首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
RluD catalyses formation of three pseudouridine residues within helix 69 of the 50S ribosome subunit. Helix 69 makes important contacts with the decoding centre on the 30S subunit and deletion of rluD was recently shown to interfere with translation termination in Escherichia coli. Here, we show that deletion of rluD increases tmRNA activity on ribosomes undergoing release factor 2 (RF2)-mediated termination at UGA stop codons. Strikingly, tmRNA-mediated SsrA peptide tagging of two proteins, ribosomal protein S7 and LacI, was dramatically increased in ΔrluD cells. S7 tagging was due to a unique C-terminal peptide extension found in E. coli K-12 strains. Introduction of the rpsG gene (encoding S7) from an E. coli B strain abrogated S7 tagging in the ΔrluD background, and partially complemented the mutant's slow-growth phenotype. Additionally, exchange of the K-12 prfB gene (encoding RF2) with the B strain allele greatly reduced tagging in ΔrluD cells. In contrast to E. coli K-12 cells, deletion of rluD in an E. coli B strain resulted in no growth phenotype. These findings indicate that the originally observed rluD phenotypes result from synthetic interactions with rpsG and prfB alleles found within E. coli K-12 strains.  相似文献   

2.
A post-translational modification affecting the translation termination rate was identified in the universally conserved GGQ sequence of release factor 2 (RF2) from Escherichia coli, which is thought to mimic the CCA end of the tRNA molecule. It was shown by mass spectrometry and Edman degradation that glutamine in position 252 is N:(5)-methylated. Overexpression of RF2 yields protein lacking the methylation. RF2 from E.coli K12 is unique in having Thr246 near the GGQ motif, where all other sequenced bacterial class 1 RFs have alanine or serine. Sequencing the prfB gene from E.coli B and MRE600 strains showed that residue 246 is coded as alanine, in contrast to K12 RF2. Thr246 decreases RF2-dependent termination efficiency compared with Ala246, especially for short peptidyl-tRNAs. Methylation of Gln252 increases the termination efficiency of RF2, irrespective of the identity of the amino acid in position 246. We propose that the previously observed lethal effect of overproducing E.coli K12 RF2 arises through accumulating the defects due to lack of Gln252 methylation and Thr246 in place of alanine.  相似文献   

3.
Pseudouridine modifications in helix 69 (H69) of 23S ribosomal RNA are highly conserved among all organisms. H69 associates with helix 44 of 16S rRNA to form bridge B2a, which plays a vital role in bridging the two ribosomal subunits and stabilizing the ribosome. The three pseudouridines in H69 were shown earlier to play an important role in 50S subunit assembly and in its association with the 30S subunit. In Escherichia coli, these three modifications are made by the pseudouridine synthase, RluD. Previous work showed that RluD is required for normal ribosomal assembly and function, and that it is the only pseudouridine synthase required for normal growth in E. coli. Here, we show that RluD is far more efficient in modifying H69 in structured 50S subunits, compared to free or synthetic 23S rRNA. Based on this observation, we suggest that pseudouridine modifications in H69 are made late in the assembly of 23S rRNA into mature 50S subunits. This is the first reported observation of a pseudouridine synthase being able to modify a highly structured ribonucleoprotein particle, and it may be an important late step in the maturation of 50S ribosomal subunits.  相似文献   

4.
In this issue of Molecular Microbiology, Schaub and Hayes report that, compared with other enterobacteria, Escherichia coli K12 carries two mutations - one in the prfB gene encoding the release factor RF2, and the other in the rpsG gene encoding r-protein S7 - that together concur in compromising translation termination at the essential rpsG gene. As a consequence, the growth of E. coli K12 is very sensitive to a further mutation (rluD(-) ) that depresses RF2 activity, whereas the growth of its close relative, E. coli B, is not. We tentatively discuss how the K12-specific mutations in RF2 and S7 might have occurred and why inefficient translation termination at rpsG inhibits growth. The work of Schaub and Hayes illustrates the fact that, due probably to its long history in the laboratory, E. coli K12 has accumulated mutations that sometimes limit its value as a model for studying basic steps in prokaryotic gene expression.  相似文献   

5.
Leppik M  Peil L  Kipper K  Liiv A  Remme J 《The FEBS journal》2007,274(21):5759-5766
Pseudouridine synthase RluD converts uridines at positions 1911, 1915, and 1917 of 23S rRNA to pseudouridines. These nucleotides are located in the functionally important helix-loop 69 of 23S rRNA. RluD is the only pseudouridine synthase that is required for normal growth in Escherichia coli. We have analyzed substrate specificity of RluD in vivo. Mutational analyses have revealed: (a) RluD isomerizes uridine in vivo only at positions 1911, 1915, and 1917, regardless of the presence of uridine at other positions in the loop of helix 69 of 23S rRNA variants; (b) substitution of one U by C has no effect on the conversion of others (i.e. formation of pseudouridines at positions 1911, 1915, and 1917 are independent of each other); (c) A1916 is the only position in the loop of helix 69, where mutations affect the RluD specific pseudouridine formation. Pseudouridines were determined in the ribosomal particles from a ribosomal large subunit defective strain (RNA helicase DeaD(-)). An absence of pseudouridines in the assembly precursor particles suggests that RluD directed isomerization of uridines occurs as a late step during the assembly of the large ribosomal subunit.  相似文献   

6.
Release factor 2 (RF2), encoded by the prfB gene in Escherichia coli, catalyzes translational termination at UGA and UAA codons. Termination at UGA competes with selenocysteine (Sec) incorporation at Sec-dedicated UGA codons, and RF2 thereby counteracts expression of selenoproteins. prfB is an essential gene in E. coli and can therefore not be removed in order to increase yield of recombinant selenoproteins. We therefore constructed an E. coli strain with the endogenous chromosomal promoter of prfB replaced with the titratable P(BAD) promoter. Knockdown of prfB expression gave a bacteriostatic effect, while two- to sevenfold overexpression of RF2 resulted in a slightly lowered growth rate in late exponential phase. In a turbidostatic fermentor system the simultaneous impact of prfB knockdown on growth and recombinant selenoprotein expression was subsequently studied, using production of mammalian thioredoxin reductase as model system. This showed that lowering the levels of RF2 correlated directly with increasing Sec incorporation specificity, while also affecting total selenoprotein yield concomitant with a lower growth rate. This study thus demonstrates that expression of prfB can be titrated through targeted exchange of the native promoter with a P(BAD)-promoter and that knockdown of RF2 can result in almost full efficiency of Sec incorporation at the cost of lower total selenoprotein yield.  相似文献   

7.
Bacterial release factors RF1 and RF2 are methylated on the Gln residue of a universally conserved tripeptide motif GGQ, which interacts with the peptidyl transferase center of the large ribosomal subunit, triggering hydrolysis of the ester bond in peptidyl-tRNA and releasing the newly synthesized polypeptide from the ribosome. In vitro experiments have shown that the activity of RF2 is stimulated by Gln methylation. The viability of Escherichia coli K12 strains depends on the integrity of the release factor methyltransferase PrmC, because K12 strains are partially deficient in RF2 activity due to the presence of a Thr residue at position 246 instead of Ala. Here, we study in vivo RF1 and RF2 activity at termination codons in competition with programmed frameshifting and the effect of the Ala-246 --> Thr mutation. PrmC inactivation reduces the specific termination activity of RF1 and RF2(Ala-246) by approximately 3- to 4-fold. The mutation Ala-246 --> Thr in RF2 reduces the termination activity in cells approximately 5-fold. After correction for the decrease in level of RF2 due to the autocontrol of RF2 synthesis, the mutation Ala-246 --> Thr reduced RF2 termination activity by approximately 10-fold at UGA codons and UAA codons. PrmC inactivation had no effect on cell growth in rich media but reduced growth considerably on poor carbon sources. This suggests that the expression of some genes needed for optimal growth under such conditions can become growth limiting as a result of inefficient translation termination.  相似文献   

8.
Escherichia coli pseudouridine synthase RluD makes pseudouridines 1911, 1915, and 1917 in the loop of helix 69 in 23S RNA. These are the most highly conserved ribosomal pseudouridines known. Of 11 pseudouridine synthases in E. coli, only cells lacking RluD have severe growth defects and abnormal ribosomes. We have determined the 2.0 A structure of the catalytic domain of RluD (residues 77-326), the first structure of an RluA family member. The catalytic domain folds into a mainly antiparallel beta-sheet flanked by several loops and helices. A positively charged cleft that presumably binds RNA leads to the conserved Asp 139. The RluD N-terminal S4 domain, connected by a flexible linker, is disordered in our structure. RluD is very similar in both catalytic domain structure and active site arrangement to the pseudouridine synthases RsuA, TruB, and TruA. We identify five sequence motifs, two of which are novel, in the RluA, RsuA, TruB, and TruA families, uniting them as one superfamily. These results strongly suggest that four of the five families of pseudouridine synthases arose by divergent evolution. The RluD structure also provides insight into its multisite specificity.  相似文献   

9.
Kipper K  Sild S  Hetényi C  Remme J  Liiv A 《Biochimie》2011,93(5):834-844
Pseudouridine [Ψ] is a frequent base modification in the ribosomal RNA [rRNA] and may be involved in the modulation of the conformational flexibility of rRNA helix-loop structures during protein synthesis. Helix 69 of 23S rRNA contains pseudouridines at the positions 1911, 1915 and 1917 which are formed by the helix 69-specific synthase RluD. The growth defect caused by the lack of RluD can be rescued by mutations in class I release factor RF2, indicating a role for helix 69 pseudouridines in translation termination. We investigated the role of helix 69 pseudouridines in peptide release by release factors RF1 and RF2 in an in vitro system consisting of purified components of the Escherichia coli translation apparatus. Lack of all three pseudouridines in helix 69 compromised the activity of RF2 about 3-fold but did not significantly affect the activity of RF1. Reintroduction of pseudouridines into helix 69 by RluD-treatment restored the activity of RF2 in peptide release. A Ψ-to-C substitution at the 1917 position caused an increase in the dissociation rate of RF1 and RF2 from the postrelease ribosome. Our results indicate that the presence of all three pseudouridines in helix 69 stimulates peptide release by RF2 but has little effect on the activity of RF1. The interactions around the pseudouridine at the 1917 position appear to be most critical for a proper interaction of helix 69 with release factors.  相似文献   

10.
Class 1 peptide release factors (RFs) in Escherichia coli are N(5)-methylated on the glutamine residue of the universally conserved GGQ motif. One other protein alone has been shown to contain N(5)-methylglutamine: E.coli ribosomal protein L3. We identify the L3 methyltransferase as YfcB and show that it methylates ribosomes from a yfcB strain in vitro, but not RF1 or RF2. HemK, a close orthologue of YfcB, is shown to methylate RF1 and RF2 in vitro. hemK is immediately downstream of and co-expressed with prfA. Its deletion in E.coli K12 leads to very poor growth on rich media and abolishes methylation of RF1. The activity of unmethylated RF2 from K12 strains is extremely low due to the cumulative effects of threonine at position 246, in place of alanine or serine present in all other bacterial RFs, and the lack of N(5)-methylation of Gln252. Fast-growing spontaneous revertants in hemK K12 strains contain the mutations Thr246Ala or Thr246Ser in RF2. HemK and YfcB are the first identified methyltransferases modifying glutamine, and are widely distributed in nature.  相似文献   

11.
12.
13.
Tedin K  Norel F 《Journal of bacteriology》2001,183(21):6184-6196
The growth recovery of Escherichia coli K-12 and Salmonella enterica serovar Typhimurium DeltarelA mutants were compared after nutritional downshifts requiring derepression of the branched-chain amino acid pathways. Because wild-type E. coli K-12 and S. enterica serovar Typhimurium LT2 strains are defective in the expression of the genes encoding the branch point acetohydroxy acid synthetase II (ilvGM) and III (ilvIH) isozymes, respectively, DeltarelA derivatives corrected for these mutations were also examined. Results indicate that reduced expression of the known global regulatory factors involved in branched-chain amino acid biosynthesis cannot completely explain the observed growth recovery defects of the DeltarelA strains. In the E. coli K-12 MG1655 DeltarelA background, correction of the preexisting rph-1 allele which causes pyrimidine limitations resulted in complete loss of growth recovery. S. enterica serovar Typhimurium LT2 DeltarelA strains were fully complemented by elevated basal ppGpp levels in an S. enterica serovar Typhimurium LT2 DeltarelA spoT1 mutant or in a strain harboring an RNA polymerase mutation conferring a reduced RNA chain elongation rate. The results are best explained by a dependence on the basal levels of ppGpp, which are determined by relA-dependent changes in tRNA synthesis resulting from amino acid starvations. Expression of the branched-chain amino acid operons is suggested to require changes in the RNA chain elongation rate of the RNA polymerase, which can be achieved either by elevation of the basal ppGpp levels or, in the case of the E. coli K-12 MG1655 strain, through pyrimidine limitations which partially compensate for reduced ppGpp levels. Roles for ppGpp in branched-chain amino acid biosynthesis are discussed in terms of effects on the synthesis of known global regulatory proteins and current models for the control of global RNA synthesis by ppGpp.  相似文献   

14.
15.
Genetics of L-proline utilization in Escherichia coli.   总被引:16,自引:11,他引:5       下载免费PDF全文
L-Azetidine-2-carboxylate (AC) and 3,4-dehydro-D,L-proline (DHP) are toxic L-proline analogs that can be used to select bacterial mutants defective for L-proline transport. Mutants resistant to AC and DHP are defective for proline transport alone (putP mutants), and mutants resistant to AC but not to DHP are defective both in putP and in the closely linked proline dehydrogenase gene putA. Proline dehydrogenase oxidizes DHP but not AC, probably detoxifying the former compound. These observations were exploited in preparing an otherwise isogenic set of Escherichia coli K-12 strains with well-defined defects in the putP and putA genes. The results of this study suggest that the genetic and biochemical characteristics of proline utilization in E. coli K-12 are closely analogous to those of Salmonella typhimurium.  相似文献   

16.
I-CeuI fragments of four Shigella species were analyzed to investigate their taxonomic distance from Escherichia coli and to collect substantiated evidence of their genetic relatedness because their ribosomal RNA sequences and similarity values of their chromosomal DNA/DNA hybridization had proved their taxonomic identity. I-CeuI digestion of genomic DNAs yielded seven fragments in every species, indicating that all the Shigella species contained seven sets of ribosome RNA operons. To determine the fragment identities, seven genes were selected from each I-CeuI fragment of E. coli strain K-12 and used as hybridization probes. Among the four Shigella species, S. boydii and S. sonnei showed hybridization patterns similar to those observed for E. coli strains; each gene probe hybridized to the I-CeuI fragments with sizes similar to that of the corresponding E. coli fragment. In contrast, S. dysenteriae and S. flexneri showed distinct patterns; rcsF and rbsR genes that located on different I-CeuI fragments in E. coli, fragments D and E, were found to co-locate on a fragment. Further analysis using an additional three genes that located on fragment D in K-12 revealed that some chromosome rearrangements involving the fragments corresponding to fragments D and E of K-12 took place in S. dysenteriae and S. flexneri.  相似文献   

17.
UGA-specific nonsense suppressors from Escherichia coli K-12 were isolated and characterized. One of them (Su+UGA-11) was identified as a mutant of the prfB gene for the peptide releasing factor RF2. It appears that in this strain, while peptide release at sites of UGA mutations is retarded, the UGA stop codon is read through even in the absence of a tRNA suppressor, exhibiting a novel type of passive nonsense suppression. Three suppressors (Su+UGA-12, -16 and -34) were capable of restoring the streptomycin sensitive phenotype in resistant bacteria (strAr). Because of their drug-related phenotype, these are possibly mutations in the components of the ribosomal machinery, particularly those concerned with peptide release at UGA nonsense codons. A tRNA suppressor was also obtained which was derived from the tRNA(Trp) gene. In this strain, a long region between rrnC (84.5 min) and rrnB (89.5 min) was duplicated and one of the duplicated genes of tRNA(Trp) was mutated to the suppressor. The mechanism of UGA-suppression is discussed in terms of translation termination at the nonsense codon in both active and passive fashions.  相似文献   

18.
Protein 1, a major protein of the outer membrane of Escherichia coli, has been shown to be the pore allowing the passage of small hydrophilic solutes across the outer membrane. In E. coli K-12 protein 1 consists of two subspecies, 1a and 1b, whereas in E. coli B it consists of a single species which has an electrophoretic mobility similar to that of 1a. K-12 strains mutant at the ompB locus lack both proteins 1a and 1b and exhibit multiple transport defects, resistance to toxic metal ions, and tolerance to a number of colicins. Mutation at the tolF locus results in the loss of 1a, in less severe transport defects, and more limited colicin tolerance. Mutation at the par locus causes the loss of protein 1b, but no transport defects or colicin tolerance. Lysogeny of E. coli by phage PA-2 results in the production of a new major protein, protein 2. Lysogeny of K-12 ompB mutants resulted in dramatic reversal of the transport defects and restoration of the sensitivity to colicins E2 and E3 but not to other colicins. This was shown to be due to the production of protein 2, since lysogeny by phage mutants lacking the ability to elicit protein 2 production did not show this effect. Thus, protein 2 can function as an effective pore. ompB mutations in E. coli B also resulted in loss of protein 1 and similar multiple transport defects, but these were only partially reversed by phage lysogeny and the resulting production of protein 2. When the ompB region from E. coli B was moved by transduction into an E. coli K-12 background, only small amounts of proteins 1a and 1b were found in the outer membrane. These results indicate that genes governing the synthesis of outer membrane proteins may not function interchangeably between K-12 and B strains, indicating differences in regulation or biosynthesis of these proteins between these strains.  相似文献   

19.
20.
RluD is the pseudouridine synthase responsible for the formation of Psi1911, Psi1915, and Psi1917 in Escherichia coli 23S rRNA. Previous work from our laboratory demonstrated that disruption of the rluD gene and/or loss of the pseudouridine residues for which it is responsible resulted in a severe growth phenotype. In the current work we have examined further the effect of the loss of the RluD protein and its product pseudouridine residues in a deletion strain lacking the rluD gene. This strain exhibits defects in ribosome assembly, biogenesis, and function. Specifically, there is a deficit of 70S ribosomes, an increase in 50S and 30S subunits, and the appearance of new 62S and 39S particles. Analysis of the 39S particles indicates that they are immature precursors of the 50S subunits, whereas the 62S particles are derived from the breakdown of unstable 70S ribosomes. In addition, purified mutant 70S ribosomes were found to be somewhat less efficient than wild type in protein synthesis. The defect in ribosome assembly and resulting growth phenotype of the mutant could be restored by expression of wild-type RluD and synthesis of Psi1911, Psi1915, and Psi1917 residues, but not by catalytically inactive mutant RluD proteins, incapable of pseudouridine formation. The data suggest that the loss of the pseudouridine residues can account for all aspects of the mutant phenotype; however, a possible second function of the RluD synthase is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号