首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation was made to reveal the protective effects of veratric acid (VA), a phenolic acid against atherogenic diet-induced hyperlipidemic rats. Male albino Wistar rats were fed with atherogenic diet (4% cholesterol, 1% cholic acid, and 0.5% 2-thiouracil) daily for 30 days and treated with VA (40 mg/kg body weight) daily for a period of 30 days. Rats fed with atherogenic diet showed significant (P < 0.05) elevation in the level of plasma lipids, systolic and diastolic blood pressure, oxidative stress markers (thiobarbituric acid reactive substances, lipid peroxides) and significant (P < 0.05) reduction in the activities of enzymatic (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymatic (vitamin C, vitamin E, and reduced glutathione) antioxidants in erythrocytes, plasma, and tissues (liver, kidney, and aorta). Oral administration of VA (40 mg/kg body weight) for 30 days to atherogenic diet fed rats markedly attenuates systolic, diastolic blood pressure and lipid peroxidation products. Further, VA treatment significantly improved enzymatic and non-enzymatic antioxidants levels and showed beneficial effects on lipid profile in atherogenic diet rats. All the above alterations were supported by histopathological observations. These results indicate that oral administration of VA ameliorates atherogenic diet-induced hyperlipidemia in rats by its free radical scavenging; improving the antioxidants and lipid lowering properties.  相似文献   

2.
Nickel (Ni), a major environmental pollutant, is known for its wide toxic manifestations. In the present study caffeic acid (CA), one of the most commonly occurring phenolic acids in fruits, grains and dietary supplements, was evaluated for its protective effect against the Ni induced oxidative damage in liver. In this investigation, Ni (20 mg/kg body weight) was administered intraperitoneally for 20 days to induce toxicity. CA was administered orally (15, 30 and 60 mg/kg body weight) for 20 days with intraperitoneal administration of Ni. Ni induced liver damage was clearly shown by the increased activities of serum hepatic enzymes namely aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) and lactate dehydrogenase (LDH) along with increased elevation of lipid peroxidation indices (thiobarbituric reactive acid substances (TBARS) and lipid hydroperoxides). The toxic effect of Ni was also indicated by significantly decreased levels of enzymatic (superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx) and glutathione S-transferase (GST)) and non-enzymatic antioxidants (glutathione (GSH), vitamin C and vitamin E). CA administered at a dose of 60 mg/kg body weight significantly reversed the activities of hepatic marker enzymes to their near normal levels when compared with other two doses. In addition, CA significantly reduced lipid peroxidation and restored the levels of antioxidant defense in the liver. All these changes were supported by histological observations. The results indicate that CA may be beneficial in ameliorating the Ni induced oxidative damage in the liver of rats.  相似文献   

3.
The present study was undertaken to examine the attenuative effect of Piper betle leaf extract (PBE) against cadmium (Cd) induced oxidative hepatic dysfunction in the liver of rats. Pre-oral supplementation of PBE (200 mg/kg BW) treated rats showed the protective efficacy against Cd induced hepatic oxidative stress. Oral administration of Cd (5 mg/kg BW) for four weeks to rats significantly (P > 0.05) elevated the level of serum hepatic markers such as serum aspartate transaminase (AST), serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGT), bilirubin (TBRNs), oxidative stress markers viz., thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), protein carbonyls (PC) and conjugated dienes (CD) and significantly (P > 0.05) reduced the enzymatic antioxidants viz., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) and non-enzymatic antioxidants Viz., reduced glutathione (GSH), total sulfhydryls (TSH), vitamin C and vitamin E in the liver. Pre-oral supplementation of PBE (200 mg/kg BW) in Cd intoxicated rats, the altered biochemical indices and pathological changes were recovered significantly (P > 0.05) which showed ameliorative effect of PBE against Cd induced hepatic oxidative stress. From the above findings, we suggested that the pre-administration of P. betle leaf extract exhibited remarkable protective effects against cadmium-induced oxidative hepatic injury in rats.  相似文献   

4.
Free radicals are produced through biological processes and environmental interactions. They are metabolised by the enzymatic and non-enzymatic antioxidants present in the tissues. In this study, a 90 days long feeding of high fat diet to rats, resulted in significantly elevating the lipid and oxidative stress levels of the rat liver and blood as became evident from the changes in the levels of lipids, thiobarbituric acid reactive substances(TBARS), reduced glutathione (GSH), and three hepatic antioxidant enzymes; glutathione peroxidase (EC 1.11.1.9), catalase (EC 1.11.1.6) and superoxide dismuatase (EC 1.15.1.1). However, a concomitant feeding of high antioxidant combination, as high fat high antioxidant diets, reduced the lipid levels and diminished the oxidative stress. The results suggest that apart from reducing lipid levels, dietary antioxidants also support endogenous antioxidants in their oxidative stress reducing endeavours.  相似文献   

5.
The effect of two different doses (50 and 100 mg/kg body wt/day for 14 days) of 80% ethanolic extract of the leaves of Adhatoda vesica were examined on drug metabolizing phase I and phase II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation in the liver of 8 weeks old Swiss albino mice. The modulatory effect of the extract was also examined on extra-hepatic organs viz. lung, kidney and forestomach for the activities of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase. Significant increase in the activities of acid soluble sulfhydryl (-SH) content, cytochrome P450, NADPH-cytochrome P450 reductase, cytochrome b5, NADH-cytochrome b5 reductase, glutathione S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were observed in the liver at both dose levels of treatments. Adhatoda vesica acted as bifunctional inducer since it induced both phase I and phase II enzyme systems. Both the treated groups showed significant decrease in malondialdehyde (MDA) formation in liver, suggesting its role in protection against prooxidant induced membrane damage. The cytosolic protein was significantly inhibited at both the dose levels of treatment indicating the possibility of its involvement in the inhibition of protein synthesis. BHA has significantly induced the activities of GR and GSH in the present study. The extract was effective in inducing GST and DTD in lung and forestomach, and SOD and CAT in kidney. Thus, besides liver, other organs viz., lung, kidney and forestomach were also stimulated by Adhatoda, to increase the potential of the machinery associated with the detoxification of xenobiotic compounds. But, liver and lung showed a more consistent induction. Since the study of induction of the phase I and phase II enzymes is considered to be a reliable marker for evaluating the chemopreventive efficacy of a particular compound, these findings are suggestive of the possible chemopreventive role played by Adhatoda leaf extract.  相似文献   

6.
The present study examines the salinity-induced oxidative damage and differential response of enzymatic and non-enzymatic antioxidants of Nostoc muscorum. As compared to carotenoid content which showed induction the chlorophyll and phycocyanin contents were inhibited after salt stress. Acceleration of lipid peroxidation and peroxide production suggested onset of oxidative damage. The activities of all studied enzymatic antioxidants were significantly increased by salt stress with maximum induction of superoxide dismutase (154.8% at 200 mM NaCl treatment). Interestingly under severe stress condition (250 mM NaCl) ascorbate peroxidase seems to be more crucial than catalase for peroxide scavenging. Among the studied non-enzymatic antioxidants alpha-tocopherol was induced maximally (56.0%), however, ascorbate and reduced glutathione were increased by only 8.9% after 250 mM NaCl treatment as compared to control cells. Therefore, salinity was found to induce antioxidative defense system of N. muscorum.  相似文献   

7.
The toxic effects of paraquat on the anti-oxidant defense system of male albino rats were evaluated, after administering either a single dose (1.5 and 7.5 mg/kg of body weight) or continuous daily doses (same as above, i.e., 1.5 mg/kg and 7.5 mg/kg of body weight) for 3 and 7 days. Glutathione levels in blood cells, liver, lung and kidney tissues decreased in a dose and time dependent manner. Glutathione reductase and glucose-6-phosphate dehydrogenase activity decreased, whereas the activity of glutathione-S-transferase, glutathione peroxidase, catalase and superoxide dismutase increased in paraquat exposure. Malondialdehyde formation also increased in a dose and time dependent manner. The alterations of anti-oxidant system particularly glutathione can be utilized as biomarkers during management of paraquat poisoning.  相似文献   

8.
The effects of long-term starvation and food restriction (49 days), followed by refeeding (21 days) have been studied with respect to antioxidant defense in the liver and gills (branchial tissues) of the brown trout, Salmo trutta. Malondialdehyde levels in both tissues increased in parallel with starvation and food restriction and these values did not return to normal after the refeeding period. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) in liver and gills increased during the 49 days of starvation, but glucose-6-phosphate dehydrogenase (G6PD) activities decreased. Glutathione S-transferase (GST) activity decreased in the liver at the 49th day of starvation, but increased in the branchial tissues. Some of the antioxidant enzyme activities (such as hepatic GST and branchial G6PD) returned to control values of fed fish after the refeeding period, but others (e.g. hepatic SOD and branchial GPx) did not return to normal values. In conclusion, our study indicates that total or partial food deprivation induces oxidative stress in brown trout.  相似文献   

9.
Indomethacin (IND) is a non-steroid anti-inflammatory agent that is known to induce severe gastric mucosal lesions. In this study, we investigated the protective effect of selenium (SEL), grape seed extract (GSE), and both on IND-induced gastric mucosal ulcers in rats. Sprague–Dawley rats (200–250 g) were given SEL, GSE, and both by oral gavage for 28 days, and then gastric ulcers were induced by oral administration of 25 mg/kg IND. Malondialdehyde (MDA), non-enzymatic (reduced glutathione, GSH) and enzymatic (superoxide dismutase, catalase, and glutathione peroxidase) antioxidants, prostaglandin E2 (PGE2) in gastric mucosa, and serum tumor necrosis factor alpha (TNF-α) were measured. Moreover, gastric ulcer index and preventive index were determined. Indomethacin increased the gastric ulcer index, MDA, TNF-α, and decreased PGE2 and non-enzymatic (GSH) and enzymatic (superoxide dismutase, catalase, and glutathione peroxidase) antioxidants. Pretreatment with SEL, GSE, and both significantly decreased the gastric ulcer index, MDA, and TNF and increased antioxidants and PGE2. Histopathological observations confirm the gastric ulcer index and biochemical parameters. Selenium and GSE have a protective effect against IND-induced gastric ulcers through prevention of lipid peroxidation, increase of GSH, activation of radical scavenging enzymes, PGE2 generation, and anti-inflammatory activity. Co-administration of GSE and SEL is more effective than GSE or SEL alone.  相似文献   

10.
Abstract

This study monitors and assesses the effect of battery-manufacturing effluent containing metals Pb, Zn and Cd on endogenous antioxidants. Malonaldehyde (MDA), reduced glutathione sulfyhydryl (GSH) and catalase (CAT) which are known biomarkers of effluent were exposed to 0%, 25%, 50%, 75% and 90% amendments for 74h on the gills, liver and kidneys of C. punctata. There was more metal Zn accumulation in the gills and GSH contents increased significantly in the gills (P<0.01), liver accumulation of Pb was found to be more (P<0.05), whereas lowest accumulation of Pb was found in kidneys and the highest accumulation of Cd (P<0.05). Over all amendments of the effluents, MDA contents were increased in the gills, liver and kidneys (P<0.01). GSH levels were decreased among the liver and kidneys compared to the gills (P<0.01) at 90% amendment. Effluent exposure caused a significant decrease in the activities of CAT in the gills, liver and kidneys (P<0.01, 0.05 and 0.05) of fish. Increased MDA activity was indicative of the formation of free radicals in the fish with exposure to amendments of battery manufacturing effluent, while increased levels of GSH pointed to the occurrence of a scavenging mechanism of free radicals.  相似文献   

11.
The pro-oxidant effect of H2O2 at a concentration of 20 microM was examined in the digestive gland of Mytilus galloprovincialis, a bivalve mollusc frequently used in biomonitoring programs. The oxidative stress caused by H2O2 has been evaluated in terms of lipid peroxidation and lysosomal system alteration. Complex cellular antioxidant defence mechanisms of the mussel were investigated at the enzymatic and non-enzymatic level in order to explain their relative role in reducing the risk of oxidative injury. Metallothionein, glutathione, superoxide dismutase, catalase and glutathione peroxidase were assayed after 1, 4 and 7 days of exposure to H2O2. The metallothionein content showed an increase by 43% after 4 days of exposure, followed by a decrease back to control values at 7 days. Antioxidant enzyme activities followed a similar pattern with a moderate increase after 1 or 4 days of treatment and a return to control values at 7 days. All data indicate a 'transient' oxidative stress response, after which mussel cells restore the redox balance.  相似文献   

12.
The ability of Cichorium intybus root extract (chicory extract) to protect against carbon tetrachloride (CCl4)-induced oxidative stress and hepatotoxicity was evaluated in male rats. The rats were divided into four groups according to treatment: saline (control); chicory extract (100 mg/kg body weight daily, given orally for 2 weeks); CCl4 (1 ml/kg body weight by intraperitoneal injection for 2 consecutive days only); or chicory extract (100 mg/kg body weight daily for 2 weeks) + CCl4 injection on days 16 and 17. The levels of hepatic lipid peroxidation, antioxidants, and molecular biomarkers were estimated twenty-four hours after the last CCl4 injection. Pretreatment with chicory extract significantly reduced CCl4-induced elevation of malondialdehyde levels and nearly normalized levels of glutathione and activity of glutathione S-transferase, glutathione peroxidase (GPx), glutathione reductase, catalase (CAT), paraoxonase-1 (PON1), and arylesterase in the liver. Chicory extract also attenuated CCl4-induced downregulation of hepatic mRNA expression levels of GPx1, CAT and PON1 genes. Results of DNA fragmentation support the ability of chicory extract to ameliorate CCl4-induced liver toxicity. Taken together, our results demonstrate that chicory extract is rich in natural antioxidants and able to attenuate CCl4-induced hepatocellular injury, likely by scavenging reactive free radicals, boosting the endogenous antioxidant defense system, and overexpressing genes encoding antioxidant enzymes.  相似文献   

13.
Heavy metal (HMs) contamination is widespread globally due to anthropogenic, technogenic, and geogenic activities. The HMs exposure could lead to multiple toxic effects in plants by inducing reactive oxygen species (ROS), which inhibit most cellular processes at various levels of metabolism. ROS being highly unstable could play dual role (1) damaging cellular components and (2) act as an important secondary messenger for inducing plant defense system. Cells are equipped with enzymatic and non-enzymatic defense mechanisms to counteract this damage. Some are constitutive and others that are activated only when a stress-specific signal is perceived. Enzymatic scavengers of ROS include superoxide dismutase, catalase, glutathione reductase, and peroxidase, while non-enzymatic antioxidants are glutathione, ascorbic acid, α-tocopherol, flavonoids, anthocyanins, carotenoids, and organic acids. The intracellular and extracellular chelation mechanisms of HMs are associated with organic acids such as citric, malic and oxalic acid, etc. The important mechanism of detoxification includes metal complexation with glutathione, amino acids, synthesis of phytochelatins and sequestration into the vacuoles. Excessive stresses induce a cascade, MAPK (mitogen-activated protein kinase) pathway and synthesis of metal-detoxifying ligands. Metal detoxification through MAPK cascade and synthesis of metal-detoxifying ligands will be of considerable interest in the field of plant biotechnology. Further, the photoprotective roles of pigments of xanthophylls cycle under HMs stress were also discussed.  相似文献   

14.
Hibernation is an extreme physiological state characterized by profound decreases in oxidative metabolism and body temperature during bouts of prolonged torpor, interrupted by brief periods of arousal with sudden increases in oxidative metabolism, with alterations in antioxidant defenses. We monitored the activities of antioxidant enzymes and oxidative stress during hibernation and activity in Uromastyx philbyi. 20 animals were used, 10 of which were collected in the hibernation season (group I) and the other 10 collected during the active period (group II). Blood, liver, brown adipose tissue (BAT) and brain samples were used to determine free radical and antioxidant levels. The results indicated a significant decrease of free radicals and increase of vitamin C, especially in serum during hibernation. In contrast, during the active period free radicals, enzymatic antioxidants as glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) and non-enzymatic antioxidants as reduce glutathione (GSH) and vitamin E increased in all studied tissues. It can be concluded that Uromastyx philbyi has a strong antioxidant defense system that protects it from the injurious effects of free radicals either at the periods of arousal or during activity periods.  相似文献   

15.
The study was designed to investigate the protective effect of esculin against pro-oxidant aflatoxin B1 (AFB1)-induced nephrotoxicity in mice. In this study toxicity was developed by oral administration of AFB1 at a dose of 66.60 μg/kg bw/day for 90 days in male Swiss albino mice. Esculin (150 mg/kg bw/0.2 ml/day) and standard compound ascorbic acid (300 mg/kg bw/0.2 ml/day) was given after 30 min of AFB1 administration for 90 days. Protective efficacy was assessed by measuring the levels of lipid peroxidation (LPO) and non-enzymatic antioxidants such as reduced glutathione (GSH) and also by measuring activities of enzymatic antioxidants such as glutathione peroxidase (GPX), glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) in kidney. Results were analysed at the 30th, 60th and 90th day of the daily treatments, which showed a decrease in the level of LPO and an increase in the levels of enzymatic and non-enzymatic antioxidants. The protective effect of esculin was further proved by histopathological findings as it exhibited regenerative activities in mice renal tubules against AFB1-induced nephrotoxicity. The results obtained clearly demonstrate that the protective efficacy of esculin against pro-oxidant AFB1-induced nephrotoxicity in mice might be due to its antioxidants and free radical scavenging properties.  相似文献   

16.
Several physiological processes can induce daily variations in aerobic metabolism. Lithodes santolla is a decapod crustacean of special concern since it is a sub-Antarctic species of commercial interest. The aim of this work was to study in L. santolla the daily variations in levels of enzymatic and non-enzymatic antioxidants, lipid peroxidation and protein oxidation, and haemolymphatic pH. Males of L. santolla of commercial size were randomly dissected every 4 h during a period of 24 h. Enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase and glutathione peroxidase were determined in samples of gills, muscle, hepatopancreas and haemolymph. Ascorbic acid, total glutathione, lipid peroxidation and protein oxidation were also determined in all tissues. Gills showed the highest enzymatic activity and hepatopancreas the highest concentration of non-enzymatic antioxidants. Maximum antioxidant activity was during the dark phase in gills and during the photophase in the haemolymph. Muscle showed significant daily variations, with peaks during the photophase and scotophase. Overall, an antioxidant protective mechanism is present in all tissues, where SOD and CAT represent the first line of defense. The defense mechanism in L. santolla seems to be more active during the dark phase, with slight differences among the analyzed tissues, indicating a higher metabolic rate.  相似文献   

17.
Manna P  Sinha M  Sil PC 《Amino acids》2009,36(3):417-428
The present study has been carried out to investigate the role of taurine (2-aminoethanesulfonic acid), a conditionally essential amino acid, in ameliorating cadmium-induced renal dysfunctions in mice. Cadmium chloride (CdCl2) has been selected as the source of cadmium. Intraperitoneal administration of CdCl2 (at a dose of 4 mg/kg body weight for 3 days) caused significant accumulation of cadmium in renal tissues and lessened kidney weight to body weight ratio. Cadmium administration reduced intracellular ferric reducing/antioxidant power (FRAP) of renal tissues. Levels of serum marker enzymes related to renal damage, creatinine and urea nitrogen (UN) have been elevated due to cadmium toxicity. Cadmium exposure diminished the activities of enzymatic antioxidants, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PD) as well as non-enzymatic antioxidant, reduced glutathione (GSH) and total thiols. On the other hand, the levels of oxidized glutathione (GSSG), lipid peroxidation, protein carbonylation, DNA fragmentation, concentration of superoxide radicals and activities of cytochrome P450 enzymes (CYP P450s) have been found to increase due to cadmium intoxication. Treatment with taurine (at a dose of 100 mg/kg body weight for 5 days) before cadmium intoxication prevented the toxin-induced oxidative impairments in renal tissues. The beneficial role of taurine against cadmium-induced renal damage was supported from histological examination of renal segments. Vitamin C, a well-established antioxidant was used as the positive control in the study. Experimental evidence suggests that both taurine and vitamin C provide antioxidant defense against cadmium-induced renal oxidative injury. Combining all, results suggest that taurine protects murine kidneys against cadmium-induced oxidative impairments, probably via its antioxidative property.  相似文献   

18.
Abstract

Objective

The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods

Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats.

Results

The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal.

Conclusion

The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.  相似文献   

19.
The effect of two doses (30 microl and 60 microl/day/mice daily for 14 days) of the fresh leaf pulp extract of Aloe vera was examined on carcinogen-metabolizing phase-I and phase-II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation in the liver of mice. The modulatory effect of the pulp extract was also examined on extrahepatic organs (lung, kidney and forestomach) for the activities of glutathione S-transferase, DT-diophorase, superoxide dismutase and catalase. The positive control mice were treated with butylated hydroxyanisole (BHA). Significant increases in the levels of acid soluble sulfhydryl (-SH) content, NADPH-cytochrome P450 reductase, NADH-cytochrome b5 reductase, glutathione S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX) and glutathione reductase (GR) were observed in the liver. Aloe vera significantly reduced the levels of cytochrome P450 and cytochrome b5. Thus, Aloe vera is clearly an inducer of phase-II enzyme system. Treatment with both doses of Aloe caused a decrease in malondialdehyde (MDA) formation and the activity of lactate dehydrogenase in the liver, suggesting its role in protection against prooxidant-induced membrane and cellular damage. The microsomal and cytosolic protein was significantly enhanced by Aloe vera, indicating the possibility of its involvement in the induction of protein synthesis. BHA, an antioxidant compound, provided the authenticity of our assay protocol and response of animals against modulator. The pulp extract was effective in inducing GST, DTD, SOD and catalase as measured in extrahepatic organs. Thus, besides liver, other organs (lung, kidney and forestomach) were also influenced favorably by Aloe vera in order to detoxify reactive metabolites, including chemical carcinogens and drugs.  相似文献   

20.
The potential protective role of Tribulus terrestris in acetaminophen-induced hepatotoxicity in Oreochromis mossambicus was investigated. The effect of oral exposure of acetaminophen (500 mg/kg) in O. mossambicus at 24-h duration was evaluated. The plant extract (250 mg/kg) showed a remarkable hepatoprotective activity against acetaminophen-induced hepatotoxicity. It was judged from the tissue-damaging level and antioxidant levels in liver, gill, muscle and kidney tissues. Further acetaminophen impact induced a significant rise in the tissue-damaging level, and the antioxidant level was discernible from the enzyme activity modulations such as glutamate oxaloacetic transaminase, glutamate pyruvic transaminase, alkaline phosphatase, acid phosphatase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, lipid peroxidase and reduced glutathione. The levels of all these enzymes have significantly (p < 0.05) increased in acetaminophen-treated fish tissues. The elevated levels of these enzymes were significantly controlled by the treatment of T. terrestris extract (250 kg/mg). Histopathological changes of liver, gill and muscle samples were compared with respective controls. The results of the present study specify the hepatoprotective and antioxidant properties of T. terrestris against acetaminophen-induced toxicity in freshwater fish, O. mossambicus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号