首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prion diseases such as Creutzfeldt-Jakob disease are believed to result from the misfolding of a widely expressed normal cellular prion protein, PrPc. The resulting disease-associated isoforms, PrP(Sc), have much higher beta-sheet content, are insoluble in detergents, and acquire relative resistance to proteases. Although known to be highly aggregated and to form amyloid fibrils, the molecular architecture of PrP9Sc) is poorly understood. To date, it has been impossible to elicit antibodies to native PrP(Sc) that are capable of recognizing PrP(Sc) without denaturation, even in Pm-P(o/o) mice that are intolerant of it. Here we demonstrate that antibodies for native PrPc and PrP(Sc) can be produced by immunization of Pm-P(o/o) mice with partially purified PrPc and PrP(Sc) adsorbed to immunomagnetic particles using high-affinity anti-PrP monoclonal antibodies (mAbs). Interestingly, the polyclonal response to PrP(Sc) was predominantly of the immunoglobulin M (IgM) isotype, unlike the immunoglobulin G (IgG) responses elicited by PrP(c) or by recombinant PrP adsorbed or not to immunomagnetic particles, presumably reflecting the polymeric structure of disease-associated prion protein. Although heat-denatured PrP(Sc) elicited more diverse antibodies with the revelation of C-terminal epitopes, remarkably, these were also predominantly IgM suggesting that the increasing immunogenicity, acquisition of protease sensitivity, and reduction in infectivity induced by heat are not associated with dissociation of the PrP molecules in the diseased-associated protein. Adsorbing native proteins to immunomagnetic particles may have general applicability for raising polyclonal or monoclonal antibodies to any native protein, without attempting laborious purification steps that might affect protein conformation.  相似文献   

2.
Cell-to-cell spread of tobacco mosaic virus is facilitated by the virus-encoded 30-kDa movement protein (MP). This process involves interaction of viral proteins with host components, including the cytoskeleton and the endoplasmic reticulum (ER). During virus infection, high-molecular-weight forms of MP were detected in tobacco BY-2 protoplasts. Inhibition of the 26S proteasome by MG115 and clasto-lactacystin-beta-lactone enhanced the accumulation of high-molecular-weight forms of MP and led to increased stability of the MP. Such treatment also increased the apparent accumulation of polyubiquitinated host proteins. By fusion of MP with the jellyfish green fluorescent protein (GFP), we demonstrated that inhibition of the 26S proteasome led to accumulation of the MP-GFP fusion preferentially on the ER, particularly the perinuclear ER. We suggest that polyubiquitination of MP and subsequent degradation by the 26S proteasome may play a substantial role in regulation of virus spread by reducing the damage caused by the MP on the structure of cortical ER.  相似文献   

3.
Transferring substrates to the 26S proteasome   总被引:14,自引:0,他引:14  
Ubiquitin-dependent protein degradation is not only involved in the recycling of amino acids from damaged or misfolded proteins but also represents an essential and deftly controlled mechanism for modulating the levels of key regulatory proteins. Chains of ubiquitin conjugated to a substrate protein specifically target it for degradation by the 26S proteasome, a huge multi-subunit protein complex found in all eukaryotic cells. Recent reports have clarified some of the molecular mechanisms involved in the transfer of ubiquitinated substrates from the ubiquitination machinery to the proteasome. This novel substrate transportation step in the ubiquitin-proteasome pathway seems to occur either directly or indirectly via certain substrate-recruiting proteins and appears to involve chaperones.  相似文献   

4.
We constructed polyubiquitin derivatives that contain a tandem repeat of ubiquitins and were insensitive to ubiquitin hydrolases. They were designated tandem ubiquitin (tUb) with the number of repeats, such as tUb2. When tUbs were expressed under the control of the GAL1 promoter in the wild-type yeast strain, growth was strongly inhibited. Under these conditions, the degradation of N-end rule substrates, a UFD substrate and Gcn4 was inhibited, indicating that the tUb inhibits 26S proteasome activity. Consistent with this, tUb binds to the 26S proteasome. We showed that tUb inhibited the in vitro degradation of polyubiquitinylated Sic1 by the 26S proteasome. When tUB6 messenger RNA was injected into Xenopus embryos, cell division was inhibited, suggesting that tUb can be used as a versatile inhibitor of the 26S proteasome.  相似文献   

5.
The critical step in the pathogenesis of transmissible spongiform encephalopathies (prion diseases) is the conversion of a cellular prion protein (PrP(c)) into a protease-resistant, beta-sheet rich form (PrP(Sc)). Although the disease transmission normally requires direct interaction between exogenous PrP(Sc) and endogenous PrP(C), the pathogenic process in hereditary prion diseases appears to develop spontaneously (i.e. not requiring infection with exogenous PrP(Sc)). To gain insight into the molecular basis of hereditary spongiform encephalopathies, we have characterized the biophysical properties of the recombinant human prion protein variant containing the mutation (Phe(198) --> Ser) associated with familial Gerstmann-Straussler-Scheinker disease. Compared with the wild-type protein, the F198S variant shows a dramatically increased propensity to self-associate into beta-sheet-rich oligomers. In a guanidine HCl-containing buffer, the transition of the F198S variant from a normal alpha-helical conformation into an oligomeric beta-sheet structure is about 50 times faster than that of the wild-type protein. Importantly, in contrast to the wild-type PrP, the mutant protein undergoes a spontaneous conversion to oligomeric beta-sheet structure even in the absence of guanidine HCl or any other denaturants. In addition to beta-sheet structure, the oligomeric form of the protein is characterized by partial resistance to proteinase K digestion, affinity for amyloid-specific dye, thioflavine T, and fibrillar morphology. The increased propensity of the F198S variant to undergo a conversion to a PrP(Sc)-like form correlates with a markedly decreased thermodynamic stability of the native alpha-helical conformer of the mutant protein. This correlation supports the notion that partially unfolded intermediates may be involved in conformational conversion of the prion protein.  相似文献   

6.
Molecular model of the human 26S proteasome   总被引:1,自引:0,他引:1  
  相似文献   

7.
Chen C  Huang C  Chen S  Liang J  Lin W  Ke G  Zhang H  Wang B  Huang J  Han Z  Ma L  Huo K  Yang X  Yang P  He F  Tao T 《Proteomics》2008,8(3):508-520
Ubiquitin-dependent proteolysis is mediated by the proteasome. To understand the structure and function of the human 26S proteasome, we cloned complete ORFs of 32 human proteasome subunits and conducted a yeast two-hybrid analysis of their interactions with each other. We observed that there are 114 interacting-pairs in the human 26S proteasome. About 10% (11/114) of these interacting-pairs was confirmed by the GST-pull down analysis. Among these observed interacting subunits, 58% (66/114) are novel and the rest 42% (48/114) has been reported previously in human or in other species. We observed new interactions between the 19S regulatory particle and the beta-rings of the 20S catalytic particle and therefore proposed a modified model of the 26S proteasome.  相似文献   

8.
The 26S proteasome (26SP), the central protease of the ubiquitin-dependent proteolysis pathway, controls the regulated proteolysis of functional proteins and the removal of misfolded and damaged proteins. In Arabidopsis, cellular and stress response phenotypes of a number of mutants with partially impaired 26SP function have been reported. Here, we describe the responses of proteasome mutants to protein synthesis inhibitors. We show that the rpt2a-3, rpn10-1 and rpn12a-1 mutants are hypersensitive to the antibiotic hygromycin B, and tolerant to the translation inhibitor cycloheximide (CHX) and herbicide l-phosphinothricin (PPT). In addition to the novel mechanism for herbicide tolerance, our data suggests that the combination of hygromycin B, CHX and PPT growth-response assays could be used as a facile diagnostic tool to detect altered 26SP function in plant mutants and transgenic lines.  相似文献   

9.
The 26S proteasome complex plays a major role in the non-lysosomal degradation of intracellular proteins. Purified 26S proteasomes give a pattern of more than 40 spots on 2D-PAGE gels. The positions of subunits have been identified by mass spectrometry of tryptic peptides and by immunoblotting with subunit-specific antipeptide antibodies. Two-dimensional polyacrylamide gel electrophoresis of proteasomes immunoprecipitated from [32P]phosphate-labelled human embryo lung L-132 cells revealed the presence of at least three major phosphorylated polypeptides among the regulatory subunits as well as the C8 and C9 components of the core 20S proteasome. Comparison with the positions of the regulatory polypeptides revealed a minor phosphorylated form to be S7 (MSS1). Antibodies against S4, S6 (TBP7) and S12 (MOV34) all cross-reacted at the position of major phosphorylated polypeptides suggesting that several of the ATPase subunits may be phosphorylated. The phosphorylation of S4 was confirmed by double immunoprecipitation experiments in which 26S proteasomes were immunoprecipitated as above and dissociated and then S4 was immunoprecipitated with subunit-specific antibodies. Antibodies against the non-ATPase subunit S10, which has been suggested by others to be phosphorylated, did not coincide with the position of a phosphorylated polypeptide. Some differences were observed in the 2D-PAGE pattern of proteasomes immunoprecipitated from cultured cells compared to purified rat liver 26S proteasomes suggesting possible differences in subunit compositions of 26S proteasomes.  相似文献   

10.
X S Li  J D Etlinger 《Biochemistry》1992,31(48):11964-11967
Western blot analysis, using a polyclonal antibody to the 240-kDa endogenous inhibitor of the 20 S proteasome, revealed that the inhibitor is a component of the 26 S complex. Although isolated inhibitor displayed a single 40-kDa band on SDS-PAGE, the antibody detected a 55-kDa component in the 26 S proteasome complex. Ubiquitin polyclonal antibody recognized the same 55-kDa component but did not react with free 40-kDa inhibitor subunit. Addition of purified 40-kDa inhibitor to a ubiquitin ligating system also generated the 55-kDa species. In crude erythrocyte extracts, most of the inhibitor migrated at 55 kDa in the presence of ATP but shifted to 40 kDa in the absence of ATP, consistent with removal of ubiquitin. It is suggested that ubiquitination of the inhibitor may be involved in regulating assembly and/or activity of the 26 S proteasome complex.  相似文献   

11.
Chronic neurodegenerative diseases, such as prion diseases or Alzheimer's disease, are associated with progressive accumulation of host proteins which misfold and aggregate. Neurodegeneration is restricted to specific neuronal populations which show clear accumulation of misfolded proteins, whilst neighbouring neurons remain unaffected. Such data raise interesting questions about the vulnerability of specific neuronal populations to neurodegeneration and much research has concentrated only on the mechanisms of neurodegeneration in afflicted neuronal populations. An alternative, undervalued and almost completely unstudied question however is how and why neuronal populations are resilient to neurodegeneration. One potential answer is unaffected regions do not accumulate misfolded proteins, thus mechanisms of neurodegeneration do not become activated. In this perspectives, we discuss novel data from our laboratories which demonstrate that misfolded proteins do accumulate in regions of the brain which do not show evidence of neurodegeneration and further evidence that microglial responses may define the severity of neurodegeneration.  相似文献   

12.
13.
14.
15.
Ornithine decarboxylase (ODC) is a key enzyme in polyamine biosynthesis. Turnover of ODC is extremely rapid and highly regulated, and is accelerated when polyamine levels increase. Polyamine-stimulated ODC degradation is mediated by association with antizyme (AZ), an ODC inhibitory protein induced by polyamines. ODC, in association with AZ, is degraded by the 26S proteasome in an ATP-dependent, but ubiquitin-independent, manner. The 26S proteasome irreversibly inactivates ODC prior to its degradation. The inactivation, possibly due to unfolding, is coupled to sequestration of ODC within the 26S proteasome. This process requires AZ and ATP, but not proteolytic activity of the 26S proteasome. The carboxyl-terminal region of ODC presumably exposed by interaction with AZ plays a critical role for being trapped by the 26S proteasome. Thus, the degradation pathway of ODC proceeds as a sequence of multiple distinct processes, including recognition, sequestration, unfolding, translocation, and ultimate degradation mediated by the 26S proteasome.  相似文献   

16.
The 26S proteasome: a dynamic structure   总被引:1,自引:0,他引:1  
The proteasomal system consists of a proteolytic core, the 20S proteasome, which associates in ATP-dependent and independent reactions with endogenous regulators providing specific substrate binding sites, chaperone function and regulation of activity to the protease. The best known regulators of the 20S proteasome are the 11S and the 19S complexes. Three subunits of the 20S proteasome and the two subunits of the 11S regulator are induced by -Interferon. However, there are no indications for an influence of -interferon on the subunit composition of the 19S regulator and only a few data exist about the dynamics of this complex. The analysis of 19S regulator subunits from yeast mutants reveals that the ATPases appear to be stringently organized in the 26S complex, while peripheral non-ATPases, such as S5a, might serve as subunits which shuttle substrates to the enzyme. A novel non-ATPase has been cloned, sequenced and identified in a complex besides the 19S regulator, the function of which is presently unknown. The dynamic structure of the 26S proteasome is also characterized by transient associations with components such as the modulator and isopeptidases. Certain viral proteins can also be associated with components of the proteasomal system and alter enzymatic activities.  相似文献   

17.
The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. It is composed of one catalytic 20S proteasome and two 19S regulatory particles attached on both ends of 20S proteasomes. Here, we describe the identification of Adrm1 as a novel proteasome interacting protein in mammalian cells. Although the overall sequence of Adrm1 has weak homology with the yeast Rpn13, the amino- and carboxyl-terminal regions exhibit significant homology. Therefore, we designated it as hRpn13. hRpn13 interacts with a base subunit Rpn2 via its amino-terminus. The majority of 26S proteasomes contain hRpn13, but a portion of them does not, indicating that hRpn13 is not an integral subunit. Intriguingly, we found that hRpn13 recruits UCH37, a deubiquitinating enzyme known to associate with 26 proteasomes. The carboxyl-terminal regions containing KEKE motifs of both hRpn13 and UCH37 are involved in their physical interaction. Knockdown of hRpn13 caused no obvious proteolytic defect but loss of UCH37 proteins and decrease in deubiquitinating activity of 26S proteasomes. Our results indicate that hRpn13 is essential for the activity of UCH37.  相似文献   

18.
The 19S regulatory complex (RC) of 26S proteasomes is a 900–1000 kDa particle composed of 18 distinct subunits (S1–S15) ranging in molecular mass from 25 to 110 kDa. This particle confers ATP-dependence and polyubiquitin (polyUb) recognition to the 26S proteasome. The symmetry and homogenous structure of the proteasome contrasts sharply with the remarkable complexity of the RC. Despite the fact that the primary sequences of all the subunits are now known, insight has been gained into the function of only eight subunits. The six ATPases within the RC constitute a subfamily (S4-like ATPases) within the AAA superfamily and we have shown that they form specific pairs in vitro[1]. We have now determined that putative coiled-coils within the variable N-terminal regions of these proteins are likely to function as recognition elements that direct the proper placement of the ATPases within the RC. We have also begun mapping putative interactions between non-ATPase subunits and S4-like ATPases. These studies have allowed us to build a model for the specific arrangement of 9 subunits within the human regulatory complex. This model agrees with recent findings by Glickman et al. [2] who have reported that two subcomplexes, termed the base and the lid, form the RC of budding yeast 26S proteasomes.  相似文献   

19.
We have prepared polyclonal antibodies against Xenopus 20S proteasomes. The antibodies cross-react with several proteins that are common to 20S and 26S proteasomes and with at least two proteins that are unique to 26S proteasomes. The antibodies were used to analyze changes in the components of proteasomes during oocyte maturation and early development of Xenopus laevis. A novel protein with a molecular weight of 48 kDa, p48, was clearly detected in immature oocytes, but was found at very low levels in mature oocytes and ovulated eggs. p48 was reduced to low levels during oocyte maturation, after maturation-promoting factor was activated. The amount of p48 in eggs remained low during early embryonic development, but increased again after the midblastula transition. These results show that at least one component of 26S proteasomes changes during oocyte maturation and early development and suggest that alterations in proteasome function may be important for the regulation of developmental events, such as the rapid cell cycles, of the early embryo.  相似文献   

20.
Trinucleotide repeat (TNR) expansion is the causative mutation for at least 17 inherited neurological diseases. An important question in the field is which proteins drive the expansion process. This study reports that the multi-functional protein Sem1 is a novel driver of TNR expansions in budding yeast. Mutants of SEM1 suppress up to 90% of expansions. Subsequent analysis showed that Sem1 facilitates expansions via its function in the 26S proteasome, a highly conserved multi-subunit complex with both proteolytic and non-proteolytic functions. The proteolytic function of the 26S proteasome is relevant to expansions, as mutation of additional proteasome components or treatment of yeast with a proteasome inhibitor suppressed CTG•CAG expansions. The 26S proteasome also drives expansions in human cells. In a human astrocytic cell line, siRNA-mediated knockdown of 26S proteasome subunits PSMC5 or PSMB3 reduced expansions. This expansion phenotype, both in yeast and human cells, is dependent on the proteolytic activity of the proteasome rather than a stress response owing to depletion of free ubiquitin. Thus, the 26S proteasome is a novel factor that drives expansions in both yeast and human cells by a mechanism involving protein degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号