首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanol is the simplest of all alcohols, is universally distributed in anoxic sediments as a result of plant material decomposition and is constantly attracting attention as an interesting substrate for anaerobes like acetogens that can convert bio-renewable methanol into value-added chemicals. A major drawback in the development of environmentally friendly but economically attractive biotechnological processes is the present lack of information on biochemistry and bioenergetics during methanol conversion in these bacteria. The mesophilic acetogen Eubacterium callanderi KIST612 is naturally able to consume methanol and produce acetate as well as butyrate. To grasp the full potential of methanol-based production of chemicals, we analysed the genes and enzymes involved in methanol conversion to acetate and identified the redox carriers involved. We will display a complete model for methanol-derived acetogenesis and butyrogenesis in Eubacterium callanderi KIST612, tracing the electron transfer routes and shed light on the bioenergetics during the process.  相似文献   

2.
Eubacterium limosum KIST612 is one of the few acetogenic bacteria that has the genes encoding for butyrate synthesis from acetyl-CoA, and indeed, E. limosum KIST612 is known to produce butyrate from CO but not from H2 + CO2. Butyrate production from CO was only seen in bioreactors with cell recycling or in batch cultures with addition of acetate. Here, we present detailed study on growth of E. limosum KIST612 on different carbon and energy sources with the goal, to find other substrates that lead to butyrate formation. Batch fermentations in serum bottles revealed that acetate was the major product under all conditions investigated. Butyrate formation from the C1 compounds carbon dioxide and hydrogen, carbon monoxide or formate was not observed. However, growth on glucose led to butyrate formation, but only in the stationary growth phase. A maximum of 4.3 mM butyrate was observed, corresponding to a butyrate:glucose ratio of 0.21:1 and a butyrate:acetate ratio of 0.14:1. Interestingly, growth on the C1 substrate methanol also led to butyrate formation in the stationary growth phase with a butyrate:methanol ratio of 0.17:1 and a butyrate:acetate ratio of 0.33:1. Since methanol can be produced chemically from carbon dioxide, this offers the possibility for a combined chemical-biochemical production of butyrate from H2 + CO2 using this acetogenic biocatalyst. With the advent of genetic methods in acetogens, butanol production from methanol maybe possible as well.  相似文献   

3.
Studies were made on the composition of the growth medium to increase the cell concentration in a cell-recycled continuous culture (Eubacterium limosum KIST612) with carbon monoxide as a sole energy source using phosphate-buffered basal medium (PBBM) and modified PBBM. One of major limiting factors in PBBM might be nitrogen during the high cell density culture. This limitation could be overcome by increasing of inorganic nitrogen or yeast extract concentration in the medium. Anaerobic digester fluid, which could replace the organic nitrogen in PBBM, was used to develop an industrial grade medium for conversion of CO to multi-carbon compound.  相似文献   

4.
We purified a novel ADP-ribosyltransferase produced by a Clostridium limosum strain isolated from a lung abscess and compared the exoenzyme with Clostridium botulinum ADP-ribosyltransferase C3. The C. limosum exoenzyme has a molecular weight of about 25,000 and a pI of 10.3. The specific activity of the ADP-ribosyltransferase is 3.1 nmol/mg/min with a Km for NAD of 0.3 microM. Partial amino acid sequence analysis of the tryptic peptides revealed about 70% homology with C3. The novel exoenzyme modifies selectively the small GTP-binding proteins of the rho family in human platelet membranes presumably at the same amino acid (asparagine 41) as known for C3. Recombinant rhoA and rhoB serve as substrates for C3 and the C. limosum exoenzyme. Whereas recombinant rac1 protein is only marginally ADP-ribosylated by C3 or by the C. limosum exoenzyme in the absence of detergent, in the presence of 0.01% sodium dodecyl sulfate rac1 is modified by C3 but not by the C. limosum exoenzyme. Recombinant CDC42Hs protein is a poor substrate for C. limosum exoenzyme and is even less modified by C3. The C. limosum exoenzyme is auto-ADP-ribosylated in the presence of 0.01% sodium dodecyl sulfate by forming an ADP-ribose protein bond highly stable toward hydroxylamine. The data indicate that ADP-ribosylation of small GTP-binding proteins of the rho family is not unique to C. botulinum C3 ADP-ribosyltransferase but is also catalyzed by a C3-related exoenzyme from C. limosum.  相似文献   

5.
Growth characteristics of Eubacterium limosum and Acetobacterium woodii during one-carbon-compound utilization were investigated. E. limosum RF grew with formate as the sole energy source. Formate also replaced a requirement for CO2 during growth with methanol. Growth with methanol required either rumen fluid, yeast extract, or acetate, but their effects were not additive. Cultures were adapted to grow in concentrations of methanol of up to 494 mM. Growth occurred with methanol in the presence of elevated levels of Na+ (576 mM). The pH optima for growth with methanol, H2-CO2, and carbon monoxide were similar (7.0 to 7.2). Growth occurred with glucose at a pH of 4.7, but not at 4.0. The apparent Km values for methanol and hydrogen were 2.7 and 0.34 mM, respectively. The apparent Vmax values for methanol and hydrogen were 1.7 and 0.11 mumol/mg of protein X min-1, respectively. The Ks value for CO was estimated to be less than 75 microM. Cellular growth yields were 70.5, 7.1, 3.38, and 0.84 g (dry weight) per mol utilized for glucose, methanol, CO, and hydrogen (in H2-CO2), respectively. E. limosum was also able to grow with methoxylated aromatic compounds as energy sources. Glucose apparently repressed the ability of E. limosum to use methanol, hydrogen, or isoleucine but not CO. Growth with mixtures of methanol, H2, CO, or isoleucine was not diauxic. The results, especially the relatively high apparent Km values for H2 and methanol, may indicate why E. limosum does not usually compete with rumen methanogens for these energy sources.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Growth characteristics of Eubacterium limosum and Acetobacterium woodii during one-carbon-compound utilization were investigated. E. limosum RF grew with formate as the sole energy source. Formate also replaced a requirement for CO2 during growth with methanol. Growth with methanol required either rumen fluid, yeast extract, or acetate, but their effects were not additive. Cultures were adapted to grow in concentrations of methanol of up to 494 mM. Growth occurred with methanol in the presence of elevated levels of Na+ (576 mM). The pH optima for growth with methanol, H2-CO2, and carbon monoxide were similar (7.0 to 7.2). Growth occurred with glucose at a pH of 4.7, but not at 4.0. The apparent Km values for methanol and hydrogen were 2.7 and 0.34 mM, respectively. The apparent Vmax values for methanol and hydrogen were 1.7 and 0.11 mumol/mg of protein X min-1, respectively. The Ks value for CO was estimated to be less than 75 microM. Cellular growth yields were 70.5, 7.1, 3.38, and 0.84 g (dry weight) per mol utilized for glucose, methanol, CO, and hydrogen (in H2-CO2), respectively. E. limosum was also able to grow with methoxylated aromatic compounds as energy sources. Glucose apparently repressed the ability of E. limosum to use methanol, hydrogen, or isoleucine but not CO. Growth with mixtures of methanol, H2, CO, or isoleucine was not diauxic. The results, especially the relatively high apparent Km values for H2 and methanol, may indicate why E. limosum does not usually compete with rumen methanogens for these energy sources.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The degradation and fermentation of microcrystalline cellulose were studied in monoculture of the polycentric anaerobic fungus Orpinomyces joyonii and in co-cultures with the rumen bacteria Megasphaera elsdenii and Eubacterium limosum. More than 25% of cellulose hydrolysis products (glucose and cellodextrins) were released by the fungus into the medium after 8 d of cultivation. These products were metabolized by bacteria in mixed cultures. In co-culture with the fungus M. elsdenii and E. limosum . increased the extent of microcrystalline cellulose degradation by 10·12% and 7·96%, respectively. Biomass yield in co-cultures was increased by 89·9% and 59·4% for M. elsdenii and E. limosum . Ycellulose for fungus alone was 52·29 g dry matter mol-1 glucose. These values were 64·93 and 55·92 g mol-1 glucose unit in co-culture with M. elsdenii and E. limosum , respectively.  相似文献   

8.
A human pathogenic strain of Bacillus cereus produces an exoenzyme which selectively ADP-ribosylates 20-25 kDa GTP-binding proteins in platelet membranes. Pre-ADP-ribosylation of rho proteins of human platelet membranes with Clostridium botulinum exoenzyme C3 or Clostridium limosum exoenzyme inhibits subsequent ADP-ribosylation by the exoenzyme from B. cereus indicating similar substrate specificity of the transferases. The ADP-ribosyltransferase from B. cereus reveals no immunological cross-reactivity with C. botulinum C3 and C. limosum exoenzyme.  相似文献   

9.
Hydrogen production was studied in the following rumen anaerobes: Bacteroides clostridiiformis, Butyrivibrio fibrisolvens, Enbacterium limosum, Fusobacterium necrophorum, Megasphaera elsdenii, Ruminococcus albus, and Ruminococcus flavefaciens. Clostridium pasteurianum and Escherichia coli were included for comparative purposes. Hydrogen production from dithionite, dithionite-reduced methyl viologen, pyruvate, and formate was determined. All species tested produced hydrogen from dithionite-reduce methyl viologen, but only C. pasteurianum, B. clostridiiformis, E. limosum, and M. elsdenii produced hydrogen from dithionite. All species except E. coli produced hydrogen from pyruvate, but activity was low or absent in extracts of E. limosum, F. necrophorum, R. albus, and R. flavefaciens unless methyl viologen was added. Hydrogen was produced from formate only by E. coli, B. clostridiiformis, E. limosum, F. necrophorum, and R. flavefaciens. Extracts were subjected to ultracentrifugation in an effort to determine the solubility of hydrogenase. The hydrogenase of all species except E. coli appeared to be soluble, although variable amounts of hydrogenase activity were detected in the pellet. Treatment of extracts of the rumen microbial species with DEAE-cellulose resulted in loss ofhydrogen production from pyruvate. Activity was restored by the addition of methyl viologen. It is concluded that hydrogen production in these rumen microorganisms is similar to that in the saccharolytic clostridia.  相似文献   

10.
Among anaerobic bacteria normally found in the urogenital flora, Eubacterium limosum was found to inhibit the in vitro growth of Neisseria gonorrhoeae. The antigonococcal activity produced by E. limosum was soluble in methanol and in a chloroform--methanol mixture (30:70). The fraction soluble in chloroform--methanol (30:70) yielded eight absorbance peaks when chromatographed on Bio-Gel P-2 and the inhibitory activity was found in the first two peaks. This activity was not absorbed on DEAE Sephacel and was eluted with distilled water in a peak considered as peak 1, on which preliminary characterization was done. The inhibitory activity of peak 1 was found to be heat and pH resistant and not susceptible to proteases, lipase, or amylases. When peak 1 was chromatographed on cellulose paper using a butanol--acetic acid (4:1) solvent system, eight different spots were detected upon spraying the paper with ninhydrin. No spot was detected with anthrone, bromothymol, nor Sudan black reagents used for the detection of carbohydrates and lipids. Based on sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis and gel chromatography on Sephadex G-25, peak 1 appeared either as a diffuse band and as a single peak, respectively. The molecular weight of the inhibitory complex was estimated to be 2400. All these results suggest that the antigonococcal activity produced by E. limosum is composed of more than one low molecular weight amino compound.  相似文献   

11.
Eubacterium limosum KIST612 is one of the few acetogens that can produce butyrate from carbon monoxide. We have used a genome-guided analysis to delineate the path of butyrate formation, the enzymes involved, and the potential coupling to ATP synthesis. Oxidation of CO is catalyzed by the acetyl-coenzyme A (CoA) synthase/CO dehydrogenase and coupled to the reduction of ferredoxin. Oxidation of reduced ferredoxin is catalyzed by the Rnf complex and Na+ dependent. Consistent with the finding of a Na+-dependent Rnf complex is the presence of a conserved Na+-binding motif in the c subunit of the ATP synthase. Butyrate formation is from acetyl-CoA via acetoacetyl-CoA, hydroxybutyryl-CoA, crotonyl-CoA, and butyryl-CoA and is consistent with the finding of a gene cluster that encodes the enzymes for this pathway. The activity of the butyryl-CoA dehydrogenase was demonstrated. Reduction of crotonyl-CoA to butyryl-CoA with NADH as the reductant was coupled to reduction of ferredoxin. We postulate that the butyryl-CoA dehydrogenase uses flavin-based electron bifurcation to reduce ferredoxin, which is consistent with the finding of etfA and etfB genes next to it. The overall ATP yield was calculated and is significantly higher than the one obtained with H2 + CO2. The energetic benefit may be one reason that butyrate is formed only from CO but not from H2 + CO2.  相似文献   

12.
In anaerobic microorganisms the origin of C atoms 2 and 4-7 of the 5,6-dimethylbenzimidazole moiety of vitamin B-12 is still unknown. In order to tackle this problem we added several 14C-labeled putative precursors to Eubacterium limosum fermentations. The degradation of the isolated vitamin B-12 revealed that only D-erythrose, 14C-labeled in different positions, was efficiently incorporated into the 5,6-dimethylbenzimidazole part. The 5,6-dimethylbenzimidazole obtained from an experiment with D-[U-14C]erythrose was further degraded. It was found that C-2 was unlabeled, whereas half of the label was located in C-5 plus C-6, and the other half in C-4 plus C-7. These results demonstrate that in E. limosum D-erythrose is a precursor of C-atoms 4, 5, 6 and 7 of the 5,6-dimethylbenzimidazole part of vitamin B-12.  相似文献   

13.
Previous research showed that microRNA-612 (miR-612) has inhibitory effects on cell proliferation, migration, invasion, and metastasis of hepatocellular carcinoma (HCC). AKT2 was confirmed to be a direct target of miR-612, through which the epithelial–mesenchymal transition (EMT) and metastasis of HCC were inhibited. Our present findings reveal that miR-612 is able to suppress the stemness of HCC by reducing the number and size of tumorspheres as well as clone formation in soft agar, and to relieve drug resistance to cisplatin and 5-fluorouracil. In addition, miR-612 hampered the capacity of tumorigenesis in NOD/SCID mice and redistributed the tumor invasive frontier of miR-612-modulating cells. Finally, our findings suggest that Wnt/β-catenin signaling is required in the regulation of EMT-associated stem cell-like traits by miR-612.  相似文献   

14.
O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions.  相似文献   

15.
Eubacterium limosum was isolated as the most numerous methanol-utilizing bacterium in the rumen fluid of sheep fed a diet in which molasses was a major component (mean most probable number of 6.3 X 10(8) viable cells per ml). It was also isolated from sewage sludge at 9.5 X 10(4) cells per ml. It was not detected in the rumen fluid of a steer on a normal hay-grain diet, although Methanosarcina, as expected, was found at 9.5 X 10(5) cells per ml. The doubling time of E. limosum in basal medium (5% rumen fluid) with methanol as the energy source (37 degree C) was 7 h. Acetate, cysteine, carbon dioxide, and the vitamins biotin, calcium-D-pantothenate, and lipoic acid were required for growth on a chemically defined methanol medium. Acetate, butyrate, and caproate were produced from methanol. Ammonia or each of several amino acids served as the main nitrogen source. Other energy sources included adonitol, arabitol, erythritol, fructose, glucose, isoleucine, lactate, mannitol, ribose, valine, and H2-CO2. The doubling time for growth on H2-CO2 (5% rumen fluid, 37 degree C) was 14 h as compared with 5.2 h for isoleucine and 3.5 h for glucose. The vitamin requirements for growth on H2-CO2 were the same as those for methanol; however, acetate was not required for growth on H2-CO2, although it was necessary for growth on valine, isoleucine, and lactate and was stimulatory to growth on glucose. Acetate and butyrate were formed during growth on H2-CO2, whereas branched-chain fatty acids and ammonia were fermentation products from the amino acids. Heat tolerance was detected, but spores were not observed. The type strain of E. limosum (ATCC 8486) and strain L34, which was isolated from the rumen of a young calf, grew on methanol, H2-CO2, valine, and isoleucine and showed the same requirements for acetate as the freshly isolated strains.  相似文献   

16.
17.
Eubacterium limosum was isolated as the most numerous methanol-utilizing bacterium in the rumen fluid of sheep fed a diet in which molasses was a major component (mean most probable number of 6.3 X 10(8) viable cells per ml). It was also isolated from sewage sludge at 9.5 X 10(4) cells per ml. It was not detected in the rumen fluid of a steer on a normal hay-grain diet, although Methanosarcina, as expected, was found at 9.5 X 10(5) cells per ml. The doubling time of E. limosum in basal medium (5% rumen fluid) with methanol as the energy source (37 degree C) was 7 h. Acetate, cysteine, carbon dioxide, and the vitamins biotin, calcium-D-pantothenate, and lipoic acid were required for growth on a chemically defined methanol medium. Acetate, butyrate, and caproate were produced from methanol. Ammonia or each of several amino acids served as the main nitrogen source. Other energy sources included adonitol, arabitol, erythritol, fructose, glucose, isoleucine, lactate, mannitol, ribose, valine, and H2-CO2. The doubling time for growth on H2-CO2 (5% rumen fluid, 37 degree C) was 14 h as compared with 5.2 h for isoleucine and 3.5 h for glucose. The vitamin requirements for growth on H2-CO2 were the same as those for methanol; however, acetate was not required for growth on H2-CO2, although it was necessary for growth on valine, isoleucine, and lactate and was stimulatory to growth on glucose. Acetate and butyrate were formed during growth on H2-CO2, whereas branched-chain fatty acids and ammonia were fermentation products from the amino acids. Heat tolerance was detected, but spores were not observed. The type strain of E. limosum (ATCC 8486) and strain L34, which was isolated from the rumen of a young calf, grew on methanol, H2-CO2, valine, and isoleucine and showed the same requirements for acetate as the freshly isolated strains.  相似文献   

18.
Experiments on the incorporation of erythrose and formate into the 5,6-dimethylbenzimidazole moiety of vitamin B12 are described. In one experiment, a 1:1 mixture of D-[1-13C]erythrose and D-[1-13C]threose was added to a Eubacterium limosum fermentation. The vitamin B12 formed was methylated at N3 of its 5,6-dimethylbenzimidazole part and degraded to 1,5,6-trimethylbenzimidazole. The 13C-NMR spectrum of this compound exhibited a single prominent signal at 109.5 ppm due to 13C labeling in C7. This shows that C1 of erythrose or threose was originally incorporated exclusively into C4 of the 5,6-dimethylbenzimidazole moiety of vitamin B12. In another experiment, sodium [13C]formate was added to a culture of E. limosum. The vitamin B12 isolated was transformed into 1,5,6-trimethylbenzimidazole as before. The 13C-NMR spectrum also showed one prominent signal at 142.8 ppm, evoked by 13C at C2. These results demonstrate that erythrose is incorporated into the base part of vitamin B12 regiospecifically and that formate is the precursor of the C2.  相似文献   

19.
O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions.  相似文献   

20.
Posttranslational modifications, such as SUMOylation, play specific roles in the life cycle of invading pathogens. However, the effect of SUMOylation on the adaptation, pathogenesis, and transmission of influenza A virus (IAV) remains largely unknown. Here, we found that a conserved lysine residue at position 612 (K612) of the polymerase basic protein 1 (PB1) of IAV is a bona fide SUMOylation site. SUMOylation of PB1 at K612 had no effect on the stability or cellular localization of PB1, but was critical for viral ribonucleoprotein (vRNP) complex activity and virus replication in vitro. When tested in vivo, we found that the virulence of SUMOylation-defective PB1/K612R mutant IAVs was highly attenuated in mice. Moreover, the airborne transmission of a 2009 pandemic H1N1 PB1/K612R mutant virus was impaired in ferrets, resulting in reversion to wild-type PB1 K612. Mechanistically, SUMOylation at K612 was essential for PB1 to act as the enzymatic core of the viral polymerase by preserving its ability to bind viral RNA. Our study reveals an essential role for PB1 K612 SUMOylation in the pathogenesis and transmission of IAVs, which can be targeted for the design of anti-influenza therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号