首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although several techniques are available for transferring the Ti plasmids from one strain of agrobacterium tumefaciens to another, there are no reproducible methods for analysis of chromosomal markers in this phytopathogen. The R plasmid, R68.45, is known to show chromosomal mobilizing ability in several bacterial genera including the closely related Rhizobia. R68.45 was transferred into the prototrophic A. tumefaciens strain 15955. Ten kanamycin-resistant transconjugant clones were tested for chromosomal mobilizing ability by mating with strain SA10, rifampin- and streptomycin-resistant histidine auxotroph of strain 15955. Of the 10 donor clones, 2 showed high chromosomal mobilizing ability. Between 1,000 and 2,000 His+ colony-forming units per ml were obtained, a value 10 to 20 times greater than can be accounted for by spontaneous reversion. Sequential recloning and matings resulted in the isolation of relatively stable donor cultures. Chromosome gene transfer is dependent upon the presence in the donor of R68.45. Donors lacking an R plasmid or harboring the closely related plasmid RP4 failed to yield His+ transconjugants. With strain SA11, a methionine auxotroph of strain SA10, coinheritance of histidine and methionine independence could be demonstrated. Approximately half of the transconjugants also inherited R68.45. These results indicate that A. tumefaciens 15955 is capable of undergoing host chromosomal genetic exchange.  相似文献   

2.
R plasmids R40a, Rip69, R447b, R769 belonging to incompatibility groups A-C, M, N, V, respectively, were investigated for chromosomal mobilizing ability in Proteus mirabilis. Plasmids R40a, Rip69 and R447b mediated polarized transfer of markers in a clockwise direction from origins near tyr-1, metF and ser-2, respectively, on the linkage map. The recovery frequency per donor cell of proximal markers approached 1 x 10(-4) for these three plasmids and the efficiency of chromosomal transfer was higher than that of the previously studied plasmid D. The plasmid-guided chromosomal trajectories overlap and it was possible to complement results obtained with plasmid D to assemble a time-of-entry chromosomal map and directly establish the circularity of the linkage group. The map comprises a length of 93 min in terms of transfer time. Plasmid R769 had a different pattern of chromosome transfer. This plasmid produced recombinants for all markers at frequencies of about 4 x 10(-6) per donor. It effected multiple and more or less simultaneous entry of markers and produced recombination over lengths of chromosome rarely corresponding to more than 10 min on the linkage map.  相似文献   

3.
Bacteria released in large numbers for biocontrol or bioremediation purposes might exchange genes with other microorganisms. Two model systems were designed to investigate the likelihood of such an exchange and some factors which govern the conjugative exchange of chromosomal genes between root-colonizing pseudomonads in the rhizosphere of wheat. The first model consisted of the biocontrol strain CHA0 of Pseudomonas fluorescens and transposon-facilitated recombination (Tfr). A conjugative IncP plasmid loaded with transposon Tn5, in a CHA0 derivative carrying a chromosomal Tn5 insertion, promoted chromosome transfer to auxotrophic CHA0 recipients in vitro. A chromosomal marker (pro) was transferred at a frequency of about 10(sup-6) per donor on wheat roots under gnotobiotic conditions, provided that the Tfr donor and recipient populations each contained 10(sup6) to 10(sup7) CFU per g of root. In contrast, no conjugative gene transfer was detected in soil, illustrating that the root surface stimulates conjugation. The second model system was based on the genetically well-characterized strain PAO of Pseudomonas aeruginosa and the chromosome mobilizing IncP plasmid R68.45. Although originally isolated from a human wound, strain PAO1 was found to be an excellent root colonizer, even under natural, nonsterile conditions. Matings between an auxotrophic R68.45 donor and auxotrophic recipients produced prototrophic chromosomal recombinants at 10(sup-4) to 10(sup-5) per donor on wheat roots in artificial soil under gnotobiotic conditions and at about 10(sup-6) per donor on wheat roots in natural, nonsterile soil microcosms after 2 weeks of incubation. The frequencies of chromosomal recombinants were as high as or higher than the frequencies of R68.45 transconjugants, reflecting mainly the selective growth advantage of the prototrophic recombinants over the auxotrophic parental strains in the rhizosphere. Although under field conditions the formation of chromosomal recombinants is expected to be reduced by several factors, we conclude that chromosomal genes, whether present naturally or introduced by genetic modification, may be transmissible between rhizosphere bacteria.  相似文献   

4.
The cointegration rate into the aspen and birch genomes of foreign genes from a binary vector and a disarmed Ti plasmid pCBE21 carried by the same Agrobacterium tumefaciens strain was studied. The cotransformation rate for the genes within the Ti plasmid varied from 30 to 100%; while the transformation rate for the gene from T(L) region was twofold higher as compared with the T(R) region. On the average, the gene transfer from all three T-DNAs was recorded in 10.9% of the transgenic lines. For the vector pBI121, the cotransformation rates for the genes from both regions of pCBE21 T-DNA were higher as compared with the vector pGS. In addition, a concurrent transfer of the genes from the Ti plasmid T(L) and T(R) regions was recorded only after the transformation with the vector pBI121. These results can be used for constructing woody plants containing several genes.  相似文献   

5.
Conjugative transfer of 20-kb chromosomal fragment carrying genes encoding tetracycline (tet(r)) and lincomycin (lin(r)) resistance in the soil strain Bacillus subtilis 19 is described. Transfer was preceded by this fragment insertion into the large conjugative pl9cat plasmid producing a hybrid plasmid. Insertion frequency was 10(-4)-10(-5). Then genes tet(r) and lin(r) were transferred to the recipient strains. The transfer of chromosomal genes inserted into the plasmid and plasmid gene cat occurred sequentially and resembled sexduction, which represents chromosomal gene transfer by F'- and R' plasmids during conjugation in Escherichia coli and other gram negative bacteria.  相似文献   

6.
Physical characterization of 13 transposon Tn5 insertions within the agrocinopine-independent, transfer-constitutive Ti plasmid pTiC58Trac identified three separate loci essential for conjugation of this nopaline/agrocinopine A + B-type Ti plasmid. Complementation analysis with relevant subcloned DNAs indicated that the three physically separated blocks of conjugal genes constitute distinct complementation groups. Two independent Tn5 insertions within the wild-type, agrocinopine-dependent, repressed pTiC58 plasmid resulted in constitutive expression of conjugal transfer. These two insertions were physically indistinguishable and could not be complemented in trans. However, the Trac phenotype resulted when the Tn5-mutated fragment cointegrated into the wild-type Ti plasmid. While the spontaneous Trac mutant Ti plasmids were also derepressed for agrocinopine catabolism, those generated by Tn5 insertions remained inducible, indicating that this apparent cis-acting site is different from that affected in the spontaneous mutants. No chromosomal Tn5 insertion mutations were obtained that affected conjugal transfer. An octopine-type Ti plasmid, resident in different Agrobacterium tumefaciens chvB mutants, transferred at normal frequencies, demonstrating that this virulence locus affecting plant cell binding is not required for Ti plasmid conjugation. None of our conjugal mutants limited tumor development on Kalanchoe diagremontiana. Known lesions in pTiC58 vir loci had no effect on conjugal transfer of this Ti plasmid. These results show that pTiC58 Ti plasmid conjugal transfer occurs by functions independent of those required for transfer of DNA to plant cells.  相似文献   

7.
K Suzuki  K Iwata  K Yoshida 《DNA research》2001,8(4):141-152
The phytopathogenic bacterium Agrobacterium tumefaciens is unique in that it possesses both linear and circular DNA chromosomes in addition to a plant-tumor-inducing (Ti) plasmid. We analyzed the two chromosomal DNA molecules in strain MAFF301001, whose Ti plasmid has already been sequenced completely. Physical maps of the chromosomal DNAs were constructed by Southern hybridization experiments using Pme I and Swa I fragments and short fragments bridging the Swa I fragments with special care to avoid any missing fragment. Hybridization with 16S rDNA probe showed one rDNA locus on the linear chromosome and two loci on the circular chromosome. For this bacterium to be pathogenic, not only Ti plasmid but also chromosomal genes are required. The chromosomal virulence (chv) genes (chvA, chvB, chvD, chvE, chvG, chvH, and chvI) and the chromosomal genes affecting the virulence [acvB, pgm(exoC), glgP, miaA, and ros] were successfully mapped onto 5 different regions in the chromosomal physical maps. These chv genes and the chromosomal genes affecting the virulence other than pgm and glgP were found on the circular chromosome, whereas the pgm and glgP genes were located on the linear chromosome. In contrast to the large terminal inverted repeats of Streptomyces linear chromosomal DNA, no hybridization signal was detected between left and right terminal fragments of the linear A. tumefaciens chromosome. Quantitative analysis of DNA fragments indicated that the copy numbers of the two chromosomal DNAs and the Ti plasmid are identical.  相似文献   

8.
Although the majority of genes required for the transfer of T-DNA from Agrobacterium tumefaciens to plant nuclei are located on the Ti plasmid, some chromosomal genes, including the recently described acvB gene, are also required. We show that AcvB shows 50% identity with the product of an open reading frame, designated virJ, that is found between the virA and virB genes in the octopine-type Ti plasmid pTiA6. This reading frame is not found in the nopaline-type Ti plasmid pTiC58. acvB is required for tumorigenesis by a strain carrying a nopaline-type Ti plasmid, and virJ complements this nontumorigenic phenotype, indicating that the products of these genes have similar functions. A virJ-phoA fusion expressed enzymatically active alkaline phosphatase, indicating that VirJ is at least partially exported. virJ is induced in a VirA/VirG-dependent fashion by the vir gene inducer acetosyringone. Primer extension analysis and subcloning of the virJ-phoA fusion indicate that the acetosyringone-inducible promoter lies directly upstream of the virJ structural gene. Although the roles of the two homologous genes in tumorigenesis remain to be elucidated, strains lacking acvB and virJ (i) are proficient for induction of the vir regulon, (ii) are able to transfer their Ti plasmids by conjugation, and (iii) are resistant to plant wound extracts. Finally, mutations in these genes cannot be complemented extracellularly.  相似文献   

9.
Plasmids are mobile DNAs that can adjust host cell functions for their own amplification and dissemination. We identified Quorum sensing flagella small RNA regulator (QfsR), a small RNA, transcribed from the virulence tumour-inducing (Ti) plasmid in the phytopathogen Agrobacterium fabrum. QfsR is widely conserved throughout RepABC plasmids carried by Rhizobiaceae. Target prediction, expression analysis and site-direct mutagenesis experiments showed that QfsR directly pairs within polycistronic mRNAs transcribed from chromosome (genes involved in flagella apparatus) and Ti plasmid (genes involved in conjugative transfer). QfsR leads to a coordinated expression of whole polycistronic mRNA molecules. Whereas a lack of QfsR represses motility, its overproduction increases the quorum sensing signal accumulation and the Ti plasmid conjugative transfer. Based on these observations, we propose QfsR as a hub connecting regulatory networks of motility and plasmid conjugative transfer. To our knowledge, QfsR is the first example of a plasmid-encoded sRNA that controls chromosomal polycistronic gene expression.  相似文献   

10.
Plasmid R68.45 was transferred from Pseudomonas aeruginosa PAO25 to the photosynthetic species Rhodopseudomonas gelatinosa and Rhodopseudomonas sphaeroides by selection for resistance to antibiotics. R. sphaeroides strains carrying the plasmid could transfer the plasmid and also chromosomal genes to other strains of R. sphaeroides.  相似文献   

11.
Alkaline sucrose velocity sedimentation and cesium chloride-ethidium bromide equilibrium centrifugation have been used to determine the number of copies per chromosomal equivalent of the relaxedly replicating R6K plasmid (a conjugative plasmid conferring ampicillin and streptomycin resistance) in two minicell-producing strains of Escherichia coli K-12. In one strain, the average number of covalently closed circular R6K molecules per chromosomal equivalent is 13 in log-phase and 35 in stationary-phase cells. In the other strain, there is an average of six covalently closed circular R6K molecules per chromosomal equivalent in both log- and stationary-phase cells. Selection from this strain of spontaneously occurring mutants resistant to high concentrations of ampicillin has been accomplished and such mutants show a two- to threefold increase in the number of R6K copies per chromosomal equivalent. Relative to the parental strain, mutants display the following properties: (i) elevated streptomycin resistance, (ii) a 10-fold increase in R6K conjugal transfer, (iii) a 10-fold increase in the amount of R6K plasmid deoxyribonucleic acid segregated into minicells, and (iv) a two- to threefold increase in R6K-specified beta-lactamase. The mutation(s) responsible for the increase in the number of R6K molecules per chromosomal equivalent is located on the bacterial chromosome. No R6K-linked mutations conferring the above phenotypes have been obtained. The mutations are presumed to be in chromosomal genes which play a role in the regulation of R6K replication in this strain.  相似文献   

12.
A transfer-deficient derivative of plasmid RP1-pMG1 was isolated after insertion of Mu cts62. The Tra- R plasmid was used to donate Tn904, encoding streptomycin resistance, to Ti plasmid pAL102 harbored by Agrobacterium tumefaciens Ach5. Under conditions promoting high Ti transfer frequencies, 155 strains were isolated in which the streptomycin marker coupled with Ti plasmid in further transfer experiments. These isolates represent stable insertions of Tn904 into the Ti plasmid. In addition, 19 strains were isolated in which the insertion of Tn904 was apparently unstable. The frequency of stable Tn904 transpositions was estimated to be 3 x 10(4-) per transferred Ti plasmid. Evidence was obtained that Tn904 readily may transpose from the Ti plasmid into the bacterial chromosome. The strains carrying Ti plasmids with stable insertions were characterized with respect to virulence, octopine degradation, octopine synthesis in induced tumors, and Ti plasmid transfer. Thirteen of the strains were found to be affected in tumor-inducing ability.  相似文献   

13.
Two kinds of mutants of Rhodopseudomonas sphaeroides that should be useful in extending genetic analysis of this organism have been isolated. One is deficient in recombination and has been used to isolate derivatives of the plasmid R 68.45 which incorporate chromosomal genes of R. sphaeroides. The other is apparently defective in a DNA restriction enzyme; transfer of plasmid borne chromosomal genes of R. sphaeroides from Escherichia coli back to R. sphaeroides is greatly enhanced in these mutants.In memory of R. Y. Stanier  相似文献   

14.
Phodobacter capsulatus (formerly Rhodopseudomonas capsulata) strain B10 was found to contain a single plasmid of molecular weight 86×106. Strains lacking this plasmids were isolated by various methods from strains containing the mutant R plasmid, pTH10. With the exception of two strains, which were found to contain chromosomal insertions of R plasmid DNA, strains lacking the endogenous plasmid appeared to be unaffected in any of the following metabolic or genetic functions: photosynthetic, autotrophic, diazotrophic, and dark, anaerobic growth; the production of bacteriocin; homologous recombination; the restriction of foreign DNA; and the production of gene transfer agent. DNA-DNA hybridization experiments confirmed that the plasmid had been eliminated from these strains and not become integrated into the chromose. However, sequences homologous to those of the endogenous plasmid were found to be present in the chromosome of R. capsulatus B10. This suggests, among other possibilities, that the endogenous plasmid may have originated in the chromosome, and might serve to duplicate certain chromosomal functions.Abbreviations kb kilobase-pair - GTA gene transfer agent - Cma chromosome mobilizing ability  相似文献   

15.
The intact T-region of the B6Ti plasmid of Agrobacterium tumefaciens was stepwise cloned into a site in transposon Tn3. In this way a suitable vehicle (Tn1882) was obtained for translocating the T-region to different replicons, i.e., to other plasmids or the chromosome. The IncP plasmid R772::Tn1882 conferred tumorigenicity on Agrobacterium if the virulence genes were provided in trans in the same cell. This result showed that the T-region present on Tn1882 was transferred efficiently to plant cells. Normal tumor development also occurred if the T-region was placed in the chromosome of A. tumefaciens and an R' plasmid was present carrying virA–E or virA–F. We conclude that the plasmid location of the T-region is not a prerequisite for transfer to the plant cell. The apparently normal delivery of the T-DNA from a bacterial chromosomal location supports a model involving a processing step within Agrobacterium effecting transfer of the T-region as a separate entity.  相似文献   

16.
Conjugative transfer of 20-kb chromosomal fragment carrying genes encoding tetracycline (tet r ) and lincomycin (lin r ) resistance in the soil strain Bacillus subtilis 19 is described. Transfer was preceded by this fragment insertion into the large conjugative p19cat plasmid producing a hybrid plasmid. Insertion frequency was 10?4?10?5. Then genes tet r and lin r were transferred to the recipient strains. The transfer of chromosomal genes inserted into the plasmid and plasmid gene cat occurred sequentially and resembled sexduction, which represents chromosomal gene transfer by F′ and R′ plasmids during conjugation in Escherichia coli and other gram negative bacteria.  相似文献   

17.
18.
M Rella  A Mercenier  D Haas 《Gene》1985,33(3):293-303
For insertional mutagenesis of Pseudomonas aeruginosa, a derivative of the kanamycin-resistance (KmR) transposon Tn5 was constructed (Tn5-751) that carried the trimethoprim-resistance (TpR) determinant from plasmid R751 as an additional marker. Double selection for KmR and TpR avoided the isolation of spontaneous aminoglycoside-resistant mutants which occur at high frequencies in P. aeruginosa. As a delivery system for the recombinant transposon, plasmid pME305, a derivative of the broad-host-range plasma RP1, proved effective; pME305 is temperature-sensitive at 43 degrees C for maintenance in Escherichia coli and P. aeruginosa and deleted for IS21 and the KmR and primase genes. In matings with an E. coli donor carrying pME9(= pME305::Tn5-751), transposon insertion mutants of P. aeruginosa PAO were recovered at approx. 5 X 10(-7)/donor at 43 degrees C. Among Tn5-751 insertional mutants 0.9% were auxotrophs. A thr::Tn5-751 mutation near the recA-like locus rec-102 is useful for the construction of recombination-deficient strains. Several arc::Tn5-751 mutants could be isolated that were defective in anaerobic utilization of arginine as an energy source. From three of these mutants the arc gene region was cloned into an E. coli vector plasmid. Since Tn5-751 has a single EcoRI site between the TpR and KmR genes, EcoRI-generated fragments carrying either resistance determinant plus adjacent chromosomal DNA could be selected separately in E. coli. Thus, a restriction map of the arc region was constructed and verified by hybridization experiments. The arc genes were tightly clustered, confirming earlier genetic evidence.  相似文献   

19.
Pairs of normally incompatible derivatives of R100-1 (one ChlS TetR, the other ChilR TetS) were forced to coexist in a recA host by selection for ChlR TetR cells. After many generations stable derivatives were isolated. The analysis of none independent stabilization experiments showed that in each case TetR was translocated from the plasmid to the chromosome of the host. No evidence for the joint integration of other plasmid genes (those controlling transfer, antibiotic resistance, incompatibility, or origin of transfer replication) was obtained. One of the chromosomal TetR determinants was mapped close to metE.  相似文献   

20.
Summary The effect of the IncW R plasmid, pSa, on tumorigenicity and on the expression and maintenance of the Ti plasmid in tumorigenic strains of A. tumefaciens was determined. Plasmid pSa could be transferred into and stably maintained by both octopine-and nopaline-utilizing A. tumefaciens strains. The R plasmid had no effect on Ti plasmid maintenance or on Ti plasmid functions, such as octopine utilization or conjugal bacterial transfer. However, A. tumefaciens strains harboring both the R plasmid and the Ti plasmid in most instances failed to induce tumors on a number of plant species. This effect on tumorigenicity is specific to pSa. When pSa is cured from the A. tumefaciens transconjugants or when their Ti plasmids are genetically transferred to an appropriate recipient, the resultant strains lacking the R plasmid regain tumorigenicity. Restriction endonuclease analysis of plasmid DNA isolated from transconjugants harboring pSa showed no difference in Ti plasmid cleavage patterns when compared to plasmid DNA isolated from the tumorigenic parent strain. These results indicate that pSa does not induce detectable permanent genetic alteration of the Ti plasmid. Rather, it appears that the R plasmid suppresses some Ti plasmid function(s) necessary for tumorigenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号