首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haemophilus biotype IV strains belonging to the recently recognized Haemophilus cryptic genospecies are an important cause of maternal genital tract and neonatal systemic infections and initiate infection by colonizing the genital or respiratory epithelium. To gain insight into the mechanism of Haemophilus cryptic genospecies colonization, we began by examining prototype strain 1595 and three other strains for adherence to genital and respiratory epithelial cell lines. Strain 1595 and two of the three other strains demonstrated efficient adherence to all of the cell lines tested. With a stably adherent variant of strain 1595, we generated a Mariner transposon library and identified 16 nonadherent mutants. All of these mutants lacked surface fibers and contained an insertion in the same open reading frame, which encodes a 157-kDa protein designated Cha for cryptic haemophilus adhesin. Analysis of the predicted amino acid sequence of Cha revealed the presence of an N-terminal signal peptide and a C-terminal domain bearing homology to YadA-like and Hia-like trimeric autotransporters. Examination of the C-terminal 120 amino acids of Cha demonstrated mobility as a trimer on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the capacity to present the passenger domain of the Hia trimeric autotransporter on the bacterial surface. Southern analysis revealed that the gene that encodes Cha is conserved among clinical isolates of the Haemophilus cryptic genospecies and is absent from the closely related species Haemophilus influenzae. We speculate that Cha is important in the pathogenesis of disease due to the Haemophilus cryptic genospecies and is in part responsible for the apparent tissue tropism of this organism.  相似文献   

2.
The Haemophilus cryptic genospecies (HCG) causes genital tract infections in pregnant and postpartum women and respiratory infections in neonates. The major surface adhesin in HCG is called Cha, which mediates bacterial adherence to cultured human epithelial cells. In this study, we report that there are two antigenically distinct variants of Cha, dubbed Cha1 and Cha2. These variants are encoded by the same genetic locus in diverse strains and have nearly identical N-terminal export and C-terminal surface anchoring domains but significantly different internal adhesive domains. Based on the comparison of derivatives of a laboratory strain of Haemophilus influenzae expressing either surface-associated Cha1 or surface-associated Cha2, Cha1 mediates a higher level of adherence to cultured human epithelial cells and Cha2 mediates a higher level of adherence to abiotic surfaces. We hypothesize that variation in the Cha1 and Cha2 internal region results in changes in binding specificity or binding affinity and may be associated with adaptation to different host environments during colonization and disease.  相似文献   

3.
The Hia autotransporter of Haemophilus influenzae belongs to the trimeric autotransporter subfamily and mediates bacterial adherence to the respiratory epithelium. In this report, we show that the structure of Hia is characterized by a modular architecture containing repeats of structurally distinct domains. Comparison of the structures of HiaBD1 and HiaBD2 adhesive repeats and a nonadhesive repeat (a novel fold) shed light on the structural determinants of Hia adhesive function. Examination of the structure of an extended version of the Hia translocator domain revealed the structural transition between the C-terminal translocator domain and the N-terminal passenger domain, highlighting a highly intertwined domain that is ubiquitous among trimeric autotransporters. Overall, this study provides important insights into the mechanism of Hia adhesive activity and the overall structure of trimeric autotransporters.  相似文献   

4.
Haemophilus influenzae is a human-specific pathogen and a major source of morbidity worldwide. Infection with this organism begins with colonization of the nasopharynx, a process that probably depends on adherence to respiratory epithelium. The Hia autotransporter protein is the major adhesin ex-pressed by a subset of non-typeable H. influenzae strains and promotes high-level adherence to a variety of human epithelial cell lines. In the current study, we discovered that the Hia passenger domain contains two distinct binding pockets, including one at the C-terminal end and a second at the N-terminal end. Competition assays revealed that the two binding pockets interact with the same host cell receptor structure, although with differing affinities. Additional experiments demonstrated that both binding domains are required for full-level bacterial adherence. These observations are reminiscent of eukaryotic cell adhesion molecules and highlight the first example of a bacterial adhesin with two domains that participate in a bivalent interaction with identical host cell receptors. Such an interaction increases avidity, thus stabilizing bacterial adherence to the epithelial surface, despite physical forces such as coughing, sneezing and mucociliary clearance.  相似文献   

5.
The Haemophilus influenzae Hap autotransporter is a nonpilus adhesin that promotes adherence to respiratory epithelial cells and selected extracellular matrix proteins and facilitates bacterial aggregation and microcolony formation. Hap consists of a 45-kDa outer membrane translocator domain called Hap(beta) and a 110-kDa extracellular passenger domain called Hap(S). All adhesive activity resides within Hap(S), which also contains protease activity and directs its own secretion from the bacterial cell surface via intermolecular autoproteolysis. In the present study, we sought to determine the relationship between the magnitude of Hap expression, the efficiency of Hap autoproteolysis, and the level of Hap-mediated adherence and aggregation. We found that a minimum threshold of Hap precursor was required for autoproteolysis and that this threshold approximated expression of Hap from a chromosomal allele, as occurs in H. influenzae clinical isolates. Chromosomal expression of wild-type Hap was sufficient to promote significant adherence to epithelial cells and extracellular matrix proteins, and adherence was enhanced substantially by inhibition of autoproteolysis. In contrast, chromosomal expression of Hap was sufficient to promote bacterial aggregation only when autoproteolysis was inhibited, indicating that the threshold for Hap-mediated aggregation is above the threshold for autoproteolysis. These results highlight the critical role of autoproteolysis and an intermolecular mechanism of cleavage in controlling the diverse adhesive activities of Hap.  相似文献   

6.
The pathogenesis of non-typable Haemophilus influenzae disease begins with colonization of the nasopharynx and is facilitated by bacterial adherence to respiratory mucosa. The H. influenzae Hap autotransporter is a non-pilus adhesin that promotes adherence to epithelial cells and selected extracellular matrix proteins and mediates bacterial aggregation and microcolony formation. In addition, Hap has serine protease activity. Hap contains a 110 kDa internal passenger domain called HapS and a 45 kDa C-terminal translocator domain called Hapbeta. In the present study, we sought to define the structural basis for Hap adhesive activities. Based on experiments using a panel of monoclonal antibodies against HapS, a deletion derivative lacking most of HapS and a purified fragment of HapS, we established that adherence to epithelial cells is mediated by sequences within the C-terminal 311 residues of HapS. In additional experiments, we discovered that bacterial aggregation is also mediated by sequences within the C-terminal 311 residues of HapS and occurs via HapS-HapS interaction between molecules on neighbouring organisms. Finally, we found that adherence to fibronectin, laminin and collagen IV is mediated in part by sequences within the C-terminal 311 residues of HapS and in full by sequences within the C-terminal 511 residues of HapS. Taken together, these results demonstrate that all Hap adhesive activities reside in the C-terminal portion of HapS. Coupled with earlier observations, the current results establish that HapS adhesive activities and HapS protease activity are contained in separate modules of the protein.  相似文献   

7.
In recent years, structural studies have identified a number of bacterial, viral, and eukaryotic adhesive proteins that have a trimeric architecture. The prototype examples in bacteria are the Haemophilus influenzae Hia adhesin and the Yersinia enterocolitica YadA adhesin. Both Hia and YadA are members of the trimeric-autotransporter subfamily and are characterized by an internal passenger domain that harbors adhesive activity and a short C-terminal translocator domain that inserts into the outer membrane and facilitates delivery of the passenger domain to the bacterial surface. In this study, we examined the relationship between trimerization of the Hia and YadA passenger domains and the capacity for adhesive activity. We found that subunit-subunit interactions and stable trimerization are essential for native folding and stability and ultimately for full-level adhesive activity. These results raise the possibility that disruption of the trimeric architecture of trimeric autotransporters, and possibly other trimeric adhesins, may be an effective strategy to eliminate adhesive activity.  相似文献   

8.
Trimeric autotransporters: a distinct subfamily of autotransporter proteins   总被引:1,自引:0,他引:1  
Autotransporter proteins are a large family of gram-negative bacterial extracellular proteins. These proteins have a characteristic arrangement of functional domains, including an N-terminal signal peptide, an internal passenger domain, and a C-terminal translocator domain. Recent studies have identified a novel subfamily of autotransporters, defined by a short trimeric C-terminal translocator domain and known as trimeric autotransporters. In this article, we review our current knowledge of the structural and functional characteristics of trimeric autotransporters, highlighting the distinctions between this subfamily and conventional autotransporters. We speculate that trimeric autotransporters evolved to enable high-affinity multivalent adhesive interactions with host surfaces and circulating host molecules to take place.  相似文献   

9.
The binding of fibronectin to Staphylococci exhibits the properties of a ligand-receptor interaction and has been proposed to mediate bacterial adherence to host tissues. To localize staphylococcal-binding sites in fibronectin, the protein was subjected to limited proteolysis and, of the generated fragments, Staphylococci appeared to preferentially bind to the N-terminal fragment. Different fibronectin fragments were isolated and tested for their ability to inhibit 125I-fibronectin binding to Staphylococci. The results indicate that only the N-terminal region effectively competed for fibronectin binding. However, when isolated fragments were adsorbed to microtiter wells, we found that two distinct domains, corresponding to the N-terminal fragment and to the heparin-binding peptide mapping close to the C-terminal end of fibronectin, promoted the attachment of both Staphylococcus aureus Newman and coagulase-negative strain of Staphylococcus capitis 651. These same domains were recognized by purified 125I-labeled staphylococcal receptor, either when immobilized on microtiter wells or probed after adsorption onto nitrocellulose membrane. The heparin-binding domain is comprised of type-III-homology repeats 14, 15 and 16. To determine which repeats participate in this interaction, we isolated and tested repeats type III14 and type III16. We found that the major staphylococcal binding site is located in repeat type III14. The staphylococcal receptor bound the N-terminal domain of fibronectin with a KD of 1.8 nM, whereas the dissociation constant of the receptor molecule for the internal heparin-binding domain was 10 nM. Since the fusion protein ZZ-FR, which contains the active sequences of fibronectin receptor (D1-D3) bound only to the N-terminus, it is reasonable to assume that the bacterial receptor may have additional binding sites outside the D domains, capable of interacting with the internal heparin-binding domain of fibronectin.  相似文献   

10.
《Matrix biology》1999,18(3):211-223
Most bacterial infections are initiated by the adherence of microorganisms to host tissues. This process involves the interaction of specific bacterial surface structures, called adhesins, with host components. In this review, we discuss a group of microbial adhesins known as Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) which recognize and bind FN. The interaction of bacteria with FN is believed to contribute significantly to the virulence of a number of microorganisms, including staphylococci and streptococci. Several FN-binding MSCRAMMs of staphylococci and streptococci exhibit a similar structural organization and mechanism of ligand recognition. The ligand-binding domain consists of tandem repeats of a ∼45 amino acid long unit which bind to the 29-kDa N-terminal region of FN. The binding mechanism is unusual in that the repeat units are unstructured and appear to undergo a conformational change upon ligand binding. Apart from supporting bacterial adherence, FN is also involved in bacterial entry into non-phagocytic mammalian cells. A sandwich model has been proposed in which FN forms a molecular bridge between MSCRAMMs on the bacterial surface and integrins on the host cell. However, the precise mechanism of bacterial invasion and the roles of FN and integrins in this process have yet to be fully elucidated.  相似文献   

11.
12.
Haemophilus influenzae is an important human pathogen that initiates infection by colonizing the upper respiratory tract. The H. influenzae Hia autotransporter is an adhesive protein that promotes adherence to respiratory epithelial cells. Hia adhesive activity resides in two homologous binding domains, called HiaBD1 and HiaBD2. These domains interact with the same host cell receptor, but bind with different affinities. In this report, we describe the crystal structure of the high-affinity HiaBD1 binding domain, which has a novel trimeric architecture with three-fold symmetry and a mushroom shape. The subunit constituents of the trimer are extensively intertwined. The receptor-binding pocket is formed by an acidic patch that is present on all three faces of the trimer, providing potential for a multivalent interaction with the host cell surface, analogous to observations with the trimeric tumor necrosis factor superfamily of proteins. Hia is a novel example of a bacterial trimeric adhesin and may be the prototype member of a large family of bacterial virulence proteins with a similar architecture.  相似文献   

13.
Autotransporter proteins are defined by the ability to drive their own secretion across the bacterial outer membrane. The Hia autotransporter of Haemophilus influenzae belongs to the trimeric autotransporter subfamily and mediates bacterial adhesion to the respiratory epithelium. In this report, we present the crystal structure of the C-terminal end of Hia, corresponding to the entire Hia translocator domain and part of the passenger domain (residues 992-1098). This domain forms a beta-barrel with 12 transmembrane beta-strands, including four strands from each subunit. The beta-barrel has a central channel of 1.8 nm in diameter that is traversed by three N-terminal alpha-helices, one from each subunit. Mutagenesis studies demonstrate that the transmembrane portion of the three alpha-helices and the loop region between the alpha-helices and the neighboring beta-strands are essential for stability of the trimeric structure of the translocator domain, and that trimerization of the translocator domain is a prerequisite for translocator activity. Overall, this study provides important insights into the mechanism of translocation in trimeric autotransporters.  相似文献   

14.
We previously elucidated five distinct protein domains (I-V) for bovine submaxillary mucin, which is encoded by two genes, BSM1 and BSM2. Using Southern blot analysis, genomic cloning and sequencing of the BSM1 gene, we now show that the central domain (V) consists of approximately 55 tandem repeats of 329 amino acids and that domains III-V are encoded by a 58.4-kb exon, the largest exon known for all genes to date. The BSM1 gene was mapped by fluorescence in situ hybridization to the proximal half of chromosome 5 at bands q2. 2-q2.3. The amino-acid sequence of six tandem repeats (two full and four partial) were found to have only 92-94% identities. We propose that the variability in the amino-acid sequences of the mucin tandem repeat is important for generating the combinatorial library of saccharides that are necessary for the protective function of mucins. The deduced peptide sequences of the central domain match those determined from the purified bovine submaxillary mucin and also show 68-94% identity to published peptide sequences of ovine submaxillary mucin. This indicates that the core protein of ovine submaxillary mucin is closely related to that of bovine submaxillary mucin and contains similar tandem repeats in the central domain. In contrast, the central domain of porcine submaxillary mucin is reported to consist of 81-amino-acid tandem repeats. However, both bovine submaxillary mucin and porcine submaxillary mucin contain similar N-terminal and C-terminal domains and the corresponding genes are in the conserved linkage regions of the respective genomes.  相似文献   

15.
ShdA is a large outer membrane protein of the autotransporter family whose passenger domain binds the extracellular matrix proteins fibronectin and collagen I, possibly by mimicking the host ligand heparin. The ShdA passenger domain consists of approximately 1,500 amino acid residues that can be divided into two regions based on features of the primary amino acid sequence: an N-terminal nonrepeat region followed by a repeat region composed of two types of imperfect direct amino acid repeats, called type A and type B. The repeat region bound bovine fibronectin with an affinity similar to that for the complete ShdA passenger domain, while the nonrepeat region exhibited comparatively low fibronectin-binding activity. A number of fusion proteins containing truncated fragments of the repeat region did not bind bovine fibronectin. However, binding of the passenger domain to fibronectin was inhibited in the presence of immune serum raised to one truncated fragment of the repeat region that contained repeats A2, B8, A3, and B9. Furthermore, a monoclonal antibody that specifically recognized an epitope in a recombinant protein containing the A3 repeat inhibited binding of ShdA to fibronectin.  相似文献   

16.
Streptococcus pyogenes binds to the extracellular matrix (ECM) and a variety of host cells and tissues, causing diverse human diseases. Protein F, a S.pyogenes adhesin that binds fibronectin (Fn), contains two binding domains. A repeated domain (RD2) and an additional domain (UR), located immediately N-terminal to RD2. Both domains are required for maximal Fn binding. In this study, we characterize RD2 and UR precisely and compare their functions and binding sites in Fn. The minimal functional unit of RD2 is of 44 amino acids, with contributions from two adjacent RD2 repeats flanked by a novel 'MGGQSES' motif. RD2 binds to the N-terminal fibrin binding domain of Fn. UR contains 49 amino acids, of which six are from the first repeat of RD2. It binds to Fn with higher affinity than RD2, and recognizes a larger fragment that contains fibrin and collagen binding domains. Expression of UR and RD2 independently on the surface-exposed region of unrelated streptococcal protein demonstrates that both mediate adherence of the bacteria to the ECM. We describe here a mechanism of adherence of a pathogen that involves two pairs of sites located on a single adhesin molecule and directed at the same host receptor.  相似文献   

17.
Gram-negative bacterial autotransporter proteins are a growing group of virulence factors that are characterized by their ability to cross the outer membrane without the help of accessory proteins. A conserved C-terminal beta-domain is critical for targeting of autotransporters to the outer membrane and for translocation of the N-terminal "passenger" domain to the bacterial surface. We have demonstrated previously that the Haemophilus influenzae Hia adhesin belongs to the autotransporter family, with translocator activity residing in the C-terminal 319 residues. To gain further insight into the mechanism of autotransporter protein translocation, we performed a structure-function analysis on Hia. In initial experiments, we generated a series of in-frame deletions and a set of chimeric proteins containing varying regions of the Hia C terminus fused to a heterologous passenger domain and discovered that the final 76 residues of Hia are both necessary and sufficient for translocation. Analysis by flow cytometry revealed that the region N-terminal to this shortened translocator domain is surface localized, further suggesting that this region is not involved in beta-barrel formation or in translocation of the passenger domain. Western analysis demonstrated that the translocation-competent regions of the C terminus migrated at masses consistent with trimers, suggesting that the Hia C terminus oligomerizes. Furthermore, fusion proteins containing a heterologous passenger domain demonstrated that similarly small C-terminal regions of Yersinia sp. YadA and Neisseria meningitidis NhhA are translocation-competent. These data provide experimental support for a unique subclass of autotransporters characterized by a short trimeric translocator domain.  相似文献   

18.
Bacterial fibronectin-binding proteins (FnBPs) contain a large intrinsically disordered region (IDR) that mediates adhesion of bacteria to host tissues, and invasion of host cells, through binding to fibronectin (Fn). These FnBP IDRs consist of Fn-binding repeats (FnBRs) that form a highly extended tandem β-zipper interaction on binding to the N-terminal domain of Fn. Several FnBR residues are highly conserved across bacterial species, and here we investigate their contribution to the interaction. Mutation of these residues to alanine in SfbI-5 (a disordered FnBR from the human pathogen Streptococcus pyogenes) reduced binding, but for each residue the change in free energy of binding was <2 kcal/mol. The structure of an SfbI-5 peptide in complex with the second and third F1 modules from Fn confirms that the conserved FnBR residues play equivalent functional roles across bacterial species. Thus, in SfbI-5, the binding energy for the tandem β-zipper interaction with Fn is distributed across the interface rather than concentrated in a small number of "hot spot" residues that are frequently observed in the interactions of folded proteins. We propose that this might be a common feature of the interactions of IDRs and is likely to pose a challenge for the development of small molecule inhibitors of FnBP-mediated adhesion to and invasion of host cells.  相似文献   

19.
Deltex is a cytosolic effector of Notch signaling thought to bind through its N-terminal domain to the Notch receptor. Here we report the structure of the Drosophila Deltex N-terminal domain, which contains two tandem WWE sequence repeats. The WWE repeats, which adopt a novel fold, are related by an approximate two-fold axis of rotation. Although the WWE repeats are structurally distinct, they interact extensively and form a deep cleft at their junction that appears well suited for ligand binding. The two repeats are thermodynamically coupled; this coupling is mediated in part by a conserved segment that is immediately C-terminal to the second WWE domain. We demonstrate that although the Deltex WWE tandem is monomeric in solution, it forms a heterodimer with the ankyrin domain of the Notch receptor. These results provide structural and functional insight into how Deltex modulates Notch signaling, and how WWE modules recognize targets for ubiquitination.  相似文献   

20.
Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号