首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The morphogenetic transitions of the N. crassa asexual life cycle are responses to a hyperoxidant state in which probably singlet oxygen is generated. Induction of catalase activity and catalase oxidation by singlet oxygen are consequences of this recurrent hyperoxidant state. Here the biochemical properties and regulation of two large monofunctional catalases are reviewed, and a new catalase-peroxidase gene and activity is described. Catalase-3 is associated to growing and Catalase-1 to non-growing cells. Under stressful conditions one of these catalases is synthesized, depending on whether growth can be continued or a resistant cell has to be made. The catalase-peroxidase Catalase-2 was possibly derived from a bacterial enzyme. In contrast to the other catalases, Catalase-2 had catalase and peroxidase activity. Catalase-2 was expressed under conditions in which vacuolization of hyphae is observed. All three enzymes have a chlorin in its active site instead of ferroprotoheme IX and are resistant to molar concentrations of hydrogen peroxide. These and all other catalases tested so far are oxidized by singlet oxygen, probably at the heme moiety. The catalase activity is virtually unaffected by oxidation, but the enzymes are probably degraded more rapidly than the unmodified ones.  相似文献   

2.
Neurospora crassa has two large-subunit catalases, CAT-1 and CAT-3. CAT-1 is associated with non-growing cells and accumulates particularly in asexual spores; CAT-3 is associated with growing cells and is induced under different stress conditions. It is our interest to elucidate the structure-function relationships in large-subunit catalases. Here we have determined the CAT-3 crystal structure and compared it with the previously determined CAT-1 structure. Similar to CAT-1, CAT-3 hydrogen peroxide (H2O2) saturation kinetics exhibited two components, consistent with the existence of two active sites: one saturated in the millimolar range and the other in the molar range. In the CAT-1 structure, we found three interesting features related to its unusual kinetics: (a) a constriction in the channel that conveys H2O2 to the active site; (b) a covalent bond between the tyrosine, which forms the fifth coordination bound to the iron of the heme, and a vicinal cysteine; (c) oxidation of the pyrrole ring III to form a cis-hydroxyl group in C5 and a cis-γ-spirolactone in C6. The site of heme oxidation marks the starts of the central channel that communicates to the central cavity and the shortest way products can exit the active site. CAT-3 has a similar constriction in its major channel, which could function as a gating system regulated by the H2O2 concentration before the gate. CAT-3 functional tyrosine is not covalently bonded, but has instead the electron relay mechanism described for the human catalase to divert electrons from it. Pyrrole ring III in CAT-3 is not oxidized as it is in other large-subunit catalases whose structure has been determined. Different in CAT-3 from these enzymes is an occupied central cavity. Results presented here indicate that CAT-3 and CAT-1 enzymes represent a functional group of catalases with distinctive structural characteristics that determine similar kinetics.  相似文献   

3.
Catalase-1, one of four catalase activities of Neurospora crassa, is associated with non-growing cells and accumulates in asexual spores. It is a large, tetrameric, highly efficient, and durable enzyme that is active even at molar concentrations of hydrogen peroxide. Catalase-1 is oxidized at the heme by singlet oxygen without significant effects on enzyme activity. Here we present the crystal structure of catalase-1 at 1.75A resolution. Compared to structures of other catalases of the large class, the main differences were found at the carboxy-terminal domain. The heme group is rotated 180 degrees around the alpha-gamma-meso carbon axis with respect to clade 3 small catalases. There is no co-ordination bond of the ferric ion at the heme distal side in catalase-1. The catalase-1 structure exhibited partial oxidation of heme b to heme d. Singlet oxygen, produced catalytically or by photosensitization, may hydroxylate C5 and C6 of pyrrole ring III with a subsequent formation of a gamma-spirolactone in C6. The modification site in catalases depends on the way dioxygen exits the protein: mainly through the central channel or the main channel in large and small catalases, respectively. The catalase-1 structure revealed an unusual covalent bond between a cysteine sulphur atom and the essential tyrosine residue of the proximal side of the active site. A peptide with the predicted theoretical mass of the two bound tryptic peptides was detected by mass spectrometry. A mechanism for the Cys-Tyr covalent bond formation is proposed. The tyrosine bound to the cysteine residue would be less prone to donate electrons to compound I to form compound II, explaining catalase-1 resistance to substrate inhibition and inactivation. An apparent constriction of the main channel at Ser198 lead us to propose a gate that opens the narrow part of the channel when there is sufficient hydrogen peroxide in the small cavity before the gate. This mechanism would explain the increase in catalytic velocity as the hydrogen peroxide concentration rises.  相似文献   

4.
Fungal catalases: Function, phylogenetic origin and structure   总被引:1,自引:0,他引:1  
Most fungi have several monofunctional heme-catalases. Filamentous ascomycetes (Pezizomycotina) have two types of large-size subunit catalases (L1 and L2). L2-type are usually induced by different stressors and are extracellular enzymes; those from the L1-type are not inducible and accumulate in asexual spores. L2 catalases are important for growth and the start of cell differentiation, while L1 are required for spore germination. In addition, pezizomycetes have one to four small-size subunit catalases. Yeasts (Saccharomycotina) do not have large-subunit catalases and generally have one peroxisomal and one cytosolic small-subunit catalase. Small-subunit catalases are inhibited by substrate while large-subunit catalases are activated by H(2)O(2). Some small-subunit catalases bind NADPH preventing inhibition by substrate. We present a phylogenetic analysis revealing one or two events of horizontal gene transfers from Actinobacteria to a fungal ancestor before fungal diversification, as the origin of large-size subunit catalases. Other possible horizontal transfers of small- and large-subunit catalases genes were detected and one from bacteria to the fungus Malassezia globosa was analyzed in detail. All L2-type catalases analyzed presented a secretion signal peptide. Mucorales preserved only L2-type catalases, with one containing a secretion signal if two or more are present. Basidiomycetes have only L1-type catalases, all lacking signal peptide. Fungal small-size catalases are related to animal catalases and probably evolved from a common ancestor. However, there are several groups of small-size catalases. In particular, a conserved group of fungal sequences resemble plant catalases, whose phylogenetic origin was traced to a group of bacteria. This group probably has the heme orientation of plant catalases and could in principle bind NADPH. From almost a hundred small-subunit catalases only one fourth has a peroxisomal localization signal and in fact many fungi lack a peroxisomal catalase. Catalases have a deep buried active site and H(2)O(2) has to go through a long passage to reach it. In all known structures of catalases, the major channel has common features, particularly in the straight and narrow final section that is positioned perpendicular to the heme. Besides, other conserved channels are present in catalases whose function remains to be elucidated. One of these channels intercommunicates the major channels from the two R-related subunits. In three of the four known large-subunits catalase structures, the heme b is partially transformed into heme d. In Neurospora crassa, this occurs in vivo and is related to oxidative stress conditions in which singlet oxygen is produced. A pure source of singlet oxygen oxidizes catalases purified from different sources and singlet oxygen quenchers prevent oxidation. A second modification is observed in N. crassa catalase-1, in which the tyrosine that forms the fifth coordination bound to the heme iron makes a covalent bond with a vicinal cysteine, similarly to the tyrosine-histidine bonding found in Escherichia coli hydroperoxidase II. Molecular dynamics has been used to determine how H(2)O(2) reaches the enzyme active site and how products exit the protein. We found that the bottleneck of the major channel seems to disappear in water and is wide open in the presence of substrate. Amino acid residues exhibiting an increased residence time for H(2)O(2) are abundant at the protein surface and at the entrances to the major channel. The net effect of this is an increased H(2)O(2)/H(2)O ratio in the major channel. Once in the final section of this channel, H(2)O(2) is retained and tends to occupy specific sites while water molecules have a higher turnover rate and occupy different sites. Despite the intense study of catalases our knowledge of this enzyme is still limited and in need of new studies and different approaches.  相似文献   

5.
We show that singlet oxygen is generated in asexual spores (conidia) from Neurospora crassa at the onset of germination. Oxidation of N. crassa catalase-1 (Cat-1) was previously shown to be caused by singlet oxygen (Lledías et al. J. Biol. Chem. 273, 1998). In germinating conidia, increased protein oxidation, decrease of total protein, Cat-1 oxidation and accumulation of cat-1 mRNA was detected. These changes were modulated in vivo by light intensity, an external clean source of singlet oxygen, and by carotene amount and content of coordinated double bonds. Conditions that stimulated singlet oxygen formation increased Cat-1 oxidation and accumulation of cat-1 mRNA. Germinating conidia from mutant strains altered in carotene synthesis showed increased levels of protein degradation, Cat-1 oxidation and accumulation of cat-1 mRNA. During germination Cat-1a was oxidized, oxidized Cat-1c-Cat-1e conformers disappeared and Cat-1a was synthesized de novo. Furthermore, spontaneous oxygen-dependent chemiluminescence increased as soon as conidia absorbed dissolved oxygen. Low-level chemiluminescence is due to photon emission from excited electrons in carbonyls and singlet oxygen as they return to their ground state. H2O2 added to conidia under Ar caused a peak of chemiluminescence and germination of 20% of conidia, suggesting that a hyperoxidant state suffices to start germination under anaerobic conditions. Taken together, these results show that singlet oxygen is part of a hyperoxidant state that develops at the start of germination of conidia, in consonance with our proposal that morphogenetic transitions occur as a response to a hyperoxidant state.  相似文献   

6.
Increased phospholipid methylation in the myocardium of alcoholic rats   总被引:1,自引:0,他引:1  
NAD(P)H is known to be oxidized by singlet molecular oxygen, perhydroxyl radical, and hydroxyl radical. In marked contrast to these reactive oxygen species, NAD(P)H is stable in the presence of micromolar concentrations of H2O2. The experiments herein demonstrate that NADPH is rapidly oxidized by H2O2 in the presence of a heme-peptide. The oxidation product is enzymatically active NADP+. In the absence of NADPH, the heme-peptide undergoes rapid degradation via reaction with H2O2. In the presence of NADPH, the reduced nucleotide is oxidized to NADP and the heme-peptide is partially protected from oxidation. It is suggested that under certain conditions the reduced nucleotides may contribute to the protection of intracellular heme moieties from degradation engendered by endogenous or exogenous H2O2.  相似文献   

7.
The crystal structure of the fully oxidized di-heme peroxidase from Nitrosomonas europaea has been solved to a resolution of 1.80 A and compared to the closely related enzyme from Pseudomonas aeruginosa. Both enzymes catalyze the peroxide-dependent oxidation of a protein electron donor such as cytochrome c. Electrons enter the enzyme through the high-potential heme followed by electron transfer to the low-potential heme, the site of peroxide activation. Both enzymes form homodimers, each of which folds into two distinct heme domains. Each heme is held in place by thioether bonds between the heme vinyl groups and Cys residues. The high-potential heme in both enzymes has Met and His as axial heme ligands. In the Pseudomonas enzyme, the low-potential heme has two His residues as axial heme ligands [Fulop et al. (1995) Structure 3, 1225-1233]. Since the site of reaction with peroxide is the low-potential heme, then one His ligand must first dissociate. In sharp contrast, the low-potential heme in the Nitrosomonas enzyme already is in the "activated" state with only one His ligand and an open distal axial ligation position available for reaction with peroxide. A comparison between the two enzymes illustrates the range of conformational changes required to activate the Pseudomonas enzyme. This change involves a large motion of a loop containing the dissociable His ligand from the heme pocket to the molecular surface where it forms part of the dimer interface. Since the Nitrosomonas enzyme is in the active state, the structure provides some insights on residues involved in peroxide activation. Most importantly, a Glu residue situated near the peroxide binding site could possibly serve as an acid-base catalytic group required for cleavage of the peroxide O--O bond.  相似文献   

8.
Cytochrome bd from Azotobacter vinelandii is a respiratory quinol oxidase that is highly efficient in reducing intracellular oxygen concentration, thus enabling nitrogen fixation under ambient aerobic conditions. Equilibrium measurements of O2 binding to ferrous heme d in the one-electron-reduced form of the A. vinelandii enzyme give Kd(O2) = 0.5 microM, close to the value for the Escherichia coli cytochrome bd (ca. 0.3 microM); thus, both enzymes have similar, high affinity for oxygen. The reaction of the A. vinelandii cytochrome bd in the one-electron-reduced and fully reduced states with O2 is extremely fast approaching the diffusion-controlled limit in water. In the fully reduced state, the rate of O2 binding depends linearly on the oxygen concentration consistently with a simple, single-step process. In contrast, in the one-electron-reduced state the rate of oxygen binding is hyperbolic, implying a more complex binding pattern. Two possible explanations for the saturation kinetics are considered: (A) There is a spectroscopically silent prebinding of oxygen to an unidentified low-affinity saturatable site followed by the oxygen transfer to heme d. (B) Oxygen binding to heme d requires an "activated" state of the enzyme in which an oxygen channel connecting heme d to the bulk is open. This channel is permanently open in the fully reduced enzyme (hence no saturation behavior) but flickers between the open and closed states in the one-electron-reduced enzyme.  相似文献   

9.
Three newly discovered non-heme bromoperoxidases isolated from marine algae were found to catalyze the production of singlet oxygen in reactions composed of the bromoperoxidase, hydrogen peroxide, and bromide. The bromoperoxidases studied were vanadium bromoperoxidase (V-BrPO) from Ascophyllum nodosum, native non-heme bromoperoxidase from Corallina vancouveriensis (which contains vanadium and iron), and the vanadium-reconstituted bromoperoxidase derivative from C. vancouveriensis. These enzyme systems generated near infrared emission, characteristic of singlet oxygen. The emission had a peak intensity near 1268 nm, was greatly increased in 2H2O-containing buffers, and was greatly decreased by the singlet oxygen quenchers, histidine and azide. The yield of singlet oxygen was approximately 80% of the theoretical yield. A unique feature of the non-heme bromoperoxidases distinct from the iron heme haloperoxidases, was the remarkable stability of the non-heme enzymes in the presence of singlet oxygen and oxidized bromine species. V-BrPO turned over multiple aliquots of 2 mM hydrogen peroxide without losing efficiency. In contrast, iron heme lactoperoxidase was completely inactivated after turnover of the first aliquot of 2 mM hydrogen peroxide, and iron heme chloroperoxidase was 50% deactivated. The profile of singlet oxygen formation by V-BrPO and the near stoichiometric yield of singlet oxygen suggest that the mechanism of singlet oxygen formation is the same as the mechanism of dioxygen formation determined by oxygen probe measurements.  相似文献   

10.
Unable to oxidize orcinol (3,5-dihydroxytoluene) under conventional conditions, ceruloplasmin (Cp) catalyzes its oxidation when superoxide radicals are injected into the solution with the aid of a high-voltage generator. The O2-. to oxidized orcinol ratio in solution is close to 2:1. The concentration of hydrogen peroxide, which is the product of the Cp-catalyzed dismutase reaction, is about half that of O2-. No slower than by the native enzyme, orcinol in the presence of O2-. is oxidized by Cp depleted of all its type 2 coppers and partly of type 1 Cu2+. Copper complexes with oxalate and pyrophosphate are able to oxidize orcinol under aerobic conditions, one molecule of oxygen being consumed per each oxidized molecule of orcinol. Both the oxidation of orcinol by Cp and by copper complexes are inhibited by cyanide. Orcinol oxidation seems to be caused by singlet oxygen produced in the Cp-catalyzed dismutase reaction.  相似文献   

11.
《Free radical research》2013,47(5):311-319
In the presence of peroxidase, myoglobin or hemoglobin, Tetrachlorodecaoxide (TCDO) forms an active oxygen species which is similar to the product of the polymorphonuclear leucocyte (PMNL) myeloperoxidase reaction and the “Klebanoff Model” of phagocytosis, but it is also produced under anaerobic conditions. Randomly destructive species such as the free OH- radical or singlet oxygen are not formed. The kinetics of the heme-dependent activation vary according to the heme type present. In comparison to myoglobin, blood shows a 2 h delay in the appearance of maximal activity. On the basis of known biochemical and clinical-physiological data, a hypothesis can be proposed to explain the reoxygenation observed in hypoxic tissue, induced by TCDO via this activated heme species. Under normal physiological conditions, vasodilation occurs via catalysis by xanthine oxidase or PMNL-dependent activation of fatty acids.  相似文献   

12.
Singlet oxygen ((1)O(2)) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. The oxyR gene product regulates the expression of the enzymes and proteins that are needed for cellular protection against oxidative stress. In this study, the role of oxyR in cellular defense against a singlet oxygen was investigated using Escherichia coli oxyR mutant strains. Upon exposure to methylene blue and visible light, which generates singlet oxygen, the oxyR overexpression mutant was much more resistant to singlet oxygen-mediated cellular damage when compared to the oxyR deletion mutant in regard to growth kinetics, viability and protein oxidation. Induction and inactivation of major antioxidant enzymes, such as superoxide dismutase and catalase, were observed after their exposure to a singlet oxygen generating system in both oxyR strains. However, the oxyR overexpression mutant maintained significantly higher activities of antioxidant enzymes than did the oxyR deletion mutant. These results suggest that the oxyR regulon plays an important protective role in singlet oxygen-mediated cellular damage, presumably through the protection of antioxidant enzymes.  相似文献   

13.
Some enzymes are inactivated by their natural substrates during catalytic turnover, limiting the ultimate extent of reaction. These enzymes can be separated into three broad classes, depending on the mechanism of the inactivation process. The first type is enzymes which use molecular oxygen as a substrate. The second type is inactivated by hydrogen peroxide, which is present either as a substrate or a product, and are stabilized by high catalase activity. The oxidation of both types of enzymes shares common features with oxidation of other enzymes and proteins. The third type of enzyme is inactivated by non-oxidative processes, mainly reversible loss of cofactors or attached groups. Sub classes are defined within each broad classification based on kinetics and stoichiometry. Reaction-inactivation is in part a regulatory mechanism in vivo, because specific proteolytic systems give rapid turnover of such labelled enzymes. The methods for enhancing the stability of these enzymes under reaction conditions depends on the enzyme type. The kinetics of these inactivation reactions can be used to optimize bioreactor design and operation.  相似文献   

14.
Both rabbit liver microsomes and reconstituted system with purified cytochrome P-450 and cofactors enzymatically oxidized o-dithiane (1, 2-dithiane), 3-methyl-o-dithiane, thiane and 2-methylthiane to the corresponding mono-oxygenated products; sulfides or disulfides were oxidized to the corresponding sulfoxides or thiosulfinates, while thiosulfinate was oxidized to thiolsulfonate. The reconstituted systems required oxygen and NADPH and were not affected by the catalase which decomposes H2O2, or by 1,4-diazabicyclo-[2,2,2]octane (DABCO), which is a good quencher of singlet oxygen. The differences in the binding of substrates such as sulfides and disulfides with the enzyme system are discussed in connection with differences in the spectra of the substrates in the reconstituted system with pure cytochrome P-450. A correlation was found between the rates of oxidation of the substrates and the rates of oxidation of NADPH.  相似文献   

15.
In the present study, we have performed comparative analysis of different prenyllipids in Chlamydomonas reinhardtii cultures during high light stress under variety of conditions (presence of inhibitors, an uncoupler, heavy water). The obtained results indicate that plastoquinol is more active than α-tocopherol in scavenging of singlet oxygen generated in photosystem II. Besides plastoquinol, also its oxidized form, plastoquinone shows antioxidant action during the stress conditions, resulting in formation of plastoquinone-C, whose level can be regarded as an indicator of singlet oxygen oxidative stress in vivo. The pronounced stimulation of α-tocopherol consumption and α-tocopherolquinone formation by an uncoupler, FCCP, together with the results of additional model system studies, led to the suggestion that α-tocopherol can be recycled in thylakoid membranes under high light conditions from 8a-hydroperoxy-α-tocopherone, the primary oxidation product of α-tocopherol by singlet oxygen.  相似文献   

16.
The interaction of heme nonapeptide (a proteolytic product of cytochrome c) with purified NADH:cytochrome b5 (EC 1.6.2.2) and NADPH:cytochrome P-450 (EC 1.6.2.4) reductases was investigated. In the presence of heme nonapeptide, NADH or NADPH were enzymatically oxidized to NAD+ and NADP+, respectively. NAD(P)H consumption was coupled to oxygen uptake in both enzyme reactions. In the presence of carbon monoxide the spectrum of a carboxyheme complex was observed during NAD(P)H oxidation, indicating the existence of a transient ferroheme peptide. NAD(P)H oxidation could be partially inhibited by cyanide, superoxide dismutase and catalase. Superoxide and peroxide ions (generated by enzymic xanthine oxidation) only oxidized NAD(P)H in the presence of heme nonapeptide. Oxidation of NAD(P)H was more rapid with O2- than O2-2. We suggest that a ferroheme-O2 and various heme-oxy radical complexes (mainly ferroheme-O-2 complex) play a crucial role in NAD(P)H oxidation.  相似文献   

17.
Oxidation of liposome phospholipids has been studied in the presence of cytochrome c. Sonicated vesicles of soya bean or egg-yolk lipids, or purified phospholipid preparations, were treated with oxidized cytochrome c at a 10:4 lipid/protein ratio (w/w). Lipid peroxidation was examined by oxygen polarography, gas-liquid chromatography (GLC) and the thiobarbituric acid test. Oxidized, but not reduced, cytochrome effectively catalyzes lipid oxidation under these conditions. Oxygen consumption and disappearance of unsaturated fatty acids follow closely similar patterns, the O2 consumption rate showing a maximum (1.53 mol O2/min per mol heme) shortly before fatty acid loss reaches its peak. GLC and O2 consumption data suggest that monohydroperoxides are the most abundant oxidized species in the system. The thiobarbituric acid reaction, however, appears only to be of qualitative value in peroxidation studies. In order to test the mechanism through which oxidation occurs in our system, the effect of liposome composition and the presence of antioxidants was tested, both on cytochrome c binding to bilayers and on O2 consumption. Oxidized and reduced cytochrome c bind the lipid bilayers with similar affinity, but only the oxidized form is active in autoxidation. Antioxidants do not modify either cytochrome c binding to sonicated liposomes. Lipid composition does influence considerably cytochrome binding, and O2 consumption is correspondingly altered. Studies with various antioxidants and inhibitors suggest that both free radicals and singlet oxygen may be involved in the process under study.  相似文献   

18.
Bases, nucleosides, nucleotides, and polynucleotides were exposed to chemically generated singlet oxygen to determine whether the species oxidized paralleled those oxidized in photodynamic reactions. In neutral or basic aqueous solution guanine, guanosine, deoxyguanosine, guanylic acid, deoxyguanylic acid, thymine, and uracil reacted with singlet oxygen. Since these compounds are oxidized in photodynamic processes, this study provides further evidence that singlet oxygen is the active intermediate in the photodynamic oxidation of nucleic acid constituents. Dienophilic attack by singlet oxygen is considered to be a plausible mechanism in these reactions.  相似文献   

19.
Singlet oxygen ((1)O(2)) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiol-containing metal-catalyzed oxidation system (thiol/Fe(3+)/O(2)) but not against an oxidation system without thiol. This 25 kDa protein acts as a peroxidase but requires the NADPH-dependent thioredoxin system or a thiol-containing intermediate, and was named thioredoxin peroxidase (TPx). The role of TPx in the cellular defense against oxidative stress induced by singlet oxygen was investigated in Escherichia coli containing an expression vector with a yeast genomic DNA fragment that encodes TPx and mutant in which the catalytically essential amino acid cysteine (Cys-47) has been replaced with alanine by a site-directed mutagenesis. Upon exposure to methylene blue and visible light, which generates singlet oxygen, there was a distinct difference between the two strains in regard to growth kinetics, viability, the accumulation of oxidized proteins and lipids, and modulation of activities of superoxide dismutase and catalase. The results suggest that TPx may play an important protective role in a singlet oxygen-mediated cellular damage.  相似文献   

20.
Cytochrome cd(1) (cd(1)NIR) from Paracoccus pantotrophus, which is both a nitrite reductase and an oxidase, was reduced by ascorbate plus hexaamineruthenium(III) chloride on a relatively slow time scale (hours required for complete reduction). Visible absorption spectroscopy showed that mixing of ascorbate-reduced enzyme with oxygen at pH = 6.0 resulted in the rapid oxidation of both types of heme center in the enzyme with a linear dependence on oxygen concentration. Subsequent changes on a longer time scale reflected the formation and decay of partially reduced oxygen species bound to the d(1) heme iron. Parallel freeze-quench experiments allowed the X-band electron paramagnetic resonance (EPR) spectrum of the enzyme to be recorded at various times after mixing with oxygen. On the same millisecond time scale that simultaneous oxidation of both heme centers was seen in the optical experiments, two new EPR signals were observed. Both of these are assigned to oxidized heme c and resemble signals from the cytochrome c domain of a "semi-apo" form of the enzyme for which histidine/methionine coordination was demonstrated spectroscopically. These observations suggests that structural changes take around the heme c center that lead to either histidine/methionine axial ligation or a different stereochemistry of bis-histidine axial ligation than that found in the as prepared enzyme. At this stage in the reaction no EPR signal could be ascribed to Fe(III) d(1) heme. Rather, a radical species, which is tentatively assigned to an amino acid radical proximal to the d(1) heme iron in the Fe(IV)-oxo state, was seen. The kinetics of decay of this radical species match the generation of a new form of the Fe(III) d(1) heme, probably representing an OH(-)-bound species. This sequence of events is interpreted in terms of a concerted two-electron reduction of oxygen to bound peroxide, which is immediately cleaved to yield water and an Fe(IV)-oxo species plus the radical. Two electrons from ascorbate are subsequently transferred to the d(1) heme active site via heme c to reduce both the radical and the Fe(IV)-oxo species to Fe(III)-OH(-) for completion of a catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号