首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial outer membrane contains two protein translocators: the TOM40 and TOB/SAM complexes. Mdm10 is distributed in the TOB complex for β‐barrel protein assembly and in the MMM1 complex for tethering of the endoplasmic reticulum and mitochondria. Here, we establish a system in which the Mdm10 level in the TOB complex—but not in the MMM1 complex—is altered to analyse its part in β‐barrel protein assembly. A decrease in the Mdm10 level results in accumulation of in vitro imported Tom40, which is a β‐barrel protein, at the level of the TOB complex. An increase in the Mdm10 level inhibits association not only of Tom40 but also of other β‐barrel proteins with the TOB complex. These results show that Mdm10 regulates the timing of release of unassembled Tom40 from the TOB complex, to facilitate its coordinated assembly into the TOM40 complex.  相似文献   

2.
The mitochondrial outer membrane contains two distinct machineries for protein import and protein sorting that function in a sequential manner: the general translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex), which is dedicated to beta-barrel proteins. The SAM(core) complex consists of three subunits, Sam35, Sam37, and Sam50, that can associate with a fourth subunit, the morphology component Mdm10, to form the SAM(holo) complex. Whereas the SAM(core) complex is required for the biogenesis of all beta-barrel proteins, Mdm10 and the SAM(holo) complex play a selective role in beta-barrel biogenesis by promoting assembly of Tom40 but not of porin. We report that Tom7, a conserved subunit of the TOM complex, functions in an antagonistic manner to Mdm10 in biogenesis of Tom40 and porin. We show that Tom7 promotes segregation of Mdm10 from the SAM(holo) complex into a low molecular mass form. Upon deletion of Tom7, the fraction of Mdm10 in the SAM(holo) complex is significantly increased, explaining the opposing functions of Tom7 and Mdm10 in beta-barrel sorting. Thus the role of Tom7 is not limited to the TOM complex. Tom7 functions in mitochondrial protein biogenesis by a new mechanism, segregation of a sorting component, leading to a differentiation of beta-barrel assembly.  相似文献   

3.
The biogenesis of mitochondrial outer membrane proteins involves the general translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex). The two known subunits of the SAM complex, Mas37 and Sam50, are required for assembly of the abundant outer membrane proteins porin and Tom40. We have identified an unexpected subunit of the SAM complex, Mdm10, which is involved in maintenance of mitochondrial morphology. Mitochondria lacking Mdm10 are selectively impaired in the final steps of the assembly pathway of Tom40, including the association of Tom40 with the receptor Tom22 and small Tom proteins, while the biogenesis of porin is not affected. Yeast mutants of TOM40, MAS37, and SAM50 also show aberrant mitochondrial morphology. We conclude that Mdm10 plays a specific role in the biogenesis of the TOM complex, indicating a connection between the mitochondrial protein assembly apparatus and the machinery for maintenance of mitochondrial morphology.  相似文献   

4.
The TOM40 complex is a protein translocator in the mitochondrial outer membrane and consists of several different subunits. Among them, Tom40 is a central subunit that constitutes a protein-conducting channel by forming a β-barrel structure. To probe the nature of the assembly process of Tom40 in the outer membrane, we attached various mitochondrial presequences to Tom40 that possess sorting information for the intermembrane space (IMS), inner membrane, and matrix and would compete with the inherent Tom40 assembly process. We analyzed the mitochondrial import of those fusion proteins in vitro. Tom40 crossed the outer membrane and/or inner membrane even in the presence of various sorting signals. N-terminal anchorage of the attached presequence to the inner membrane did not prevent Tom40 from associating with the TOB/SAM complex, although it impaired its efficient release from the TOB complex in vitro but not in vivo. The IMS or matrix-targeting presequence attached to Tom40 was effective in substituting for the requirement for small Tim proteins in the IMS for the translocation of Tom40 across the outer membrane. These results provide insight into the mechanism responsible for the precise delivery of β-barrel proteins to the outer mitochondrial membrane.  相似文献   

5.
Biogenesis of the translocase of the outer mitochondrial membrane (TOM complex) involves the assembly of the central β-barrel forming protein Tom40 with six different subunits that are embedded in the membrane via α-helical transmembrane segments. The sorting and assembly machinery (SAM complex) of the outer membrane plays a central role in this process. The SAM complex mediates the membrane integration of β-barrel precursor proteins including Tom40. The small Tom proteins Tom5 and Tom6 associate with the precursor of Tom40 at the SAM complex at an early stage of the assembly process and play a stimulatory role in the formation of the mature TOM complex. A fraction of the SAM components interacts with the outer membrane protein mitochondrial distribution and morphology protein 10 (Mdm10) to form the SAM-Mdm10 machinery; however, different views exist on the function of the SAM-Mdm10 complex. We report here that the third small Tom protein, Tom7, plays an inhibitory role at two distinct steps in the biogenesis of the TOM complex. First, Tom7 plays an antagonistic role to Tom5 and Tom6 at the early stage of Tom40 assembly at the SAM complex. Second, Tom7 interacts with Mdm10 that is not bound to the SAM complex, and thus promotes dissociation of the SAM-Mdm10 complex. Since the SAM-Mdm10 complex is required for the biogenesis of Tom22, Tom7 delays the assembly of Tom22 with Tom40 at a late stage of assembly of the TOM complex. Thus, Tom7 modulates the biogenesis of topologically different proteins, the β-barrel forming protein Tom40 and Tom22 that contains a transmembrane α-helix.  相似文献   

6.
The Mdm10, Mdm12, and Mmm1 proteins have been implicated in several mitochondrial functions including mitochondrial distribution and morphology, assembly of β-barrel proteins such as Tom40 and porin, association of mitochondria and endoplasmic reticulum, and maintaining lipid composition of mitochondrial membranes. Here we show that loss of any of these three proteins in Neurospora crassa results in the formation of large mitochondrial tubules and reduces the assembly of porin and Tom40 into the outer membrane. We have also investigated the relationship of Mdm10 and Tom7 in the biogenesis of β-barrel proteins. Previous work showed that mitochondria lacking Tom7 assemble Tom40 more efficiently, and porin less efficiently, than wild-type mitochondria. Analysis of mdm10 and tom7 single and double mutants, has demonstrated that the effects of the two mutations are additive. Loss of Tom7 partially compensates for the decrease in Tom40 assembly resulting from loss of Mdm10, whereas porin assembly is more severely reduced in the double mutant than in either single mutant. The additive effects observed in the double mutant suggest that different steps in β-barrel assembly are affected in the individual mutants. Many aspects of Tom7 and Mdm10 function in N. crassa are different from those of their homologues in Saccharomyces cerevisiae.  相似文献   

7.
The preprotein translocase of the outer mitochondrial membrane (TOM) consists of a central β-barrel channel, Tom40, and six proteins with α-helical transmembrane segments. The precursor of Tom40 is imported from the cytosol by a pre-existing TOM complex and inserted into the outer membrane by the sorting and assembly machinery (SAM). Tom40 then assembles with α-helical Tom proteins to the mature TOM complex. The outer membrane protein Mim1 promotes membrane insertion of several α-helical Tom proteins but also affects the biogenesis of Tom40 by an unknown mechanism. We have identified a novel intermediate in the assembly pathway of Tom40, revealing a two-stage interaction of the precursor with the SAM complex. The second SAM stage represents assembly of Tom5 with the precursor of Tom40. Mim1-deficient mitochondria accumulate Tom40 at the first SAM stage like Tom5-deficient mitochondria. Tom5 promotes formation of the second SAM stage and thus suppresses the Tom40 assembly defect of mim1Δ mitochondria. We conclude that the assembly of newly imported Tom40 is directly initiated at the SAM complex by its association with Tom5. The involvement of Mim1 in Tom40 biogenesis can be largely attributed to its role in import of Tom5.  相似文献   

8.
The translocase of the outer mitochondrial membrane (TOM complex) is the general entry site for newly synthesized proteins into mitochondria. This complex is essential for the formation and maintenance of mitochondria. Here, we report on the role of the integral outer membrane protein, Mim1 (mitochondrial import), in the biogenesis of mitochondria. Depletion of Mim1 abrogates assembly of the TOM complex and results in accumulation of Tom40, the principal constituent of the TOM complex, as a low-molecular-mass species. Like all mitochondrial beta-barrel proteins, the precursor of Tom40 is inserted into the outer membrane by the TOB complex. Mim1 is likely to be required for a step after this TOB-complex-mediated insertion. Mim1 is a constituent of neither the TOM complex nor the TOB complex; rather, it seems to be a subunit of another, as yet unidentified, complex. We conclude that Mim1 has a vital and specific function in the assembly of the TOM complex.  相似文献   

9.
The endoplasmic reticulum mitochondria encounter structure (ERMES) tethers the ER to mitochondria and contains four structural components: Mmm1, Mdm12, Mdm10, and Mmm2 (Mdm34). The Gem1 protein may play a role in regulating ERMES function. Saccharomyces cerevisiae and Neurospora crassa strains lacking any of Mmm1, Mdm12, or Mdm10 are known to show a variety of phenotypic defects including altered mitochondrial morphology and defects in the assembly of β-barrel proteins into the mitochondrial outer membrane. Here we examine ERMES complex components in N. crassa and show that Mmm1 is an ER membrane protein containing a Cys residue near its N-terminus that is conserved in the class Sordariomycetes. The residue occurs in the ER-lumen domain of the protein and is involved in the formation of disulphide bonds that give rise to Mmm1 dimers. Dimer formation is required for efficient assembly of Tom40 into the TOM complex. However, no effects are seen on porin assembly or mitochondrial morphology. This demonstrates a specificity of function and suggests a direct role for Mmm1 in Tom40 assembly. Mutation of a highly conserved region in the cytosolic domain of Mmm1 results in moderate defects in Tom40 and porin assembly, as well as a slight morphological phenotype. Previous reports have not examined the role of Mmm2 with respect to mitochondrial protein import and assembly. Here we show that absence of Mmm2 affects assembly of β-barrel proteins and that lack of any ERMES structural component results in defects in Tom22 assembly. Loss of N. crassa Gem1 has no effect on the assembly of these proteins but does affect mitochondrial morphology.  相似文献   

10.
The preprotein translocase of the outer mitochondrial membrane (TOM complex) contains one essential subunit, the channel Tom40. The assembly pathway of the precursor of Tom40 involves the TOM complex and the sorting and assembly machinery (SAM complex) with the non-essential subunit Mas37. We have identified Sam50, the second essential protein of the mitochondrial outer membrane. Sam50 contains a beta-barrel domain conserved from bacteria to man and is a subunit of the SAM complex. Yeast mutants of Sam50 are defective in the assembly pathways of Tom40 and the abundant outer membrane protein porin, while the import of matrix proteins is not affected. Thus the protein sorting and assembly machinery of the mitochondrial outer membrane involves an essential, conserved protein.  相似文献   

11.
Tom40 is the major subunit of the translocase of the outer mitochondrial membrane (the TOM complex). To study the assembly pathway of Tom40, we have followed the integration of the protein into the TOM complex in vitro and in vivo using wild-type and altered versions of the Neurospora crassa Tom40 protein. Upon import into isolated mitochondria, Tom40 precursor proteins lacking the first 20 or the first 40 amino acid residues were assembled as the wild-type protein. In contrast, a Tom40 precursor lacking residues 41 to 60, which contains a highly conserved region of the protein, was arrested at an intermediate stage of assembly. We constructed mutant versions of Tom40 affecting this region and transformed the genes into a sheltered heterokaryon containing a tom40 null nucleus. Homokaryotic strains expressing the mutant Tom40 proteins had growth rate defects and were deficient in their ability to form conidia. Analysis of the TOM complex in these strains by blue native gel electrophoresis revealed alterations in electrophoretic mobility and a tendency to lose Tom40 subunits from the complex. Thus, both in vitro and in vivo studies implicate residues 41 to 60 as containing a sequence required for proper assembly/stability of Tom40 into the TOM complex. Finally, we found that TOM complexes in the mitochondrial outer membrane were capable of exchanging subunits in vitro. A model is proposed for the integration of Tom40 subunits into the TOM complex.  相似文献   

12.
Translocation of preproteins across the mitochondrial outer membrane is mediated by the translocase of the outer mitochondrial membrane (TOM) complex. We report the molecular identification of Tom6 and Tom7, two small subunits of the TOM core complex in the fungus Neurospora crassa. Cross-linking experiments showed that both proteins were found to be in direct contact with the major component of the pore, Tom40. In addition, Tom6 was observed to interact with Tom22 in a manner that depends on the presence of preproteins in transit. Precursors of both proteins are able to insert into the outer membrane in vitro and are assembled into authentic TOM complexes. The insertion pathway of these proteins shares a common binding site with the general import pathway as the assembly of both Tom6 and Tom7 was competed by a matrix-destined precursor protein. This assembly was dependent on the integrity of receptor components of the TOM machinery and is highly specific as in vitro-synthesized yeast Tom6 was not assembled into N. crassa TOM complex. The targeting and assembly information within the Tom6 sequence was found to be located in the transmembrane segment and a flanking segment toward the N-terminal, cytosolic side. A hybrid protein composed of the C-terminal domain of yeast Tom6 and the cytosolic domain of N. crassa Tom6 was targeted to the mitochondria but was not taken up into TOM complexes. Thus, both segments are required for assembly into the TOM complex. A model for the topogenesis of the small Tom subunits is discussed.  相似文献   

13.
Mitochondria cannot be made de novo. Mitochondrial biogenesis requires that up to 1000 proteins are imported into mitochondria, and the protein import pathway relies on hetero-oligomeric translocase complexes in both the inner and outer mitochondrial membranes. The translocase in the outer membrane, the TOM complex, is composed of a core complex formed from the β-barrel channel Tom40 and additional subunits each with single, α-helical transmembrane segments. How α-helical transmembrane segments might be assembled onto a transmembrane β-barrel in the context of a membrane environment is a question of fundamental importance. The master receptor subunit of the TOM complex, Tom20, recognizes the targeting sequence on incoming mitochondrial precursor proteins, binds these protein ligands, and then transfers them to the core complex for translocation across the outer membrane. Here we show that the transmembrane segment of Tom20 contains critical residues essential for docking the Tom20 receptor into its correct environment within the TOM complex. This crucial docking reaction is catalyzed by the unique assembly factor Mim1/Tom13. Mutations in the transmembrane segment that destabilize Tom20, or deletion of Mim1, prevent Tom20 from functioning as a receptor for protein import into mitochondria.  相似文献   

14.
The mitochondrial outer membrane contains two translocase machineries for precursor proteins—the translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex). The TOM complex functions as the main mitochondrial entry gate for nuclear-encoded proteins, whereas the SAM complex was identified according to its function in the biogenesis of β-barrel proteins of the outer membrane. The SAM complex is required for the assembly of precursors of the TOM complex, including not only the β-barrel protein Tom40 but also a subset of α-helical subunits. While the interaction of β-barrel proteins with the SAM complex has been studied in detail, little is known about the interaction between the SAM complex and α-helical precursor proteins. We report that the SAM is not static but that the SAM core complex can associate with different partner proteins to form two large SAM complexes with different functions in the biogenesis of α-helical Tom proteins. We found that a subcomplex of TOM, Tom5-Tom40, associates with the SAM core complex to form a new large SAM complex. This SAM-Tom5/Tom40 complex binds the α-helical precursor of Tom6 after the precursor has been inserted into the outer membrane in an Mim1 (mitochondrial import protein 1)-dependent manner. The second large SAM complex, SAM-Mdm10 (mitochondrial distribution and morphology protein), binds the α-helical precursor of Tom22 and promotes its membrane integration. We suggest that the modular composition of the SAM complex provides a flexible platform to integrate the sorting pathways of different precursor proteins and to promote their assembly into oligomeric complexes.  相似文献   

15.
The fungal preprotein translocase of the mitochondrial outer membrane (TOM complex) comprises import receptors Tom70, Tom20, and Tom22, import channel Tom40, and small Tom proteins Tom5, Tom6, and Tom7, which regulate TOM complex assembly. These components are conserved in mammals; unlike the other components, however, Tom5 and Tom6 remain unidentified in mammals. We immuno-isolated the TOM complex from HeLa cells expressing hTom22-FLAG and identified the human counterparts of Tom5 and Tom6, together with the other components including Tom7. These small Tom proteins are associated with Tom40 in the TOM complex. Knockdown of Tom7, but not Tom5 and Tom6, strongly compromised stability of the TOM complex. Conversely, knockdown of hTom40 decreased the level of all small Tom proteins. Matrix import of preprotein was affected by double knockdown of any combination of small Tom proteins. These results indicate that human small Tom proteins maintain the structural integrity of the TOM complex.  相似文献   

16.
Dissection of the mitochondrial import and assembly pathway for human Tom40   总被引:8,自引:0,他引:8  
Tom40 is the channel-forming subunit of the translocase of the mitochondrial outer membrane (TOM complex), essential for protein import into mitochondria. Tom40 is synthesized in the cytosol and contains information for its mitochondrial targeting and assembly. A number of stable import intermediates have been identified for Tom40 precursors in fungi, the first being an association with the sorting and assembly machinery (SAM) of the outer membrane. By examining the import pathway of human Tom40, we have been able to elucidate additional features in its import. We identify that Hsp90 is involved in delivery of the Tom40 precursor to mitochondria in an ATP-dependent manner. The precursor then forms its first stable intermediate with the outer face of the TOM complex before its membrane integration and assembly. Deletion of an evolutionary conserved region within Tom40 disrupts the TOM complex intermediate and causes it to stall at a new complex in the intermembrane space that we identify to be the mammalian SAM. Unlike its fungal counterparts, the human Tom40 precursor is not found stably arrested at a SAM intermediate. Nevertheless, we show that Tom40 assembly is reduced in mitochondria depleted of human Sam50. These findings are discussed in context with current models from fungal studies.  相似文献   

17.
The outer membrane translocase (TOM) is the import channel for nuclear-encoded mitochondrial proteins. The general import pore contains Tom40, Tom22, Tom5, Tom6, and Tom7. Precursor proteins are bound by the (peripheral) receptor proteins Tom20, Tom22, and Tom70 before being imported by the TOM complex. Here we investigated the association of the receptor Tom20 with the TOM complex. Tom20 was found in the TOM complex, but not in a smaller subcomplex. In addition, a subcomplex was found without Tom40 and Tom7 but with Tom20. Using single particle tracking of labeled Tom20 in overexpressing human cells, we show that Tom20 has, on average, higher lateral mobility in the membrane than Tom7/TOM. After ligation of Tom20 with the TOM complex by post-tranlational protein trans-splicing using the traceless, ultrafast cleaved Gp41-1 integrin system, a significant decrease in the mean diffusion coefficient of Tom20 was observed in the resulting Tom20–Tom7 fusion protein. Exposure of Tom20 to high substrate loading also resulted in reduced mobility. Taken together, our data show that the receptor subunit Tom20 interacts dynamically with the TOM core complex. We suggest that the TOM complex containing Tom20 is the active import pore and that Tom20 is associated when substrate is available.  相似文献   

18.
Mitochondrial outer and inner membranes contain translocators that achieve protein translocation across and/or insertion into the membranes. Recent evidence has shown that mitochondrial beta-barrel protein assembly in the outer membrane requires specific translocator proteins in addition to the components of the general translocator complex in the outer membrane, the TOM40 complex. Here we report two novel mitochondrial outer membrane proteins in yeast, Tom13 and Tom38/Sam35, that mediate assembly of mitochondrial beta-barrel proteins, Tom40, and/or porin in the outer membrane. Depletion of Tom13 or Tom38/Sam35 affects assembly pathways of the beta-barrel proteins differently, suggesting that they mediate different steps of the complex assembly processes of beta-barrel proteins in the outer membrane.  相似文献   

19.
The TOM complex (Translocase of the Outer mitochondrial Membrane) is responsible for the recognition of mitochondrial preproteins synthesized in the cytosol and for their translocation across or into the outer mitochondrial membrane. Tom40 is the major component of the TOM complex and forms the translocation pore. We have created a tom40 mutant of Neurospora crassa and have demonstrated that the gene is essential for the viability of the organism. Mitochondria with reduced levels of Tom40 were deficient for import of mitochondrial preproteins and contained reduced levels of the TOM complex components Tom22 and Tom6, suggesting that the import and/or stability of these proteins is dependent on the presence of Tom40. Mutant Tom40 preproteins were analyzed for their ability to be assembled into the TOM complex. In vitro import assays revealed that conserved regions near the N terminus (residues 51-60) and the C terminus (residues 321-323) of the 349-amino acid protein were required for assembly beyond a 250-kDa intermediate form. Mutant strains expressing Tom40 with residues 51-60 deleted were viable but exhibited growth defects. Slow growing mutants expressing Tom40, where residues 321-323 were changed to Ala residues, were isolated but showed TOM complex defects, whereas strains in which residues 321-323 were deleted could not be isolated. Analysis of the assembly of mutant Tom40 precursors in vitro supported a previous model in which Tom40 precursors progress from the 250-kDa intermediate to a 100-kDa form and then assemble into the 400-kDa TOM complex. Surprisingly, when wild type mitochondria containing Tom40 precursors arrested at the 250-kDa intermediate were treated with sodium carbonate, further assembly of intermediates into the TOM complex occurred, suggesting that disruption of protein-protein interactions may facilitate assembly. Import of wild type Tom40 precursor into mitochondria containing a mutant Tom40 lacking residues 40-48 revealed an alternate assembly pathway and demonstrated that the N-terminal region of pre-existing Tom40 molecules in the TOM complex plays a role in the assembly of incoming Tom40 molecules.  相似文献   

20.
All mitochondrial precursor proteins studied so far are recognized initially at the surface of the organelle by the translocase of the outer membrane (TOM complex). Precursors of beta-barrel proteins are transferred further to another complex in the outer membrane that mediates their topogenesis (TOB complex). Tob55 is an essential component of the TOB complex in that it constitutes the core element of the protein-conducting pore. The other two components of the TOB complex are Tob38, which builds a functional TOB core complex with Tob55, and Mas37, a peripheral member of the complex. We have investigated the biogenesis of the TOB complex. Reduced insertion of the Tob55 precursor in the absence of Tom20 and Tom70 argues for initial recognition of the precursor of Tob55 by the import receptors. Next, it is transferred through the import channel formed by Tom40. Variants of the latter protein influenced the insertion of Tob55. Assembly of newly synthesized Tob55 into preexisting TOB complexes, as analyzed by blue native gel electrophoresis, depended on Tob38 but did not require Mas37. Surprisingly, both the association of Mas37 precursor with mitochondria and its assembly into the TOB complex were not affected by mutation in the TOM complex. Mas37 assembled directly with the TOB core complex. Hence, the biogenesis of Mas37 represents a novel import pathway of mitochondrial proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号