首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
"Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat   总被引:1,自引:0,他引:1  
PCR-based markers were developed to detect the point mutations responsible for the two major semi-dwarfing genes Rht-B1b ( Rht1) and Rht-D1b ( Rht2) in wheat. These markers were validated by testing 19 wheat varieties of known Rht genotype. They included Rht-B1b and Rht-D1b dwarfs, double-mutant varieties and tall wheats. These were correctly genotyped with the Rht-B1b and Rht-D1b-specific primers, as well as markers specific for the tall alleles Rht-B1a and Rht-D1a. Using a family of doubled-haploid lines segregating for Rht-B1b and Rht-D1b, the markers were mapped to the expected homoeologous regions of chromosomes 4B and 4D, respectively. Both markers were strongly correlated with a reduction in height, accounting for 23% ( Rht-B1b) and 44% ( Rht-D1b) of the phenotypic variance in the population. These markers will have utility in marker-assisted selection of the Rht-B1b and Rht-D1b genes in wheat breeding programs.  相似文献   

3.
The effects of the Rht8c, Rht-B1b, Rht-B1e, and Rht-D1b genes on wheat height have been investigated. Variations in these effects are significantly modified by the genetic background and year conditions. A combination of the Rht8c, Rht-B1a, Rht-D1b, and Ppd-D1a alleles is the most advantageous for the conditions of southern Ukraine, since it is associated with optimal plant height under contrasting conditions within different years. The genotypes of some varieties were shown to include gene(s) that were unidentifiable by the molecular markers and significantly decreased plant height.  相似文献   

4.
矮秆基因对小麦部分农艺性状的效应   总被引:1,自引:1,他引:1  
以中国主要麦区的124份小麦品种为材料,利用分子标记和系谱分析相结合,对其按照所含的矮秆基因Rht-B1b、Rht-D1b和Rht8进行分类,结合田间株高、旗叶长、小穗数和穗粒数以及室内苗期根系长度等农艺形状的调查,分析不同矮秆基因对小麦农艺性状的效应.结果显示:(1)参试的124份小麦品种(系)中23份含有Rht-B1b,7份含有Rht-D1b,22份含有Rht8基因,34份同时含有Rht-B1b和Rht8,16份同时含有Rht-D1b和Rht8,可分为6组.(2)Rht-B1b和Rht-D1b在降低株高的同时也缩短了旗叶的长度和苗期叶长,Rht8对株高的影响较弱,对旗叶和苗期叶长的影响也较小;3个矮秆基因对苗期根系长度、小穗数没有显著影响;Rht-D1b和Rht8显著增加穗粒数.研究表明,矮秆基因Rht8对小麦株高以及其他农艺性状的影响均较小,但能够显著增加穗粒数,是小麦矮化育种中比较理想的矮秆基因.  相似文献   

5.
The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs) were observed for plant height and the SSR markers (−log10 (P-value) ≥4.82) and 280 (−log10 (P-value) ≥5.89) for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA) metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development.  相似文献   

6.
This study has found numerous novel genetic variants of GA-insensitive dwarfing genes with potential agricultural value for crop improvement. The cultivar, Spica is a tall genotype and possesses the wild-type genes of Rht-A1a, Rht-B1a and Rht-D1a. The cultivar Quarrion possesses a null mutant in the DELLA motif in each of the 3 genomes. This is a first report of a null mutant of Rht-A1. In addition, novel null mutants which differ from reported null alleles of Rht-B1b, Rht-B1e and Rht-D1b have been found in Quarrion, Carnamah and Whistler. The accession, Aus1408 has an allele of Rht-B1 with a mutation in the conserved ‘TVHYNP’ N-terminal signal binding domain with possible implications on its sensitivity to GA. Mutations in the conserved C-terminal GRAS domain of Rht-A1 alleles with possible effects on expression have been found in WW1842, Quarrion and Drysdale. Genetic variants with putative spliceosomal introns in the GRAS domain have been found in all accessions except Spica. Genome-specific cis-sequences about 124 bp upstream of the start codon of the Rht-1 gene have been identified for each of the three genomes.  相似文献   

7.
为系统了解青海小麦矮秆基因的分布特点,并进一步为青海高原小麦的株高育种提供优异种质资源。本研究利用5个矮秆基因的特异性分子标记对82份青海小麦品种资源中的矮秆基因进行了检测,并对不同矮秆基因的降秆效应进行了分析。结果表明:82份青海育成小麦品种中有49份材料至少含有一个矮秆基因,其中Rht-B1b的分布频率最高,约占参试材料的28.0%,其次是分布频率为23.2%的Rht8基因,而矮秆基因Rht-D1b、Rht5以及Rht12的分布频率分别为9.8%、13.4%、9.8%。在49份含有不同种类矮秆基因的材料中,其中16份材料同时含有2种及以上的矮秆基因,即RhtB1b和Rht8、Rht-D1b和Rht8、Rht-B1b和Rht5、Rht-D1b和Rht5、Rht8和Rht5、Rht-B1b和Rht12、Rht5和Rht12,并未发现同时含有矮秆基因Rht-B1b和Rht-D1b的品种;2份材料分别含有3种矮秆基因,即Rht-B1b、Rht8、Rht12和Rht-B1b、Rht5、Rht8;其余31份材料仅含有1种矮秆基因。82份青海育成小麦材料中仅含有Rht-B1b的材料11份,平均株高为86.2 cm,其降秆效应为5.7%;只含有Rht-D1b的材料有5份,平均株高为84.9 cm,其降秆效应为7.1%;仅含有Rht8的材料有9份,平均株高为88.6 cm,其降秆效应为3.1%。因此,在青海育成小麦品种中,矮秆基因的降秆效应为Rht-D1bRht-B1bRht8。  相似文献   

8.
 Plant height in wheat (Triticum aestivum L. em Thell) is known to be under polygenic control. Crosses involving genes Rht-B1 and Rht-D1, located on chromosomes 4BS and 4DS, respectively, have shown that these genes have major effects. Two RFLP loci were found to be linked to these two genes (Xfba1-4B with Rht-B1 and Xfba211-4D with Rht-D1) by genotyping a population of F1-derived doubled-haploid lines [‘Courtot’ (Rht-B1b+Rht-D1b)בChinese Spring’]. Using a well-covered molecular marker map, we detected three additional regions and one interaction influencing plant height. These regions, located on chromosome arms 4BS (near the locus Xglk556-4B), 7AL (near the locus Xglk478-7A) and 7BL (near the locus XksuD2-7B) explained between 5% and 20% of the variability for this trait in this cross. The influence of 2 loci from chromosome 4B (Xfba1-4B and Xglk556-4B) suggests that there could be a duplication of Rht-B1 on this chromosome originating from Cv ‘Courtot’. Moreover, an interaction effect between loci from chromosome arms 1AS (near the locus Xfba393-1A) and 1BL (near the locus Xcdo1188-1B) was comparable to or even higher than those of the Rht-B1b and Rht-D1b alleles. A model including the main effects of the loci from chromosomes 4B and 4D (Xfba1-4B, Xglk556-4B and Xfba211-4D) and the interaction effect between Xfba393-1A and Xcdo1188-1B is proposed, which explains about 50% of the variation in plant height. The present results are discussed in relation to those obtained using nullisomic or substitution lines. Received: 13 June 1997 / Accepted: 13 October 1997  相似文献   

9.
Fusarium head blight (FHB) is an important disease of wheat worldwide. Soissons is one of the most resistant varieties grown in UK. The current study was undertaken to identify QTL for FHB resistance in Soissons and to determine whether the semi-dwarfing alleles Rht-B1b and Rht-D1b have a similar influence on susceptibility to FHB. A Soissons (Rht-B1b; Rht-D1a) × Orvantis (Rht-B1a; Rht-D1b) doubled haploid (DH) population was assessed for FHB resistance in three trials. Soissons contributed a single, stable major FHB QTL linked to the Rht-D1 locus. In contrast, the Rht-B1b allele (contributed by Soissons) conferred no negative effect on FHB resistance, even conferring a very minor positive effect in one trial. The influence of the Rht-B1b and Rht-D1b alleles on FHB resistance was further investigated using both Mercia and Maris Huntsman near-isogenic lines. Under high disease pressure both Rht-B1b and Rht-D1b significantly decreased Type 1 resistance (resistance to initial infection). However, whilst Rht-D1b has no effect on Type 2 resistance (resistance to spread of the fungus within the spike), Rht-B1b significantly increased Type 2 resistance. Our study demonstrates that the choice of semi-dwarfing gene used in plant breeding programmes may be a significant consideration where resistance to FHB is an important breeding target.  相似文献   

10.

Background and aim

Concentrations of essential minerals in plant foods may have declined in modern high-yielding cultivars grown with large applications of nitrogen fertilizer (N). We investigated the effect of dwarfing alleles and N rate on mineral concentrations in wheat.

Methods

Gibberellin (GA)-insensitive reduced height (Rht) alleles were compared in near isogenic wheat lines. Two field experiments comprised factorial combinations of wheat variety backgrounds, alleles at the Rht-B1 locus (rht-B1a, Rht-B1b, Rht-B1c), and different N rates. A glasshouse experiment also included Rht-D1b and Rht-B1b+D1b in one background.

Results

In the field, depending on season, Rht-B1b increased crop biomass, dry matter (DM) harvest index, grain yield, and the economically-optimal N rate (N opt ). Rht-B1b did not increase uptake of Cu, Fe, Mg or Zn so these minerals were diluted in grain. Nitrogen increased DM yield and mineral uptake so grain concentrations were increased (Fe in both seasons; Cu, Mg and Zn in one season). Rht-B1b reduced mineral concentrations at N opt in the most N responsive season. In the glasshouse experiment, grain yield was reduced, and mineral concentrations increased, with Rht allele addition.

Conclusion

Effects of Rht alleles on Fe, Zn, Cu and Mg concentrations in wheat grain are mostly due to their effects on DM, rather than of GA-insensitivity on N opt or mineral uptake. Increased N requirement in semi-dwarf varieties partly offsets this dilution effect.  相似文献   

11.
Y Li  J Xiao  J Wu  J Duan  Y Liu  X Ye  X Zhang  X Guo  Y Gu  L Zhang  J Jia  X Kong 《The New phytologist》2012,196(1):282-291
? Rht-D1c (Rht10) carried by Chinese wheat (Triticum aestivum) line Aibian 1 is an allele at the Rht-D1 locus. Among the Rht-1 alleles, little is known about Rht-D1c although it determines an extreme dwarf phenotype in wheat. ? Here, we cloned and functionally characterized Rht-D1c using a combination of Southern blotting, target region sequencing, gene expression analysis and transgenic experiments. ? We found that the Rht-D1c allele was generated through a tandem segmental duplication (TSD) of a >?1?Mb region, resulting in two copies of the Rht-D1b. Two copies of Rht-D1b in the TSD were three-fold more effective in reducing plant height than a single copy, and transformation with a segment containing the tandemly duplicated copy of Rht-D1b resulted in the same level of reduction of plant height as the original copy in Aibian 1. ? Our results suggest that changes in gene copy number are one of the important sources of genetic diversity and some of these changes could be directly associated with important traits in crops.  相似文献   

12.
Successful plant establishment is critical to the development of high-yielding crops. Short coleoptiles can reduce seedling emergence particularly when seed is sown deep as occurs when moisture necessary for germination is deep in the subsoil. Detailed molecular maps for a range of wheat doubled-haploid populations (Cranbrook/Halberd, Sunco/Tasman, CD87/Katepwa and Kukri/Janz) were used to identify genomic regions affecting coleoptile characteristics length, cross-sectional area and degree of spiralling across contrasting soil temperatures. Genotypic variation was large and distributions of genotype means were approximately normal with evidence for transgressive segregation. Narrow-sense heritabilities were high for coleoptile length and cross-sectional area indicating a strong genetic basis for differences among progeny. In contrast, heritabilities for coleoptile spiralling were small. Molecular marker analyses identified a number of significant quantitative trait loci (QTL) for coleoptile growth. Many of the coleoptile growth QTL mapped directly to the Rht-B1 or Rht-D1 dwarfing gene loci conferring reduced cell size through insensitivity to endogenous gibberellins. Other QTL for coleoptile growth were identified throughout the genome. Epistatic interactions were small or non-existent, and there was little evidence for any QTL × temperature interaction. Gene effects at significant QTL were approximately one-half to one-quarter the size of effects at the Rht-B1 and Rht-D1 regions. However, selection at these QTL could together alter coleoptile length by up to 50 mm. In addition to Rht-B1b and Rht-D1b, genomic regions on chromosomes 2B, 2D, 4A, 5D and 6B were repeatable across two or more populations suggesting their potential value for use in breeding and marker-aided selection for greater coleoptile length and improved establishment.  相似文献   

13.
 The two GA-insensitive dwarfing gene loci Rht-B1 and Rht-D1 were mapped using three F2 populations, segregating for Rht-B1c (Rht3), Rht-D1b (Rht2) or Rht-D1c (Rht10). Rht-B1c was mapped on chromosome 4BS in the centromere region, distal and closely linked to the RFLP markers Xpsr144 (11.9 cM) and Xpsr584 (17.8 cM), but proximal to Xmwg634 (30 cM). Rht-D1c, however, was found to be closely linked to the distally located markers Xpsr921 (0.8 cM) and Xmwg634 (1.5 cM). The homoeologous relationships between the GA-insensitive dwarfing genes within the Triticeae are discussed. Received: 2 May 1997 / Accepted: 9 June 1997  相似文献   

14.
BACKGROUND AND AIMS: The gibberellin-insensitive Rht-B1b and Rht-D1b dwarfing genes are known to reduce the size of cells in culms, leaves and coleoptiles of wheat. Resulting leaf area development of gibberellin-insensitive wheats is poor compared to standard height (Rht-B1a and Rht-D1a) genotypes. Alternative dwarfing genes to Rht-B1b and Rht-D1b are available that reduce plant height, such as the gibberellin-responsive Rht8 gene. This study aims to investigate if Rht8 has a similar dwarfing effect on the size of leaf cells to reduce leaf area. METHODS: The effect of Rht8 on cell size and leaf area was assessed in four types of epidermal cells (interstomatal, long, sister and bulliform) measured on leaf 2 of standard height (rht8) and semi-dwarf (Rht8) doubled-haploid lines (DHLs). The DHLs were derived from a cross between very vigorous, standard height (rht8) ('Vigour18') and less vigorous, semi-dwarf (Rht8) ('Chuan-Mai 18') parents. KEY RESULTS: Large differences were observed in seedling vigour between the parents, where 'Vigour18' had a much greater plant leaf area than 'Chuan-Mai 18'. Accordingly, 'Vigour18' had on average longer, wider and more epidermal cells and cell files than 'Chuan-Mai 18'. Although there was correspondingly large genotypic variation among DHLs for these traits, the contrast between semi-dwarf Rht8 and tall rht8 DHLs revealed no difference in the size of leaf 2 or average cell characteristics. Hence, these traits were independent of plant height and therefore Rht8 in the DHLs. Correlations for leaf and average cell size across DHLs revealed a strong and positive relationship between leaf width and cell files, while the relationships between leaf and cell width, and leaf and cell length were not statistically different. The relative contribution of the four cell types (long, sister, interstomatal and bulliform) to leaf size in the parents, comparative controls and DHLs is discussed. CONCLUSIONS: Despite a large range in early vigour among the DHLs, none of the DHLs attained the leaf area or epidermal cell size and numbers of the vigorous rht8 parent. Nonetheless, the potential exists to increase the early vigour of semi-dwarf wheats by using GA-sensitive dwarfing genes such as Rht8.  相似文献   

15.
Relatively little is known about the genetic control of agronomic traits in common wheat (Triticum aestivum L.) compared with traits that follow Mendelian segregation patterns. A doubled-haploid population was generated from the cross RL4452x'AC Domain' to study the inheritance of the agronomic traits: plant height, time to maturity, lodging, grain yield, test weight, and 1000-grain weight. This cross includes the genetics of 2 western Canadian wheat marketing classes. Composite interval mapping was conducted with a microsatellite linkage map, incorporating 369 loci, and phenotypic data from multiple Manitoba environments. The plant height quantitative trait loci (QTLs), QHt.crc-4B and QHt.crc-4D, mapped to the expected locations of Rht-B1 and Rht-D1. These QTLs were responsible for most of the variation in plant height and were associated with other agronomic traits. An additional 25 agronomic QTLs were detected in the RL4452x'AC Domain' population beyond those associated with QHt.crc-4B and QHt.crc-4D. 'AC Domain' contributed 4 alleles for early maturity, including a major time to maturity QTL on 7D. RL4452 contributed 2 major alleles for increased grain yield at QYld.crc-2B and QYld.crc-4A, which are potential targets for marker-assisted selection. A key test weight QTL was detected on 3B and prominent 1000-grain weight QTLs were identified on 3D and 4A.  相似文献   

16.
 We report the genetic mapping of Dwf2, a dominant gibberellic acid (GA3)-insensitive dwarfing gene which has been previously described to cause a very short growth habit in barley (Hordeum vulgare) mutant ‘93/B694’. Using RFLP and microsatellite markers we performed segregation analysis in an F2 population comprising 86 individuals developed from a cross of ‘93/B694’ (Dwf2) with ‘Bonus M2’ (dwf2). Dwf2 was mapped on the short arm of barley chromosome 4H proximal to microsatellite marker XhvOle (5.7 cM) and distal to RFLP marker Xmwg2299 (18.3 cM). The genetic localization of the Dwf2 gene at a homoeologous position to the multiallelic Rht-B1 and Rht-D1 loci in wheat suggests synteny of GA-insensitive dwarfing genes within the Triticeae. Moreover, the extremely prostrate growth habit exhibited in barley ‘93/B694’ (Dwf2) resembles that of wheat plants carrying the genes Rht-B1c (Rht3) or Rht-D1c (Rht10). Received: 1 July 1998 / Accepted: 17 September 1998  相似文献   

17.
Bread wheat is a leading cereal crop worldwide. Limited amount of superior allele loci restricted the progress of molecular improvement in wheat breeding. Here, we revealed new allelic variation distribution for 13 yield‐related traits in series of genome‐wide association studies (GWAS) using the wheat 90K genotyping assay, characterized in 163 bread wheat cultivars. Agronomic traits were investigated in 14 environments at three locations over 3 years. After filtering SNP data sets, GWAS using 20 689 high‐quality SNPs associated 1769 significant loci that explained, on average, ~20% of the phenotypic variation, both detected already reported loci and new promising genomic regions. Of these, repetitive and pleiotropic SNPs on chromosomes 6AS, 6AL, 6BS, 5BL and 7AS were significantly linked to thousand kernel weight, for example BS00021705_51 on 6BS and wsnp_Ex_c32624_41252144 on 6AS, with phenotypic variation explained (PVE) of ~24%, consistently identified in 12 and 13 of the 14 environments, respectively. Kernel length‐related SNPs were mainly identified on chromosomes 7BS, 6AS, 5AL and 5BL. Plant height‐related SNPs on chromosomes 4DS, 6DL, 2DS and 1BL were, respectively, identified in more than 11 environments, with averaged PVE of ~55%. Four SNPs were confirmed to be important genetic loci in two RIL populations. Based on repetivity and PVE, a total of 41 SNP loci possibly played the key role in modulating yield‐related traits of the cultivars surveyed. Distribution of superior alleles at the 41 SNP loci indicated that superior alleles were getting popular with time and modern cultivars had integrated many superior alleles, especially for peduncle length‐ and plant height‐related superior alleles. However, there were still 19 SNP loci showing less than percentages of 50% in modern cultivars, suggesting they should be paid more attention to improve yield‐related traits of cultivars in the Yellow and Huai wheat region. This study could provide useful information for dissection of yield‐related traits and valuable genetic loci for marker‐assisted selection in Chinese wheat breeding programme.  相似文献   

18.
Genome-wide association studies (GWAS) have identified many common variants associated with complex traits in human populations. Thus far, most reported variants have relatively small effects and explain only a small proportion of phenotypic variance, leading to the issues of ‘missing’ heritability and its explanation. Using height as an example, we examined two possible sources of missing heritability: first, variants with smaller effects whose associations with height failed to reach genome-wide significance and second, allelic heterogeneity due to the effects of multiple variants at a single locus. Using a novel analytical approach we examined allelic heterogeneity of height-associated loci selected from SNPs of different significance levels based on the summary data of the GIANT (stage 1) studies. In a sample of 1,304 individuals collected from an island population of the Adriatic coast of Croatia, we assessed the extent of height variance explained by incorporating the effects of less significant height loci and multiple effective SNPs at the same loci. Our results indicate that approximately half of the 118 loci that achieved stringent genome-wide significance (p-value<5×10−8) showed evidence of allelic heterogeneity. Additionally, including less significant loci (i.e., p-value<5×10−4) and accounting for effects of allelic heterogeneity substantially improved the variance explained in height.  相似文献   

19.
Height is a classic complex trait with common variants in a growing list of genes known to contribute to the phenotype. Using a genecentric genotyping array targeted toward cardiovascular-related loci, comprising 49,320 SNPs across approximately 2000 loci, we evaluated the association of common and uncommon SNPs with adult height in 114,223 individuals from 47 studies and six ethnicities. A total of 64 loci contained a SNP associated with height at array-wide significance (p < 2.4 × 10−6), with 42 loci surpassing the conventional genome-wide significance threshold (p < 5 × 10−8). Common variants with minor allele frequencies greater than 5% were observed to be associated with height in 37 previously reported loci. In individuals of European ancestry, uncommon SNPs in IL11 and SMAD3, which would not be genotyped with the use of standard genome-wide genotyping arrays, were strongly associated with height (p < 3 × 10−11). Conditional analysis within associated regions revealed five additional variants associated with height independent of lead SNPs within the locus, suggesting allelic heterogeneity. Although underpowered to replicate findings from individuals of European ancestry, the direction of effect of associated variants was largely consistent in African American, South Asian, and Hispanic populations. Overall, we show that dense coverage of genes for uncommon SNPs, coupled with large-scale meta-analysis, can successfully identify additional variants associated with a common complex trait.  相似文献   

20.
Strong selection within a given population locally reduces genetic variability not only in the selected gene itself but also in neighbouring loci. This so-called hitch-hiking effect is related to the initial linkage disequilibrium between markers and the selected gene, and depends mainly on the number of copies of the beneficial allele at the start of the selection phase. Contrary to the classical case, in which selection acts on a single, newly arisen beneficial mutation, we considered selection from standing variation (soft selective sweeps) on a gene ( Rht-B1 ) with a major effect on plant height, a selected trait in an experimental wheat population grown for 17 generations, and we documented the evolution of gene diversity and linkage disequilibrium near this gene. As expected, Rht-B1 was found to be under strong selection ( s  = 0.15) and its variation in frequency accounted for 15% of the total trait evolution. This led to a smaller genetic effective population size at Rht-B1 ( Neg  = 18) compared to the whole genome estimation ( Neg  = 167). When compared with expectations under genetic drift only, no significant decrease in gene diversity was found at the closest loci. We computed expected di-locus frequencies for any linked marker– Rht-B1 pair due to hitch-hiking effects. We found that hitch-hiking was expected to affect the two most closely linked loci, but expected reduction in gene diversity was not greater than that due to genetic drift, which was consistent with the observations. Such limited effect was attributed to the low level of linkage disequilibrium (0.16) estimated after parental intercrosses, together with a relatively high initial frequency of the gene. This situation is favourable to candidate gene approaches where small linkage disequilibrium around selected genes is expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号