首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia and oculomotor apraxia. The gene mutated in AOA2, SETX, encodes senataxin (SETX), a putative DNA/RNA helicase. The presence of the helicase domain led us to investigate whether SETX might play a role in DNA damage repair and telomere stability. We analyzed the response of AOA2 lymphocytes and lymphoblasts after treatment with camptothecin (CPT), mitomycin C (MMC), H?O? and X-rays by cytogenetic and Q-FISH (quantitative-FISH) assays. The rate of chromosomal aberrations was normal in AOA2 cells after treatment with CPT, MMC, H?O? and X-rays. Conversely, Q-FISH analysis showed constitutively reduced telomere length in AOA2 lymphocytes, compared to age-matched controls. Furthermore, CPT- or X-ray-induced telomere shortening was more marked in AOA2 than in control cells. The partial co-localization of SETX with telomeric DNA, demonstrated by combined immunofluorescence-Q-FISH and chromatin immunoprecipitation, suggests a possible involvement of SETX in telomere stability.  相似文献   

2.
Several different autosomal recessive genetic disorders characterized by ataxia with oculomotor apraxia (AOA) have been identified with the unifying feature of defective DNA damage recognition and/or repair. We describe here the characterization of a novel form of AOA showing increased sensitivity to agents that cause single-strand breaks (SSBs) in DNA but having no gross defect in the repair of these breaks. Evidence for the presence of residual SSBs in DNA was provided by dramatically increased levels of poly (ADP-ribose)polymerase (PARP-1) auto-poly (ADP-ribosyl)ation, the detection of increased levels of reactive oxygen/nitrogen species (ROS/RNS) and oxidative damage to DNA in the patient cells. There was also evidence for oxidative damage to proteins and lipids. Although these cells were hypersensitive to DNA damaging agents, the mode of death was not by apoptosis. These cells were also resistant to TRAIL-induced death. Consistent with these observations, failure to observe a decrease in mitochondrial membrane potential, reduced cytochrome c release and defective apoptosis-inducing factor translocation to the nucleus was observed. Apoptosis resistance and PARP-1 hyperactivation were overcome by incubating the patient's cells with antioxidants. These results provide evidence for a novel form of AOA characterized by sensitivity to DNA damaging agents, oxidative stress, PARP-1 hyperactivation but resistance to apoptosis.  相似文献   

3.
Defects in the recognition and/or repair of damage to DNA are responsible for a sub-group of autosomal recessive ataxias. Included in this group is a novel form of ataxia with oculomotor apraxia characterised by sensitivity to DNA damaging agents, a defect in p53 stabilisation, oxidative stress and resistance to apoptosis. We provide evidence here that the defect in this patient's cells is at the level of the mitochondrion. Mitochondrial membrane potential was markedly reduced in cells from the patient and ROS levels were elevated. This was accompanied by lipid peroxidation of mitochondrial proteins involved in electron transport and RNA synthesis. However, no gross changes or alteration in composition or activity of mitochondrial electron transport complexes was evident. Sequencing of mitochondrial DNA revealed a mutation, I349T, in the mitochondrial cytochrome b gene. These results describe a patient with an apparently novel form of AOA characterised by a defect at the level of the mitochondrion.  相似文献   

4.
Ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome [AOA]; MIM 208920) is an autosomal recessive disorder characterized by ataxia, oculomotor apraxia, and choreoathetosis. These neurological features resemble those of ataxia-telangiectasia (AT), but in AOA there are none of the extraneurological features of AT, such as immunodeficiency, neoplasia, chromosomal instability, or sensitivity to ionizing radiation. It is unclear whether these patients have a true disorder of chromosomal instability or a primary neurodegenerative syndrome, and it has not been possible to identify the defective gene in AOA, since the families have been too small for linkage analysis. We have identified a new family with AOA, and we show that the patients have no evidence of chromosomal instability or sensitivity to ionizing radiation, suggesting that AOA in this family is a true primary cerebellar ataxia. We have localized the disease gene, by linkage analysis and homozygosity mapping, to a 15.9-cM interval on chromosome 9q34. This work will ultimately allow the disease gene to be identified and its relevance to other types of autosomal recessive cerebellar ataxias to be determined.  相似文献   

5.
Ataxia with oculomotor apraxia type 1 (AOA1) is an early onset autosomal recessive spinocerebellar ataxia with a defect in the protein Aprataxin, implicated in the response of cells to DNA damage. We describe here the expression of a recombinant form of Aprataxin and show that it has dual DNA binding and nucleotide hydrolase activities. This protein binds to double-stranded DNA with high affinity but is also capable of binding double-stranded RNA and single-strand DNA, with increased affinity for hairpin structures. No increased binding was observed with a variety of DNA structures mimicking intermediates in DNA repair. The DNA binding observed here was not dependent on zinc, and the addition of exogenous zinc abolished DNA binding. We also demonstrate that Aprataxin hydrolyzes with similar efficiency the model histidine triad nucleotide-binding protein substrate, AMPNH2, and the Fragile histidine triad protein substrate, Ap4A. These activities were significantly reduced in the presence of duplex DNA and to a lesser extent in the presence of single-strand DNA, and removal of the N-terminal Forkhead associated domain did not alter activity. Finally, comparison of sequence relationships between the histidine triad superfamily members shows that Aprataxin forms a distinct branch in this superfamily. In addition to its capacity for nucleotide binding and hydrolysis, the observation that it also binds DNA and RNA adds a new dimension to this superfamily of proteins and provides further support for a role for Aprataxin in the cellular response to DNA damage.  相似文献   

6.
Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological disorders involving both central and peripheral nervous system, and in some case other systems and organs, and characterized by degeneration or abnormal development of cerebellum and spinal cord, autosomal recessive inheritance and, in most cases, early onset occurring before the age of 20 years. This group encompasses a large number of rare diseases, the most frequent in Caucasian population being Friedreich ataxia (estimated prevalence 2–4/100,000), ataxia-telangiectasia (1–2.5/100,000) and early onset cerebellar ataxia with retained tendon reflexes (1/100,000). Other forms ARCA are much less common. Based on clinicogenetic criteria, five main types ARCA can be distinguished: congenital ataxias (developmental disorder), ataxias associated with metabolic disorders, ataxias with a DNA repair defect, degenerative ataxias, and ataxia associated with other features. These diseases are due to mutations in specific genes, some of which have been identified, such as frataxin in Friedreich ataxia, α-tocopherol transfer protein in ataxia with vitamin E deficiency (AVED), aprataxin in ataxia with oculomotor apraxia (AOA1), and senataxin in ataxia with oculomotor apraxia (AOA2). Clinical diagnosis is confirmed by ancillary tests such as neuroimaging (magnetic resonance imaging, scanning), electrophysiological examination, and mutation analysis when the causative gene is identified. Correct clinical and genetic diagnosis is important for appropriate genetic counseling and prognosis and, in some instances, pharmacological treatment. Due to autosomal recessive inheritance, previous familial history of affected individuals is unlikely. For most ARCA there is no specific drug treatment except for coenzyme Q10 deficiency and abetalipoproteinemia.  相似文献   

7.
Ataxia-oculomotor apraxia 1 (AOA1) is an autosomal recessive neurodegenerative disease that is reminiscent of ataxia-telangiectasia (A-T). AOA1 is caused by mutations in the gene encoding aprataxin, a protein whose physiological function is currently unknown. We report here that, in contrast to A-T, AOA1 cell lines exhibit neither radioresistant DNA synthesis nor a reduced ability to phosphorylate downstream targets of ATM following DNA damage, suggesting that AOA1 lacks the cell cycle checkpoint defects that are characteristic of A-T. In addition, AOA1 primary fibroblasts exhibit only mild sensitivity to ionising radiation, hydrogen peroxide, and methyl methanesulphonate (MMS). Strikingly, however, aprataxin physically interacts in vitro and in vivo with the DNA strand break repair proteins XRCC1 and XRCC4. Aprataxin possesses a divergent forkhead associated (FHA) domain that closely resembles the FHA domain present in polynucleotide kinase, and appears to mediate the interactions with CK2-phosphorylated XRCC1 and XRCC4 through this domain. Aprataxin is therefore physically associated with both the DNA single-strand and double-strand break repair machinery, raising the possibility that AOA1 is a novel DNA damage response-defective disease.  相似文献   

8.
Ataxia with oculomotor apraxia (AOA) is characterized by early-onset cerebellar ataxia, ocular apraxia, early areflexia, late peripheral neuropathy, slow progression, severe motor handicap, and absence of both telangiectasias and immunodeficiency. We studied 13 Portuguese families with AOA and found that the two largest families show linkage to 9p, with LOD scores of 4.13 and 3.82, respectively, at a recombination fraction of 0. These and three smaller families, all from northern Portugal, showed homozygosity and haplotype sharing over a 2-cM region on 9p13, demonstrating the existence of both a founding event and linkage to this locus, AOA1, in the five families. Three other families were excluded from this locus, demonstrating nonallelic heterogeneity in AOA. Early-onset cerebellar ataxia with hypoalbuminemia (EOCA-HA), so far described only in Japan, is characterized by marked cerebellar atrophy, peripheral neuropathy, mental retardation, and, occasionally, oculomotor apraxia. Two unrelated Japanese families with EOCA-HA were analyzed and appeared to show linkage to the AOA1 locus. Subsequently, hypoalbuminemia was found in all five Portuguese patients with AOA1 with a long disease duration, suggesting that AOA1 and EOCA-HA correspond to the same entity that accounts for a significant proportion of all recessive ataxias. The narrow localization of AOA1 should prompt the identification of the defective gene.  相似文献   

9.
10.
11.
Tyrosinemia type 1 (HT1) is an autosomal recessive disorder of the tyrosine metabolism in which the fumarylacetoacetate hydrolase enzyme is defective. This disease is clinically heterogeneous and a chronic and acute form is discerned. Characteristic of the chronic form is the development of cellular hepatocarcinoma. Although p-hydroxyphenylpyruvic acid (pHPPA) is used as one of the diagnostic markers of this disease, it was suggested that it is unlikely to be involved in the pathophysiology of HT1 as it is present in other disorders that does not have hepatorenal symptoms. It was the aim of this study to investigate the possible effect of pHPPA on DNA damage and repair in mammalian cells. The comet assay was used to establish the genotoxicity of pHPPA in human peripheral blood lymphocytes and isolated rat hepatocytes after their exposure to pHPPA. At first glance the damage to DNA caused by pHPPA seemed reparable in both cell types, however, after challenging the DNA repair capacity of metabolite-treated cells with treatment with H(2)O(2), a marked impairment in the DNA repair capability of these cells was observed. We suggest that the main effect of pHPPA is the long-term impairment of the DNA repair machinery rather than the direct damage to DNA and that this effect of pHPPA, together with the other characteristic metabolites, e.g., FAA and MAA, causes cellular hepatocarcinoma to develop in the chronic form of HT1.  相似文献   

12.
Defective DNA repair and neurodegenerative disease   总被引:2,自引:0,他引:2  
Rass U  Ahel I  West SC 《Cell》2007,130(6):991-1004
Defects in cellular DNA repair processes have been linked to genome instability, heritable cancers, and premature aging syndromes. Yet defects in some repair processes manifest themselves primarily in neuronal tissues. This review focuses on studies defining the molecular defects associated with several human neurological disorders, particularly ataxia with oculomotor apraxia 1 (AOA1) and spinocerebellar ataxia with axonal neuropathy 1 (SCAN1). A picture is emerging to suggest that brain cells, due to their nonproliferative nature, may be particularly prone to the progressive accumulation of unrepaired DNA lesions.  相似文献   

13.
Ataxia oculomotor apraxia 1 (AOA1) results from mutations in aprataxin, a component of DNA strand break repair that removes AMP from 5′ termini. Despite this, global rates of chromosomal strand break repair are normal in a variety of AOA1 and other aprataxin-defective cells. Here we show that short-patch single-strand break repair (SSBR) in AOA1 cell extracts bypasses the point of aprataxin action at oxidative breaks and stalls at the final step of DNA ligation, resulting in the accumulation of adenylated DNA nicks. Strikingly, this defect results from insufficient levels of nonadenylated DNA ligase, and short-patch SSBR can be restored in AOA1 extracts, independently of aprataxin, by the addition of recombinant DNA ligase. Since adenylated nicks are substrates for long-patch SSBR, we reasoned that this pathway might in part explain the apparent absence of a chromosomal SSBR defect in aprataxin-defective cells. Indeed, whereas chemical inhibition of long-patch repair did not affect SSBR rates in wild-type mouse neural astrocytes, it uncovered a significant defect in Aptx/ neural astrocytes. These data demonstrate that aprataxin participates in chromosomal SSBR in vivo and suggest that short-patch SSBR arrests in AOA1 because of insufficient nonadenylated DNA ligase.Oxidative stress is an etiological factor in many neurological diseases, including Alzheimer''s disease, Parkinson''s disease, and Huntington''s disease. One type of macromolecule damaged by reactive oxygen species is DNA, and oxidative damage to DNA has been suggested to be a significant factor in these and other neurological conditions (2). In particular, a number of rare hereditary neurodegenerative disorders have provided direct support for the notion that unrepaired DNA damage causes neural dysfunction. Not least of these are the recessive spinocerebellar ataxias, a number of which are associated with mutations in DNA damage response proteins (17). The archetypal DNA damage-associated spinocerebellar ataxia is ataxia-telangiectasia (A-T), in which mutations in ATM protein result in defects in the detection and signaling of DNA double-strand breaks (DSBs) (3). A-T-like disorder is a related disease that exhibits neurological features similar to those of A-T, resulting from mutation of Mre11, a component of the MRN complex that operates in conjunction with ATM during DSB detection and signaling (28).Two additional spinocerebellar ataxias are spinocerebellar ataxia with axonal neuropathy 1 (SCAN1) and ataxia oculomotor apraxia 1 (AOA1), in which the TDP1 and aprataxin proteins are mutated, respectively (9, 19, 27). Both TDP1 and aprataxin are components of the DNA strand break repair machinery (recently reviewed in references 6 and 24). Whereas SCAN1 is currently limited to nine individuals from a single family, AOA1 is one of the commonest recessive spinocerebellar ataxias. Aprataxin is a member of the histidine triad superfamily of nucleotide hydrolases/transferases and has been reported to remove phosphate and phosphoglycolate moieties from the 3′ termini of DNA strand breaks (26). Aprataxin can also remove AMP from a variety of ligands in vitro, including adenosine polyphosphates, AMP-lysine, AMP-NH2 (adenine monophosphoramidate), and adenylated DNA in which AMP is covalently attached to the 5′ terminus of a DNA single-strand break (SSB) or DSB (1, 16, 23, 25). To date, aprataxin activity is greatest on AMP-DNA, suggesting that this may be the physiological substrate of this enzyme.In vitro, DNA strand breaks with 5′-AMP termini can arise from premature DNA ligase activity. DNA ligases adenylate 5′ termini at DNA breaks to enable nucleophilic attack of the resulting pyrophosphate bonds by 3′-hydroxyl termini, thereby resealing the breaks. However, DNA adenylation by DNA ligases can occur prematurely, before a 3′-hydroxyl terminus is available. Aprataxin reverses these premature DNA adenylation events, in vitro at least, effectively “resetting” the DNA ligation reaction to the beginning (1). Whether or not 5′-AMP arises in DNA in vivo or is a physiological substrate of aprataxin, however, is unknown. Moreover, attempts to measure DNA strand break repair rates in vivo are conflicting and have failed to identify a consistent defect in DNA SSB repair (SSBR) or DSB repair (DSBR) in AOA1 cells (14, 15, 20). It is thus not clear whether or not defects in DNA strand break repair can account for this neurodegenerative disease.Here we have resolved the discrepancy between the requirements for aprataxin in vitro and in vivo by identifying the stage at which SSBR reactions fail in vitro and by carefully analyzing chromosomal SSBR rates in vivo. We show that short-patch SSBR reactions are defective in AOA1 cell extracts at the final step of DNA ligation, resulting in the accumulation of adenylated DNA nicks, and that this defect can be rescued in AOA1 extracts independently of aprataxin by addition of recombinant DNA ligase. We also find that treatment with aphidicolin, an inhibitor of DNA polymerase δ (Pol δ) and Pol ɛ, unveils a measurable defect in chromosomal SSBR in Aptx/ primary neural astrocytes, suggesting that the adenylated nicks that arise from the short-patch repair defect can be channeled into long-patch repair in vivo. These data demonstrate that aprataxin participates in chromosomal SSBR and suggest that this process arrests in AOA1, at oxidative SSBs, due to insufficient levels of nonadenylated DNA ligase.  相似文献   

14.
15.
We report a family in which azoospermia and infertility affected two sibs whose parents were first cousins once removed. Meiotic cells of the proband, who had the chromosomal complement of a normal male (46,XY), exhibited asynapsis, defective synaptonemal complex (SC) formation, chiasma failure, and degeneration of prophase spermatocytes with asynapsis. Based on these observations, we suggest that the meiotic abnormalities and infertility in this family comprise a trait with an autosomal recessive mode of inheritance. Review of published cases of infertile men with normal chromosomal complements and disturbed meiosis suggests that genetically determined asynapsis and desynapsis similar to that established in plant and insect species also occur in humans. In humans, asynapsis appears to be inherited as an autosomal recessive. The mode of inheritance of desynapsis is not clear; X-linked recessive or autosomal dominant has been suggested in one family. Studies by us and by others reported in the literature suggest that the mode of action of genes that affect synapsis and cause a reduction in the numbers of visible chiasmata at diakinesis is dissimilar to that of the action of genes that cause defective meiotic recombination, defective repair of induced damage to DNA in somatic cells, and chromosome instability.  相似文献   

16.
DNA single-strand break repair (SSBR) is important for maintaining genome stability and homeostasis. The current SSBR model derived from an in vitro-reconstituted reaction suggests that the SSBR complex mediated by X-ray repair cross-complementing protein 1 (XRCC1) is assembled sequentially at the site of damage. In this study, we provide biochemical data to demonstrate that two preformed XRCC1 protein complexes exist in cycling HeLa cells. One complex contains known enzymes that are important for SSBR, including DNA ligase 3 (DNL3), polynucleotide kinase 3'-phosphatase, and polymerase beta; the other is a new complex that contains DNL3 and the ataxia with oculomotor apraxia type 1 (AOA) gene product aprataxin. We report the characterization of the new XRCC1 complex. XRCC1 is phosphorylated in vivo and in vitro by CK2, and CK2 phosphorylation of XRCC1 on S518, T519, and T523 largely determines aprataxin binding to XRCC1 though its FHA domain. An acute loss of aprataxin by small interfering RNA renders HeLa cells sensitive to methyl methanesulfonate treatment by a mechanism of shortened half-life of XRCC1. Thus, aprataxin plays a role to maintain the steady-state protein level of XRCC1. Collectively, these data provide insights into the SSBR molecular machinery in the cell and point to the involvement of aprataxin in SSBR, thus linking SSBR to the neurological disease AOA.  相似文献   

17.
Ataxia-oculomotor apraxia syndrome 1 is an early onset cerebellar ataxia that results from loss of function mutations in the APTX gene, encoding Aprataxin, which contains three conserved domains. The forkhead-associated domain of Aprataxin mediates protein-protein interactions with molecules that respond to DNA damage, but the cellular phenotype of the disease does not appear to be consistent with a major loss in DNA damage responses. Disease-associated mutations in Aprataxin target a histidine triad domain that is similar to Hint, a universally conserved AMP-lysine hydrolase, or truncate the protein NH2-terminal to a zinc finger. With novel fluorigenic substrates, we demonstrate that Aprataxin possesses an active-site-dependent AMP-lysine and GMP-lysine hydrolase activity that depends additionally on the zinc finger for protein stability and on the forkhead associated domain for enzymatic activity. Alleles carrying any of eight recessive mutations associated with ataxia and oculomotor apraxia encode proteins with huge losses in protein stability and enzymatic activity, consistent with a null phenotype. The mild presentation allele, APTX-K197Q, associated with ataxia but not oculomotor apraxia, encodes a protein with a mild defect in stability and activity, while enzyme encoded by the atypical presentation allele, APTX-R199H, retained substantial function, consistent with altered and not loss of activity. The data suggest that the essential function of Aprataxin is reversal of nucleotidylylated protein modifications, that all three domains contribute to formation of a stable enzyme, and that the in vitro behavior of cloned APTX alleles can score disease-associated mutations.  相似文献   

18.
Dubowitz Syndrome is an autosomal recessive disorder with a unique set of clinical features including microcephaly and susceptibility to tumor formation. Although more than 140 cases of Dubowitz syndrome have been reported since 1965, the genetic defects of this disease has not been identified. In this study, we systematically analyzed the DNA damage response and repair capability of fibroblasts established from a Dubowitz Syndrome patient. Dubowitz syndrome fibroblasts are hypersensitive to ionizing radiation, bleomycin, and doxorubicin. However, they have relatively normal sensitivities to mitomycin-C, cisplatin, and camptothecin. Dubowitz syndrome fibroblasts also have normal DNA damage signaling and cell cycle checkpoint activations after DNA damage. These data implicate a defect in repair of DNA double strand break (DSB) likely due to defective non-homologous end joining (NHEJ). We further sequenced several genes involved in NHEJ, and identified a pair of novel compound mutations in the DNA Ligase IV gene. Furthermore, expression of wild type DNA ligase IV completely complement the DNA repair defects in Dubowitz syndrome fibroblasts, suggesting that the DNA ligase IV mutation is solely responsible for the DNA repair defects. These data suggests that at least subset of Dubowitz syndrome can be attributed to DNA ligase IV mutations.  相似文献   

19.
Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterized by brittle hair, mental and growth retardation, peculiar face, ichthyosis, and in 20% of the reported cases photosensitivity. Cellular photosensitivity due to the same genetic defect present in xeroderma pigmentosum group D (XP-D) has been described in several patients. Nine patients with clinical symptoms diagnostic for TTD have been identified in Italy to date. We report the results of DNA repair investigations performed in cultured fibroblasts from these patients and 8 TTD parents. Survival, DNA repair synthesis and RNA synthesis following UV irradiation were all normal in the 8 TTD heterozygous cell strains. Among the 9 TTD-affected individuals, normal cellular UV sensitivity was observed in the 2 patients without signs of clinical photosensitivity. In contrast, the other 7 TTD cell strains showed a notable reduction in UV-induced DNA repair synthesis (UDS) levels, ranging between 40% and 5-15% of normal values. Complementation analysis indicated that in the repair-deficient TTD cell strains the genetic defect is the same as that present in XP-D cells. The biochemical heterogeneity of the XP-D defect in TTD patients characterized by different degrees of defective UDS results in different patterns of response to the killing effect of UV light in non-proliferating cells.  相似文献   

20.
Tang J  Chu G 《DNA Repair》2002,1(8):601-616
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号