal degeneration and subsequent cognitive deficits in AD.  相似文献   

13.
Sporadic Alzheimer's disease (SAD) is the most common form of dementia, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most frequent hereditary ischemic small vessel disease of the brain. Relevant biomarkers or specific metabolic signatures could provide powerful tools to manage these diseases. Therefore, the main goal of this study was to compare the postmortem frontal cortex gray matter, white matter and cerebrospinal fluid (CSF) between a cognitively healthy group and CADASIL and SAD groups. We evaluated 352 individual lipids, belonging to 13 lipid classes/subclasses, using mass spectrometry, and the lipid profiles were subjected to multivariate analysis to discriminate between the dementia groups (CADASIL and SAD) and healthy controls. The main lipid molecular species showing greater discrimination by partial least squares-discriminant analysis (PLS-DA) and a higher significance multivariate correlation (sMC) index were as follows: phosphatidylserine (PS) PS(44:7) and lysophosphatidylethanolamine (LPE) LPE(18:2) in gray matter (GM); phosphatidylethanolamine (PE) PE(32:2) and phosphatidylcholine PC PC(44:6) in white matter (WM), and ether PE (ePE) ePE(38:2) and ether PC (ePC) ePC(34:3) in CSF. Common phospholipid molecular species were obtained in both dementias, such as PS(44:7) and lyso PC (LPC) LPC(22:5) in GM, PE(32:2) in WM and phosphatidic acid (PA) PA(38:5) and PC(42:7) in CFS. Our exploratory study suggests that phospholipids (PLs) involved in neurotransmission alteration, connectivity impairment and inflammation response in GM, WM and CSF are a transversal phenomenon affecting dementias such as CADASIL and SAD independent of the etiopathogenesis, thus providing a possible common prodromal phospholipidic biomarker of dementia.  相似文献   

14.
The last year has seen major advances in the study of Alzheimer's disease (AD). Four mutations involving amino acid substitutions in exons 16 and 17 of the amyloid precursor protein (APP) gene, have been identified which co-segregate with the disease in some families multiply affected by early onset Alzheimer's disease. These mutations are strongly suggestive of a causative role for the amyloid precursor protein in Alzheimer's disease. Despite their rarity, these mutations are important because they represent the first known cause of Alzheimer's disease. Processing of APP must be central to the pathogenesis of the disease although the precise effects of these amino acid substitutions are not understood. Work is now being undertaken to characterise the processing pathways of APP and to identify other causes of AD. The development of models of AD using the APP mutations offers the possibility of identifying drug targets and developing more effective treatments than are presently available.  相似文献   

15.
16.
Malformative syndrome with ring chromosome 13   总被引:1,自引:0,他引:1  
  相似文献   

17.
Ring chromosome 13 in a polymalformed anencephalic.   总被引:2,自引:0,他引:2  
In the 33rd week of pregnancy an amniocentesis was performed because of low estriol. X-ray indicated the presence of anencephaly and a premature delivery was induced. Necropsy, in addition to anencephaly, showed a wide variety of malformations. The fetal karyotype determined from cultured amniotic fluid cells revealed a ring chromosome 13.  相似文献   

18.
19.
Recent findings have further characterized the neural and psychological bases of long-term memory failure in Alzheimer's disease. Convergent volumetric neuroimaging studies indicate that loss of episodic memory is specifically related to early-stage limbic-diencephalic pathology, and that non-mnemonic impairment is specifically related to later-stage temporal-neocortical pathology. Recent studies of Alzheimer's disease have also reported informative cognitive dissociations in semantic memory and implicit memory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号