首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemical and biophysical methods are used to show that BMP-7 is secreted as a stable complex consisting of the processed growth factor dimer noncovalently associated with its two prodomain propeptide chains and that the BMP-7 complex is structurally similar to the small transforming growth factor beta (TGFbeta) complex. Because the prodomain of TGFbeta interacts with latent TGFbeta-binding proteins, a family of molecules homologous to the fibrillins, the prodomain of BMP-7 was tested for binding to fibrillin-1 or to LTBP-1. The BMP-7 prodomain and BMP-7 complex, but not the separated growth factor dimer, interact with N-terminal regions of fibrillin-1. This interaction may target the BMP-7 complex to fibrillin microfibrils in the extracellular matrix. Immunolocalization of BMP-7 in tissues like the kidney capsule and skin reveals co-localization with fibrillin. However, BMP-7 immunolocalization in other tissues known to be active sites for BMP-7 signaling is not apparent, suggesting that immunolocalization of BMP-7 in certain tissues represents specific extracellular storage sites. These studies suggest that the prodomains of TGFbeta-like growth factors are important for positioning and concentrating growth factors in the extracellular matrix. In addition, they raise the possibility that prodomains of other TGFbeta-like growth factors interact with fibrillins and/or LTBPs and are also targeted to the extracellular matrix.  相似文献   

2.
LTBP-2 is a matrix protein of unknown function since, unlike other LTBPs, it does not form covalent complexes with latent TGF-beta. We have previously shown that LTBP-2 has widespread association with fibrillin-containing microfibrils in developing aorta and other tissues. We have now shown that full-length human recombinant LTBP-2 specifically binds to the amino-terminal region of fibrillin-1, but not to fibrillin-2, in solid phase assays and overlay blotting. The binding was enhanced by the inclusion of 2 mM Ca2+ ions in the assay buffer and abolished by 5 mM EDTA indicating that the interaction was directly or indirectly Ca2+ ion dependent. The K(d) for the interaction was calculated from the specific binding curve as 9.4 nM. A recombinant carboxyl-terminal fragment of LTBP-2 was shown to a) bind the amino-terminal fragment of fibrillin-1 and b) block completely the binding of full length LTBP-2 to fibrillin-1. This result indicates that the major fibrillin-1 binding site resides close to the carboxyl-terminus of LTBP-2. Further competitive binding studies showed that an analogous carboxyl terminal fragment of LTBP-1 was able to block the binding of LTBP-2 to fibrillin-1 and that the C-terminal fragment of LTBP-2 could block the interaction of the LTBP-1 fragment with the fibrillin. Thus the binding site for LTBP-2 on fibrillin-1 appears to be the same or in close proximity to that for LTBP-1. Immunohistochemical analysis of developing human aorta showed distinctive but extensively overlapping distributions for LTBPs-1 and -2. Both LTBPs showed extensive co-localization with fibrillin-1 and elastic lamellae but LTBP-2 had extensive signal throughout the medial layer whereas LTBP-1 showed strong localization only in the outer medial layer. The finding indicates that there is a possibility for LTBP-2 to compete with LTBP-1 for binding to fibrillin-containing microfibrils throughout the aortic wall but particularly in the outer medial region where the LTBP-1 is predominantly located. Overall, the results support the concept that that LTBP-2 may be an indirect negative modulator for storage of the large latent TGF-beta complex on microfibrils in aorta and other fibrillin-rich tissues.  相似文献   

3.
Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) belongs to the fibrillin-LTBP superfamily of extracellular matrix proteins. LTBPs and fibrillins are involved in the sequestration and storage of latent growth factors, particularly transforming growth factor β (TGF-β), in tissues. Unlike other LTBPs, LTBP-2 does not covalently bind TGF-β, and its molecular functions remain unclear. We are screening LTBP-2 for binding to other growth factors and have found very strong saturable binding to fibroblast growth factor-2 (FGF-2) (Kd = 1.1 nM). Using a series of recombinant LTBP-2 fragments a single binding site for FGF-2 was identified in a central region of LTBP-2 consisting of six tandem epidermal growth factor-like (EGF-like) motifs (EGFs 9–14). This region was also shown to contain a heparin/heparan sulphate-binding site. FGF-2 stimulation of fibroblast proliferation was completely negated by the addition of 5-fold molar excess of LTBP-2 to the assay. Confocal microscopy showed strong co-localisation of LTBP-2 and FGF-2 in fibrotic keloid tissue suggesting that the two proteins may interact in vivo. Overall the study indicates that LTBP-2 is a potent inhibitor of FGF-2 that may influence FGF-2 bioactivity during wound repair particularly in fibrotic tissues.  相似文献   

4.
Growth factors of the transforming growth factor-beta family are potent regulators of the extracellular matrix formation, in addition to their immunomodulatory and regulatory roles for cell growth. TGF-beta s are secreted from cells as latent complexes containing TGF-beta and its propeptide, LAP (latency-associated peptide). In most cells LAP is covalently linked to an additional protein, latent TGF-beta binding protein (LTBP), forming the large latent complex. LTBPs are required for efficient secretion and correct folding of TGF-beta s. The secreted large latent complexes associate covalently with the extracellular matrix via the N-termini of the LTBPs. LTBPs belong to the fibrillin-LTBP family of extracellular matrix proteins, which have a typical repeated domain structure consisting mostly of epidermal growth factor (EGF)-like repeats and characteristic eight cysteine (8-Cys) repeats. Currently four different LTBPs and two fibrillins have been identified. LTBPs contain multiple proteinase sensitive sites, providing means to solubilize the large latent complex from the extracellular matrix structures. LTBPs are now known to exist both as soluble molecules and in association with the extracellular matrix. An important consequence of this is LTBP-mediated deposition and targeting of latent, activatable TGF-beta into extracellular matrices and connective tissues. LTBPs have a dual function, they are required both for the secretion of the small latent TGF-beta complex as well as directing bound latent TGF-beta to extracellular matrix microfibrils. However, it is not known at present whether LTBPs are capable of forming microfibrils independently, or whether they are a part of the fibrillin-containing fibrils. Most LTBPs possess RGD-sequences, which may have a role in their interactions with the cell surface. At least LTBP-1 is chemotactic to smooth muscle cells, and is involved in vascular remodelling. Analyses of the expressed LTBPs have revealed considerable variations throughout the molecules, generated both by alternative splicing and utilization of multiple promoter regions. The significance of this structural diversity is mostly unclear at present.  相似文献   

5.
The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, − 2, − 3, and − 4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here.The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans-golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly.  相似文献   

6.
Fibrillin-containing microfibrils are polymeric structures that are difficult to extract from connective tissues. Proteolytic digestion of tissues has been utilized to release microfibrils for study. Few of the molecules that connect microfibrils to other elements in the matrix have been identified. In this study, electron microscopic immunolocalization of anti-versican antibodies in tissues and in extracted microfibrils demonstrated that the C-terminal region of versican is found associated with fibrillin microfibrils. Extraction of microfibrils followed by treatment of microfibrils under dissociating conditions suggested that the versican C terminus is covalently bound to microfibrils. Binding assays using recombinant fibrillin-1 polypeptides and recombinant lectican lectin domains indicated that the versican lectin domain binds to specific fibrillin-1 polypeptides. The versican lectin domain also bound to molecules comigrating with authentic fibrillin-1 monomers in an assay using cell culture medium. In assays using microfibrils, the versican lectin domain demonstrated preferential binding compared with other lecticans. Binding was calcium-dependent. The binding site for versican in microfibrils is most likely within a region of fibrillin-1 between calcium-binding epidermal growth factor-like domains 11 and 21. Human mutations in this region can result in severe forms of the Marfan syndrome ("neonatal" Marfan syndrome). The connection between versican and fibrillin microfibrils may be functionally significant, particularly in cardiovascular tissues.  相似文献   

7.
Both latent transforming growth factor-beta (TGF-beta)-binding proteins fibrillins are components of microfibril networks, and both interact with members of the TGF-beta family of growth factors. Interactions between latent TGF-beta-binding protein-1 and TGF-beta and between fibrillin-1 and bone morphogenetic protein-7 (BMP-7) are mediated by the prodomain of growth factor complexes. To extend this information, investigations were performed to test whether stable complexes are formed by additional selected TGF-beta family members. Using velocity sedimentation in sucrose gradients as an assay, complex formation was demonstrated for BMP-7 and growth and differentiation factor-8 (GDF-8), which are known to exist in prodomain/growth factor complexes. Comparison of these results with complex formation by BMP-2, BMP-4 (full-length and shortened propeptides), BMP-10, and GDF-5 allowed us to conclude that all, except for BMP-2 and the short BMP-4 propeptides, formed complexes with their growth factors. Using surface plasmon resonance, binding affinities between fibrillin and all propeptides were determined. Binding studies revealed that the N-terminal end of fibrillin-1 serves as a universal high affinity docking site for the propeptides of BMP-2, -4, -7, and -10 and GDF-5, but not GDF-8, and located the BMP/GDF binding site within the N-terminal domain in fibrillin-1. Rotary shadowing electron microscopy of molecules of BMP-7 complex bound to fibrillin-1 confirmed these findings and also showed that prodomain binding targets the growth factor to fibrillin. Immunolocalization of BMP-4 demonstrated fibrillar staining limited to certain tissues, indicating tissue-specific targeting of BMP-4. These data implicate the fibrillin microfibril network in the extracellular control of BMP signaling and demonstrate differences in how prodomains target their growth factors to the extracellular space.  相似文献   

8.
Fibrillin microfibrils are extracellular matrix structures with essential functions in the development and the organization of tissues including blood vessels, bone, limbs and the eye. Fibrillin‐1 and fibrillin‐2 form the core of fibrillin microfibrils, to which multiple proteins associate to form a highly organized structure. Defining the components of this structure and their interactions is crucial to understand the pathobiology of microfibrillopathies associated with mutations in fibrillins and in microfibril‐associated molecules. In this study, we have analyzed both in vitro and in vivo the role of fibrillin microfibrils in the matrix deposition of latent TGF‐β binding protein 1 (LTBP‐1), ‐3 and ‐4; the three LTBPs that form a complex with TGF‐β. In Fbn1?/? ascending aortas and lungs, LTBP‐3 and LTBP‐4 are not incorporated into a matrix lacking fibrillin‐1 microfibrils, whereas LTBP‐1 is still deposited. In addition, in cultures of Fbn1?/? smooth muscle cells or lung fibroblasts, LTBP‐3 and LTBP‐4 are not incorporated into a matrix lacking fibrillin‐1 microfibrils, whereas LTBP‐1 is still deposited. Fibrillin‐2 is not involved in the deposition of LTBP‐1 in Fbn1?/? extracellular matrix as cells deficient for both fibrillin‐1 and fibrillin‐2 still incorporate LTBP‐1 in their matrix. However, blocking the formation of the fibronectin network in Fbn1?/? cells abrogates the deposition of LTBP‐1. Together, these data indicate that LTBP‐3 and LTBP‐4 association with the matrix depends on fibrillin‐1 microfibrils, whereas LTBP‐1 association depends on a fibronectin network. J. Cell. Physiol. 227: 3828–3836, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Transforming growth factor (TGF)-betas are secreted in large latent complexes consisting of TGF-beta, its N-terminal latency-associated peptide (LAP) propeptide, and latent TGF-beta binding protein (LTBP). LTBPs are required for secretion and subsequent deposition of TGF-beta into the extracellular matrix. TGF-beta1 associates with the 3(rd) 8-Cys repeat of LTBP-1 by LAP. All LTBPs, as well as fibrillins, contain multiple 8-Cys repeats. We analyzed the abilities of fibrillins and LTBPs to bind latent TGF-beta by their 8-Cys repeats. 8-Cys repeat was found to interact with TGF-beta1*LAP by direct cysteine bridging. LTBP-1 and LTBP-3 bound efficiently all TGF-beta isoforms, LTBP-4 had a much weaker binding capacity, whereas LTBP-2 as well as fibrillins -1 and -2 were negative. A short, specific TGF-beta binding motif was identified in the TGF-beta binding 8-Cys repeats. Deletion of this motif in the 3(rd) 8-Cys repeat of LTBP-1 resulted in loss of TGF-beta*LAP binding ability, while its inclusion in non-TGF-beta binding 3(rd) 8-Cys repeat of LTBP-2 resulted in TGF-beta binding. Molecular modeling of the 8-Cys repeats revealed a hydrophobic interaction surface and lack of three stabilizing hydrogen bonds introduced by the TGF-beta binding motif necessary for the formation of the TGF-beta*LAP - 8-Cys repeat complex inside the cells.  相似文献   

10.
A few years ago no one would have suspected that the well-known disorder of connective tissue, Marfan syndrome, could be caused by mutations in a recently discovered extracellular component, fibrillin. Likewise, nobody would have predicted that fibrillin represents a small family of proteins that are associated with several pheno-typically overlapping disorders. The fibrillins are integral constituents of the non-collagenous microfibrils, with an average diameter of 10 nm. These aggregates are distributed in the extracellular matrix of virtually every tissue. Microfibrillar bundles provide the external coating to elastin in elastic fibers, and serve an anchoring function in non-elastic tissues. At higher resolution, individual microfibrils have a “beads-on-a-string” appearance resulting from the head-to-tail polymerization of multiple fibrillin aggregates. Structurally, fibrillin contains a series of repeated sequences homologous to the epidermal growth factor calcium-binding motif. Characterization of fibrillin mutations in Marfan syndrome patients, together with the elucidation of the structure of the fibrillin proteins, have provided new insights, and raised new questions, about the function of the 10 nm microfibrils. For example, it is possible that the fibrillins, in addition to serving a structural function, might also be involved in regulating cellular activities and morphogenetic programs. It is fitting that the long search for the Marfan syndrome gene has brought a novel group of proteins to the forefront of extracellular matrix biology.  相似文献   

11.
Human fibrillin-1, the major structural protein of extracellular matrix (ECM) 10-12 nm microfibrils, is dominated by 43 calcium binding epidermal growth factor-like (cbEGF) and 7 transforming growth factor beta binding protein-like (TB) domains. Crystal structures reveal the integrin binding cbEGF22-TB4-cbEGF23 fragment of human fibrillin-1 to be a Ca(2+)-rigidified tetragonal pyramid. We suggest that other cbEGF-TB pairs within the fibrillins may adopt a similar orientation to cbEGF22-TB4. In addition, we have located a flexible RGD integrin binding loop within TB4. Modeling, cell attachment and spreading assays, immunocytochemistry, and surface plasmon resonance indicate that cbEGF22 bound to TB4 is a requirement for integrin activation and provide insight into the molecular basis of the fibrillin-1 interaction with alphaVbeta3. In light of our data, we propose a novel model for the assembly of the fibrillin microfibril and a mechanism to explain its extensibility.  相似文献   

12.
The interactions of microfibril-associated glycoprotein (MAGP)-2 have been investigated with fibrillins and fibrillin-containing microfibrils. Solid phase binding assays were conducted with recombinant fragments covering fibrillin-1 and most of fibrillin-2. MAGP-2, and its structure relative MAGP-1, were found to bind two fragments spanning the N-terminal half of fibrillin-1 and an N-terminal fragment of fibrillin-2. Blocking experiments indicated that MAGP-2 had a binding site(s) close to the N terminus of the fibrillin-1 molecule that was distinct from that for MAGP-1 and an additional, more central binding site(s) that may be shared by the two MAGPs. Immunogold labeling of developing nuchal ligament tissue showed that MAGP-2 had regular covalent and periodic (about 56 nm) association with fibrillin-containing microfibrils of elastic fibers in this tissue. Further analysis of isolated microfibrils indicated that MAGP-2 was attached at two points along the microfibril substructure, "site 1" on the "beads" and "site 2" at the "shoulder" of the interbead region close to where the two "arms" fuse. In contrast, MAGP-1 was located only on the beads. Comparison of the MAGP-2 binding data with known fibrillin epitope maps of the microfibrils showed that site 1 correlated with the N-terminal MAGP-2 binding region, and site 2 correlated with the second, more central, MAGP-2 binding region on the fibrillin-1 molecule. Of particular note, immunolabeling at site 2 was markedly decreased, relative to that at site 1, on extended microfibrils with bead-to-bead periods over 90 nm, suggesting that site 2 may move toward the beads when the microfibril is stretched. The study points to MAGP-2 being an integral component of some populations of fibrillin-containing microfibrils. Moreover, the identification of multiple MAGP-binding sequences on fibrillins supports the concept that MAGPs may function as molecular cross-linkers, stabilizing fibrillin monomers in folded conformation within or between the microfibrils, and thus MAGPs may be implicated in the modulation of the elasticity of these structures.  相似文献   

13.
During the previous cloning of the fibrillin gene (FBN1), we isolated a partial cDNA coding for a fibrillin-like peptide and mapped the corresponding gene (FBN2) to human chromosome 5. (Lee, B., M. Godfrey, E. Vitale, H. Hori, M. G. Mattei, M. Sarfarazi, P. Tsipouras, F. Ramirez, and D. W. Hollister. 1991. Nature [Lond.]. 352:330-334). The study left, however, unresolved whether or not the FBN2 gene product is an extracellular component structurally related to fibrillin. Work presented in this report clarifies this important point. Determination of the entire primary structure of the FBN2 gene product demonstrated that this polypeptide is highly homologous to fibrillin. Immunoelectron microscopy localized both fibrillin proteins to elastin-associated extracellular microfibrils. Finally, immunohistochemistry revealed that the fibrillins co-distribute in elastic and non-elastic connective tissues of the developing embryo, with preferential accumulation of the FBN2 gene product in elastic fiber-rich matrices. These results support the original hypothesis that the fibrillins may have distinct but related functions in the formation and maintenance of extracellular microfibrils. Accordingly, we propose to classify the FBN1 and FBN2 gene products as a new family of extracellular proteins and to name its members fibrillin-1 and fibrillin-2, respectively.  相似文献   

14.
Latent transforming growth factor-β binding protein-1 (LTBP-1) is an extracellular protein that is structurally similar to fibrillin and has an important role in controlling transforming growth factor-β (TGF-β) signaling by storing the cytokine in the extracellular matrix and by being involved in the conversion of the latent growth factor to its active form. LTBP-1 is found as both short (LTBP-1S) and long (LTBP-1L) forms, which are derived through the use of separate promoters. There is controversy regarding the importance of LTBP-1L, as Ltbp1L knockout mice showed multiple cardiovascular defects but the complete null mice did not. Here, we describe a third line of Ltbp1 knockout mice generated utilizing a conditional knockout strategy that ablated expression of both L and S forms of LTBP-1. These mice show severe developmental cardiovascular abnormalities and die perinatally; thus these animals display a phenotype similar to previously reported Ltbp1L knockout mice. We reinvestigated the other “complete” knockout line and found that these mice express a splice variant of LTBP-1L and, therefore, are not complete Ltbp1 knockouts. Our results clarify the phenotypes of Ltbp1 null mice and re-emphasize the importance of LTBP-1 in vivo.  相似文献   

15.
Latent transforming growth factor (TGF) β-binding proteins (LTBPs) interact with fibrillin-1. This interaction is important for proper sequestration and extracellular control of TGFβ. Surface plasmon resonance interaction studies show that residues within the first hybrid domain (Hyb1) of fibrillin-1 contribute to interactions with LTBP-1 and LTBP-4. Modulation of binding affinities by fibrillin-1 polypeptides in which residues in the third epidermal growth factor-like domain (EGF3) are mutated demonstrates that the binding sites for LTBP-1 and LTBP-4 are different and suggests that EGF3 may also contribute residues to the binding site for LTBP-4. In addition, fibulin-2, fibulin-4, and fibulin-5 bind to residues contained within EGF3/Hyb1, but mutated polypeptides again indicate differences in their binding sites in fibrillin-1. Results demonstrate that these protein-protein interactions exhibit “exquisite specificities,” a phrase commonly used to describe monoclonal antibody interactions. Despite these differences, interactions between LTBP-1 and fibrillin-1 compete for interactions between fibrillin-1 and these fibulins. All of these proteins have been immunolocalized to microfibrils. However, in fibrillin-1 (Fbn1) null fibroblast cultures, LTBP-1 and LTBP-4 are not incorporated into microfibrils. In contrast, in fibulin-2 (Fbln2) null or fibulin-4 (Fbln4) null cultures, fibrillin-1, LTBP-1, and LTBP-4 are incorporated into microfibrils. These data show for the first time that fibrillin-1, but not fibulin-2 or fibulin-4, is required for appropriate matrix assembly of LTBPs. These studies also suggest that the fibulins may affect matrix sequestration of LTBPs, because in vitro interactions between these proteins are competitive.Fibrillin microfibrils are ubiquitous structural elements in the connective tissue. Fibrillin microfibrils provide organs with tissue-specific architectural frameworks designed to support the mature functional integrity of the particular organ. In addition, fibrillin microfibrils contribute to proper developmental patterning of organs by targeting growth factors to the right location in the extracellular matrix (1, 2).Molecules of fibrillin-1 (3), fibrillin-2 (4, 5), and fibrillin-3 (6) polymerize to form the backbone structure of microfibrils. Latent TGFβ-binding protein (LTBP)3-1 associates with fibrillin microfibrils in the perichondrium and in osteoblast cultures (7, 8), and LTBP-1 and LTBP-4 interact with fibrillin (9). Other proteins associated with fibrillin microfibrils include the fibulins (10, 11), microfibril-associated glycoprotein-1 and -2 (12, 13), decorin (14), biglycan (15), versican (16), and perlecan (17). It is likely that one function of these associated extracellular matrix molecules is to connect the fibrillin microfibril scaffold to other architectural elements in tissue- and organ-specific patterns.In addition to performing architectural functions, fibrillins bind directly to prodomains of bone morphogenetic proteins and growth and differentiation factors (18, 19) and LTBPs bring with them the small latent TGFβ complex (20), suggesting that the microfibril scaffold may position, concentrate, and control growth factor signaling. Studies of fibrillin-1 (Fbn1) and fibrillin-2 (Fbn2) mutant mice demonstrate that loss of fibrillins results in phenotypes associated with dysregulated TGFβ (2123) or bone morphogenetic protein (24) signaling. Microfibril-associated glycoprotein-1 (Magp-1) null mice reveal phenotypes that may also be related to abnormal TGFβ signaling (25).In a previous study (9), we determined that the binding site for LTBP-1 and -4 is contained within a specific four-domain region of fibrillin-1. In this study, we performed additional experiments to more precisely define the LTBP binding site. At the same time, we compared binding of fibulins to fibrillin, because the region in fibrillin-1 that was suggested to contain the fibulin binding site (11) was very close to our region of interest for LTBP binding. Our results demonstrate that LTBPs and fibulins compete for binding to fibrillin-1. However, the proteins tested (LTBP-1, LTBP-4, fibulin-2, fibulin-4, and fibulin-5) displayed “exquisite specificities” in their interactions with fibrillin-1.To test the potential significance of these interactions with fibrillin-1, we investigated matrix incorporation of LTBPs in cell cultures obtained from wild type, Fbn1 null, Fbn2 null, fibulin-2 (Fbln-2) null, and fibulin-4 (Fbln-4) null mice. In addition, we examined the distribution of LTBPs in Fbn1 null and Fbn2 null mice.  相似文献   

16.
The fibrillins, large extracellular matrix molecules, are polymerized to form “microfibrils.” The fibrillin microfibril scaffold is populated by microfibril-associated proteins and by growth factors, which are likely to be latent. The scaffold, associated proteins, and bound growth factors, together with cellular receptors that can sense the microfibril matrix, constitute the fibrillin microenvironment. Activation of TGFβ signaling is associated with the Marfan syndrome, which is caused by mutations in fibrillin-1. Today we know that mutations in fibrillin-1 cause the Marfan syndrome as well as Weill-Marchesani syndrome (and other acromelic dysplasias) and result in opposite clinical phenotypes: tall or short stature; arachnodactyly or brachydactyly; joint hypermobility or stiff joints; hypomuscularity or hypermuscularity. We also know that these different syndromes are associated with different structural abnormalities in the fibrillin microfibril scaffold and perhaps with specific cellular receptors (mechanosensors). How does the microenvironment, framed by the microfibril scaffold and populated by latent growth factors, work? We must await future investigations for the molecular and cellular mechanisms that will answer this question. However, today we can appreciate the importance of the fibrillin microfibril niche as a contextual environment for growth factor signaling and potentially for mechanosensation.  相似文献   

17.
Fibrillins and LTBPs [latent TGFβ (transforming growth factor β)-binding proteins] perform vital and complex roles in the extracellular matrix and are relevant to a wide range of human diseases. These proteins share a signature 'eight cysteine' or 'TB (TGFβ-binding protein-like)' domain that is found nowhere else in the human proteome, and which has been shown to mediate a variety of protein-protein interactions. These include covalent binding of the TGFβ propeptide, and RGD-directed interactions with a repertoire of integrins. TB domains are found interspersed with long arrays of EGF (epidermal growth factor)-like domains, which occur more widely in extracellular proteins, and also mediate binding to a large number of proteins and proteoglycans. In the present paper, newly available protein sequence information from a variety of sources is reviewed and related to published findings on the structure and function of fibrillins and LTBPs. These sequences give valuable insight into the evolution of TB domain proteins and suggest that the fibrillin domain organization emerged first, over 600 million years ago, prior to the divergence of Cnidaria and Bilateria, after which it has remained remarkably unchanged. Comparison of sequence features and domain organization in such a diverse group of organisms also provides important insights into how fibrillins and LTBPs might perform their roles in the extracellular matrix.  相似文献   

18.
Fibrillin-1 and fibrillin-2 are large cysteine-rich glycoproteins that serve two key physiological functions: as supporting structures that impart tissue integrity and as regulators of signaling events that instruct cell performance. The structural role of fibrillins is exerted through the temporal and hierarchical assembly of microfibrils and elastic fibers, whereas the instructive role reflects the ability of fibrillins to sequester transforming growth factor β (TGFβ) and bone morphogenetic protein (BMP) complexes in the extracellular matrix. Characterization of fibrillin mutations in human patients and in genetically engineered mice has demonstrated that perturbation of either function manifests in disease. More generally, these studies have indicated that fibrillins are integral components of a broader biological network of extracellular, cell surface, and signaling molecules that orchestrate morphogenetic and homeostatic programs in multiple organ systems. They have also suggested that the relative composition of fibrillin-rich microfibrils imparts contextual specificity to TGFβ and BMP signaling by concentrating the ligands locally so as to regulate cell differentiation within a spatial context during organ formation (positive regulation) and by restricting their bioavailability so as to modulate cell performance in a timely fashion during tissue remodeling/repair (negative regulation). Correlative evidence suggests functional coupling of the cell-directed assembly of microfibrils and targeting of TGFβ and BMP complexes to fibrillins. Hence, the emerging view is that fibrillin-rich microfibrils are molecular integrators of structural and instructive signals, with TGFβ and BMPs as the nodal points that convert extracellular inputs into discrete and context-dependent cellular responses.  相似文献   

19.
Fibrillins are microfibril-forming extracellular matrix macromolecules that modulate skeletal development. In humans, mutations in fibrillins result in long bone overgrowth as well as other distinct phenotypes. Whether fibrillins form independent microfibrillar networks or can co-polymerize, forming a single microfibril, is not known. However, this knowledge is required to determine whether phenotypes arise because of loss of singular or composite functions of fibrillins. Immunolocalization experiments using tissues and de novo matrices elaborated by cultured cells demonstrated that both fibrillins can be present in the same individual microfibril in certain tissues and that both fibrillins can co-polymerize in fibroblast cultures. These studies suggest that the molecular information directing fibrillin fibril formation may be similar in both fibrillins. Furthermore, these studies provide a molecular basis for compensation of one fibrillin by the other during fetal life. In postnatal tissues, fibrillin-2 antibodies demonstrated exuberant staining in only one location: peripheral nerves. This surprising finding implicates distinct functions for fibrillin-2 in peripheral nerves, because a unique feature in humans and in mice mutant for fibrillin-2 is joint contractures that resolve over time.  相似文献   

20.
Of the four latent transforming growth factor (TGF)-beta-binding proteins (LTBPs), LTBP-2 is different in the respect that it does not bind small latent forms of TGF-beta. LTBP-2 is therefore likely to have other roles in the extracellular matrix. LTBP-2 contains an RGD putative integrin recognition site, suggesting a role in cell adhesion. We carried out a study on cell attachment to LTBP-2. Purified recombinant LTBP-2 was used as substratum in cell adhesion and migration studies. We found that, unlike most adherent cell lines, all of the melanoma cell lines tested adhered to LTBP-2 very efficiently and in a concentration-dependent manner. Bowes melanoma cells bound most efficiently to LTBP-2 and were used for further characterization. Cell adhesion assays with recombinant LTBP-2 fragments indicated that the adhesive site is located in an N-terminal region of LTBP-2. The attachment of melanoma cells to LTBP-2 was prevented with monoclonal antibody against beta1 integrin in a concentration-dependent manner, suggesting an important role for beta1 integrin in the process. Antibodies against integrin subunits alpha3 and alpha6 decreased melanoma cell adhesion as well. The beta1 and alpha3 integrins were localized on the cell surface, especially in lamellipodia, as observed by immunofluorescence. In addition to integrin antagonists, heparin also markedly decreased melanoma cell adhesion. LTBP-2 also supported Bowes cell migration in modified Boyden chamber assays in a manner similar to the migration on fibronectin. Current data indicate that LTBP-2 can play a role in melanoma cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号