首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The "classical" nuclear protein import pathway depends on importin alpha and importin beta. Importin alpha binds nuclear localization signal (NLS)-bearing proteins and functions as an adapter to access the importin beta-dependent import pathway. In humans, only one importin beta is known to interact with importin alpha, while six alpha importins have been described. Various experimental approaches provided evidence that several substrates are transported specifically by particular alpha importins. Whether the NLS is sufficient to mediate importin alpha specificity is unclear. To address this question, we exchanged the NLSs of two well-characterized import substrates, the seven-bladed propeller protein RCC1, preferentially transported into the nucleus by importin alpha3, and the less specifically imported substrate nucleoplasmin. In vitro binding studies and nuclear import assays revealed that both NLS and protein context contribute to the specificity of importin alpha binding and transport.  相似文献   

2.
Little quantitative, kinetic information is available with respect to the process of nuclear import of conventional nuclear localization sequence (NLS)-containing proteins, which initially involves recognition and docking at the nuclear pore by importin alpha/beta. This study compares the binding and nuclear import properties of mouse (m) and yeast (y) importin (IMP) subunits with respect to the NLSs from the SV40 large tumor antigen (T-ag), and the Xenopus laevis phosphoprotein N1N2. m- and y-IMPalpha recognized both NLSs, with y-IMPalpha exhibiting higher affinity. m-IMPbeta greatly enhanced the binding of m-IMPalpha to the T-ag and N1N2 NLSs, but y-IMPbeta did not significantly affect the affinity of y-IMPalpha for the T-ag NLS. In contrast, y-IMPbeta enhanced y-IMPalpha binding to the NLS of N1N2, but to a lesser extent than the enhancement of m-IMPalpha binding by m-IMPbeta. NLS-dependent nuclear import was reconstituted in vitro using the different importin subunits together with the transport factors Ran and NTF2. Whereas T-ag NLS-mediated nuclear import did not exhibit an absolute requirement for NTF2, N1N2 NLS-mediated transport strictly required NTF2. High levels of NTF2 inhibited nuclear accumulation conferred by both NLSs. We conclude that different NLSs possess distinct nuclear import properties due to differences in recognition by importin and requirements for NTF2.  相似文献   

3.
For nuclear entry of large nucleoprotein complexes, it is thought that one key nuclear localization signal (NLS) of a protein component becomes exposed to mediate importin recognition. We show that the nuclear entry of simian virus 40 involves a dynamic interplay between two distinct interiorly situated capsid NLSs, the Vp1 NLS and the Vp3 NLS, and the selective exposure and importin recognition of the Vp3 NLS. The Vp3 NLS-null mutants assembled normally into virion-like particles (VLP) in mutant DNA-transfected cells. When used to infect a new host, the null VLP entered the cell normally but was impaired in viral DNA nuclear entry due to a lack of recognition by the importin alpha 2/beta heterodimer, leading to reduced viability. Both Vp3 and Vp1 NLSs directed importin interaction in vitro, but the Vp1 NLS, which overlaps the Vp1 DNA binding domain, did not bind importins in the presence of DNA. The results suggest that certain canonical NLSs within a nucleoprotein complex, such as the Vp1 NLS, can be masked from functioning by binding to the nucleic acid component and that the availability of an NLS that is not masked and can become exposed for importin binding, such as the Vp3 NLS, is a general feature of the nuclear entry of the nucleoprotein complexes, including those of other animal viruses.  相似文献   

4.
The regulated process of protein import into the nucleus of a eukaryotic cell is mediated by specific nuclear localization signals (NLSs) that are recognized by protein import receptors. This study seeks to decipher the energetic details of NLS recognition by the receptor importin alpha through quantitative analysis of variant NLSs. The relative importance of each residue in two monopartite NLS sequences was determined using an alanine scanning approach. These measurements yield an energetic definition of a monopartite NLS sequence where a required lysine residue is followed by two other basic residues in the sequence K(K/R)X(K/R). In addition, the energetic contributions of the second basic cluster in a bipartite NLS ( approximately 3 kcal/mol) as well as the energy of inhibition of the importin alpha importin beta-binding domain ( approximately 3 kcal/mol) were also measured. These data allow the generation of an energetic scale of nuclear localization sequences based on a peptide's affinity for the importin alpha-importin beta complex. On this scale, a functional NLS has a binding constant of approximately 10 nm, whereas a nonfunctional NLS has a 100-fold weaker affinity of 1 microm. Further correlation between the current in vitro data and in vivo function will provide the foundation for a comprehensive quantitative model of protein import.  相似文献   

5.
Parathyroid hormone-related protein (PTHrP), expressed in a range of tumors, has endocrine, autocrine/paracrine, and intracrine actions, some of which relate to its ability to localize in the nucleus. Here we show for the first time that extracellularly added human PTHrP (amino acids 1-108) can be taken up specifically by receptor-expressing UMR106.01 osteogenic sarcoma cells and accumulate to quite high levels in the nucleus and nucleolus within 40 min. Quantitation of recognition by the nuclear localization sequence (NLS)-binding importin subunits indicated that in contrast to proteins containing conventional NLSs, PTHrP is recognized exclusively by importin beta and not by importin alpha. The sequence of PTHrP responsible for binding was mapped to amino acids 66-94, which includes an SV40 large tumor-antigen NLS-like sequence, although sequence determinants amino-terminal to this region were also necessary for high affinity binding (apparent dissociation constant of approximately 2 nM for importin beta). Nuclear import of PTHrP was assessed in vitro using purified components, demonstrating that importin beta, together with the GTP-binding protein Ran, was able to mediate efficient nuclear accumulation in the absence of importin alpha, whereas the addition of nuclear transport factor NTF2 reduced transport. The polypeptide ligand PTHrP thus appears to be accumulated in the nucleus/nucleolus through a novel, NLS-dependent nuclear import pathway independent of importin alpha and perhaps also of NTF2.  相似文献   

6.
7.
Importin alpha is the nuclear import receptor that recognizes classical monopartite and bipartite nuclear localization signals (NLSs). The structure of mouse importin alpha has been determined at 2.5 A resolution. The structure shows a large C-terminal domain containing armadillo repeats, and a less structured N-terminal importin beta-binding domain containing an internal NLS bound to the NLS-binding site. The structure explains the regulatory switch between the cytoplasmic, high-affinity form, and the nuclear, low-affinity form for NLS binding of the nuclear import receptor predicted by the current models of nuclear import. Importin beta conceivably converts the low- to high-affinity form by binding to a site overlapping the autoinhibitory sequence. The structure also has implications for understanding NLS recognition, and the structures of armadillo and HEAT repeats.  相似文献   

8.
Functional nuclear proteins are selectively imported into the nucleus by transport factors such as importins alpha and beta. The relationship between the efficiency of nuclear protein import and the cell cycle was measured using specific import substrates for the importin alpha/beta-mediated pathway. After the microinjection of SV40 T antigen nuclear localization signal (NLS)-containing substrates into the cytoplasm of synchronized culture cells at a certain phase of the cell cycle, the nuclear import of the substrates was measured kinetically. Cell cycle-dependent change in import efficiency, but not capacity, was found. That is, import efficiency was found low in the early S, G2/M, and M/G1 phases compared with other phases. In addition, we found that the extent of co-imunoprecipitation of importin alpha with importin beta from cell extracts was strongly associated with import efficiency. These results indicate that the importin alpha/beta-mediated nuclear import machinery is regulated in a cell cycle-dependent manner through the modulation of interaction modes between importins alpha and beta.  相似文献   

9.
The open reading frame UL84 of human cytomegalovirus encodes a multifunctional regulatory protein which is required for viral DNA replication and binds with high affinity to the immediate-early transactivator IE2-p86. Although the exact role of pUL84 in DNA replication is unknown, the nuclear localization of this protein is a prerequisite for this function. To investigate whether the activities of pUL84 are modulated by cellular proteins we used the Saccharomyces cerevisiae two-hybrid system to screen a cDNA-library for interacting proteins. Strong interactions were found between pUL84 and four members of the importin alpha protein family. These interactions could be confirmed in vitro by pull down experiments and in vivo by coimmunoprecipitation analysis from transfected cells. Using in vitro transport assays we showed that the pUL84 nuclear import required importin alpha, importin beta, and Ran, thus following the classical importin-mediated import pathway. Deletion mutagenesis of pUL84 revealed a domain of 282 amino acids which is required for binding to the importin alpha proteins. Its function as a nuclear localization signal (NLS) was confirmed by fusion to heterologous proteins. Although containing a cluster of basic amino acids similar to classical NLSs, this cluster did not contain the NLS activity. Thus, a complex structure appears to be essential for importin alpha binding and import activity.  相似文献   

10.
The sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination, as mutations in SRY can cause XY sex reversal. Although some SRY missense mutations affect DNA binding and bending activities, it is unclear how others contribute to disease. The high mobility group domain of SRY has two nuclear localization signals (NLS). Sex-reversing mutations in the NLSs affect nuclear import in some patients, associated with defective importin-beta binding to the C-terminal NLS (c-NLS), whereas in others, importin-beta recognition is normal, suggesting the existence of an importin-beta-independent nuclear import pathway. The SRY N-terminal NLS (n-NLS) binds calmodulin (CaM) in vitro, and here we show that this protein interaction is reduced in vivo by calmidazolium, a CaM antagonist. In calmidazolium-treated cells, the dramatic reduction in nuclear entry of SRY and an SRY-c-NLS mutant was not observed for two SRY-n-NLS mutants. Fluorescence spectroscopy studies reveal an unusual conformation of SRY.CaM complexes formed by the two n-NLS mutants. Thus, CaM may be involved directly in SRY nuclear import during gonadal development, and disruption of SRY.CaM recognition could underlie XY sex reversal. Given that the CaM-binding region of SRY is well-conserved among high mobility group box proteins, CaM-dependent nuclear import may underlie additional disease states.  相似文献   

11.
12.
Nuclear import of proteins containing a classical nuclear localization signal (NLS) involves NLS recognition by importin alpha, which associates with importin beta via the IBB domain. Other proteins, including parathyroid hormone-related protein (PTHrP), are imported into the nucleus by direct interaction with importin beta. We solved the crystal structure of a fragment of importin beta-1 (1-485) bound to the nonclassical NLS of PTHrP. The structure reveals a second extended cargo binding site on importin beta distinct from the IBB domain binding site. Using a permeabilized cell import assay we demonstrate that importin beta (1-485) can import PTHrP-coupled cargo in a Ran-dependent manner. We propose that this region contains a prototypical nuclear import receptor domain, which could have evolved into the modern importin beta superfamily.  相似文献   

13.
14.
15.
The "classical" nuclear import pathway depends on importins alpha and beta. Humans have only one importin beta, while six alpha importins have been described. Whether or not distinct alpha importins are essential for specific import pathways in living human cells is unclear. We used RNA interference technology to specifically down-regulate the expression of ubiquitously expressed human alpha importins in HeLa cells. Down-regulation of importins alpha3, alpha5, alpha7, and beta strongly inhibited HeLa cell proliferation, while down-regulation of importins alpha1 and alpha4 had only a minor effect or no effect. Nucleoplasmin import was not prevented by down-regulation of any alpha importin, indicating that the importin alpha/beta pathway was generally not affected. In contrast, importin alpha3 or alpha5 down-regulation specifically inhibited the nuclear import of the Ran guanine nucleotide exchange factor, RCC1. Coinjection of recombinant alpha importins and RCC1 into down-regulated cells demonstrated that these transport defects were specifically caused by the limited availability of importin alpha3 in both cases. Thus, importin alpha3 is the only alpha importin responsible for the classical nuclear import of RCC1 in living cells.  相似文献   

16.
The processivity factor of the human cytomegalovirus (HCMV) DNA polymerase phosphoprotein ppUL44 plays an essential role in viral replication, showing nuclear localization in infected cells. The present study examines ppUL44's nuclear import pathway for the first time, ectopic expression of ppUL44 revealing a strong nuclear localization in transfected COS-7 and other cell types, implying that no other HCMV proteins are required for nuclear transportation and retention. We show that of the two potential nuclear localization signals (NLSs) located at amino acids 162-168 (NLS1) and 425-431 (NLS2), NLS2 is necessary and sufficient to confer nuclear localization. Moreover, using enzyme-linked immunosorbent assays and gel mobility shift assays, we show that NLS2 is recognized with high affinity by the importin (IMP) alpha/beta heterodimer. Using gel mobility shift and transient transfection assays, we find that flanking sequences containing a cluster of potential phosphorylation sites, including a consensus site for protein kinase CK2 (CK2) at Ser413 upstream of the NLS, increase NLS2-dependent IMP binding and nuclear localization, suggesting a role for these sites in enhancing UL44 nuclear transport. Results from site-directed mutagenic analysis and live-cell imaging of green fluorescent protein (GFP)-UL44 fusion protein-expressing cells treated with the CK2-specific inhibitor 4,5,6,7-tetrabromobenzotriazole are consistent with phosphorylation of Ser413 enhancing ppUL44 nuclear transport.  相似文献   

17.
Ku70 and Ku80 form a heterodimeric complex involved in multiple nuclear processes. This complex plays a key role in DNA repair due to its ability to bind DNA double-strand breaks and facilitate repair by the nonhomologous end-joining pathway. Ku70 and Ku80 have been proposed to contain bipartite and monopartite nuclear localization sequences (NLSs), respectively, that allow them to be translocated to the nucleus independently of each other via the classical importin-α (Impα)/importin-β-mediated nuclear import pathway. To determine the structural basis of the recognition of Ku70 and Ku80 proteins by Impα, we solved the crystal structures of the complexes of Impα with the peptides corresponding to the Ku70 and Ku80 NLSs. Our structural studies confirm the binding of the Ku80 NLS as a classical monopartite NLS but reveal an unexpected binding mode for Ku70 NLS with only one basic cluster bound to the receptor. Both Ku70 and Ku80 therefore contain monopartite NLSs, and sequences outside the basic cluster make favorable interactions with Impα, suggesting that this may be a general feature in monopartite NLSs. We show that the Ku70 NLS has a higher affinity for Impα than the Ku80 NLS, consistent with more extensive interactions in its N-terminal region. The prospect of nuclear import of Ku70 and Ku80 independently of each other provides a powerful regulatory mechanism for the function of the Ku70/Ku80 heterodimer and independent functions of the two proteins.  相似文献   

18.
19.
Vpx protein of human immunodeficiency virus type 2/simian immunodeficiency virus (SIV) has been implicated in the transport of the viral genome into the nuclei of nondividing cells. The mechanism by which Vpx enters the nucleus remains unknown. Here we have identified two distinct noncanonical nuclear localization signals (NLSs) in Vpx of SIV(smPbj1.9) and defined the pathways for its nuclear import. Although nuclear targeting signals identified here are distinct from known nuclear import signals, translocation of Vpx into the nucleus involves the interaction of its N-terminal NLS (amino acids 20 to 40) or C-terminal NLS (amino acids 65 to 75) with importin alpha and, in the latter case, also with importin beta. Collectively, these results suggest that importins interact with Vpx and ensure the effective import of Vpx into the nucleus to support virus replication in nondividing cells.  相似文献   

20.
Smad proteins are intracellular mediators of transforming growth factor-beta (TGF-beta) and related cytokines. Although ligand-induced nuclear translocation of Smad proteins is clearly established, the pathway mediating this import is yet to be determined. We previously identified a nuclear localization signal (NLS) in the N-terminal region of Smad 3, the major Smad protein involved in TGF-beta signal transduction. This basic motif (Lys(40-)Lys-Leu-Lys-Lys(44)), conserved among all the pathway-specific Smad proteins, is required for Smad 3 nuclear import in response to ligand. Here we studied the nuclear import pathway of Smad 3 mediated by this NLS. We demonstrate that the isolated Smad 3 MH1 domain displays significant specific binding to importin beta, which is diminished or eliminated by mutations in the NLS. Full-size Smad 3 exhibits weak but specific binding to importin beta, which is enhanced after phosphorylation by the type I TGF-beta receptor. In contrast, no interaction was observed between importin alpha and Smad 3 or its MH1 domain, indicating that nuclear translocation of Smad proteins may occur through direct binding to importin beta. We propose that activation of all of the pathway-specific Smad proteins (Smads 1, 2, 3, 5, 8, and 9) exposes the conserved NLS motif, which then binds directly to importin beta and triggers nuclear translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号