首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retrogradely perfused medial plantar artery flap was used in a leprosy patient with a plantar ulcer over the heads of the second and third metatarsals. The flap is based on the anastomosis of the medial plantar artery with the branch of the first plantar metatarsal artery, which supplies the medial side of the great toe. This design provides reconstruction with like local tissues while not distorting the weight-bearing pattern of the foot.  相似文献   

2.
Soft-tissue deficits over the plantar forefoot, plantar heel, tendo calcaneus, and lower leg are often impossible to cover with a simple skin graft. The previously developed medial plantar fasciocutaneous island flap has been adapted to cover soft-tissue defects over these areas. This fasciocutaneous flap based on the medial plantar neurovascular bundle is capable of providing sensate and structurally similar local tissue. Application of this fasciocutaneous island flap is demonstrated in 12 clinical cases. Successful soft-tissue cover was achieved on the plantar calcaneus (four patients), tendo calcaneus (four patients), lower leg (two patients), and plantar forefoot (two patients). Follow-up ranged from 6 months to 5 years. All flaps were viable at follow-up. Protective sensation was present in 11 of 12 flaps evaluated at 6 months. In addition, all 11 patients were able to ambulate in normal footwear. The medial plantar island flap seems to be more durable than a skin graft, and the donor site on the non-weight-bearing instep is well tolerated. This study demonstrates that the medial plantar fasciocutaneous island flap should be considered as another valuable tool in reconstructive efforts directed at the plantar forefoot, plantar heel, posterior ankle, and lower leg.  相似文献   

3.
In this article, three cases in which free medial plantar perforator flaps were successfully transferred for coverage of soft-tissue defects in the fingers and foot are described. This perforator flap has no fascial component and is nourished only by perforators of the medial plantar vessel and a cutaneous vein or with a small segment of the medial plantar vessel. The advantages of this flap are minimal donor-site morbidity, minimal damage to both the posterior tibial and medial plantar systems, no need for deep dissection, the ability to thin the flap by primary removal of excess fatty tissue, the use of a large cutaneous vein as a venous drainage system, a good color and texture match for finger pulp repair, short time for flap elevation, possible application as a flow-through flap, and a concealed donor scar.  相似文献   

4.
The purpose of this study was to investigate muscle and tendon properties in highly trained sprinters and their relations to running performance. Fifteen sprinters and 15 untrained subjects participated in this study. Muscle thickness and tendon stiffness of knee extensors and plantar flexors were measured. Sprinter muscle thickness was significantly greater than that of the untrained subjects for plantar flexors, but not for knee extensors (except for the medial side). Sprinter tendon stiffness was significantly lower than that of the untrained subjects for knee extensors, but not for plantar flexors. The best official record of a 100-m race was significantly correlated to the muscle thickness of the medial side for knee extensors. In conclusion, the tendon structures of highly trained sprinters are more compliant than those of untrained subjects for knee extensors, but not for plantar flexors. Furthermore, a thicker medial side of knee extensors was associated with greater sprinting performance.  相似文献   

5.
Closure of plantar defects with local rotation flaps was studied in 10 patients with 11 plantar defects. Ages ranged from 15 to 66 years, and the average defect was 3.0 X 3.6 cm. Two patients were diabetics. Etiology was variable and included trauma, tumors, and breakdown in patients with anesthetic plantar surfaces. Plantar flaps were designed superficial to the plantar fascia based on the proximal plantar subcutaneous plexus blood supply. Sensation was provided by including the medial calcaneal nerve territory within the flap and by performing a limited intraneural dissection of the medial and lateral plantar nerves. Flaps were medially based, although laterally based designs are also possible when sensation is absent. The follow-up period averaged 20.8 months. Patients with normal sensation preoperatively had full sensation postoperatively and were able to bear weight on the flap without limitation. There was minor breakdown in one patient with incomplete sensation. One patient developed a hematoma. Sensate plantar flaps can be designed superficial to the plantar fascia. These flaps are durable and allow normal weight-bearing on the reconstructed surface.  相似文献   

6.
Versatility of the medial plantar flap: our clinical experience   总被引:2,自引:0,他引:2  
The medial plantar flap presents an ideal tissue reserve, particularly for the reconstruction of the plantar and palmar areas, which require a sensate and unique form of skin. In the past 5 years, the authors performed 16 free flaps, 10 locally pedicled flaps, and five cross-leg flaps on 31 patients for the reconstruction of palmar and plantar defects. All flaps transferred to the palmar area survived, providing good color match and sufficient bulkiness. The overall results were satisfactory in terms of function and sensation, and no complications related to flap survival in the plantar area were observed. All flaps used to cover defects in the heel and ankle region adapted well to their recipient areas, and all lower extremities remained functional. Because the medial plantar flap presents glabrous, sensate skin with proper bulkiness and permits the movement of underlying structures, the authors advocate its use and view this procedure as an excellent alternative in the reconstruction of palmar and plantar weight-bearing areas.  相似文献   

7.
Orthopedic insole was important for partial foot amputation (PFA) to achieve foot balance and avoid foot deformity. The inapposite insole orthosis was thought to be one of the risk factors of reamputation for foot valgus patient, but biomechanical effects of internal tissues on valgus foot had not been clearly addressed. In this study, plantar pressure on heel and metatarsal regions of PFA was measured using F-Scan. The three-dimensional finite element (FE) model of partial foot evaluated different medial wedge angles (MWAs) (0.0°–10.0°) of orthopedic insole on valgus foot. The effect of orthopedic insole on the internal bone stress, the medial ligament tension of ankle, plantar fascia tension, and plantar pressure was investigated. Plantar pressure on medial heel region was about 2.5 times higher than that of lateral region based on the F-Scan measurements. FE-predicted results showed that the tension of medial ankle ligaments was the lowest, and the plantar pressure was redistributed around the heel, the first metatarsal, and the lateral longitudinal arch regions when MWA of orthopedic insole ranged from 7.5° to 8.0°. The plantar fascias maintained about 3.5% of the total load bearing on foot. However, the internal stresses from foot bones increased. The simulation in this study would provide the suggestion of guiding optimal design of orthopedic insole and therapeutic planning to pedorthist.  相似文献   

8.
No technology is presently available to provide real-time information on internal deformations and stresses in plantar soft tissues of individuals during evaluation of the gait pattern. Because internal deformations and stresses in the plantar pad are critical factors in foot injuries such as diabetic foot ulceration, this severely limits evaluation of patients. To allow such real-time subject-specific analysis, we developed a hierarchal modeling system which integrates a two-dimensional gross structural model of the foot (high-order model) with local finite element (FE) models of the plantar tissue padding the calcaneus and medial metatarsal heads (low-order models). The high-order whole-foot model provides real-time analytical evaluations of the time-dependent plantar fascia tensile forces during the stance phase. These force evaluations are transferred, together with foot-shoe local reaction forces, also measured in real time (under the calcaneus, medial metatarsals and hallux), to the low-order FE models of the plantar pad, where they serve as boundary conditions for analyses of local deformations and stresses in the plantar pad. After careful verification of our custom-made FE solver and of our foot model system with respect to previous literature and against experimental results from a synthetic foot phantom, we conducted human studies in which plantar tissue loading was evaluated in real time during treadmill gait in healthy individuals (N = 4). We concluded that internal deformations and stresses in the plantar pad during gait cannot be predicted from merely measuring the foot-shoe force reactions. Internal loading of the plantar pad is constituted by a complex interaction between the anatomical structure and mechanical behavior of the foot skeleton and soft tissues, the body characteristics, the gait pattern and footwear. Real-time FE monitoring of internal deformations and stresses in the plantar pad is therefore required to identify elevated deformation/stress exposures toward utilizing it in gait laboratories to protect feet that are susceptible to injury.  相似文献   

9.
The first branch of the lateral plantar nerve and heel pain   总被引:2,自引:0,他引:2  
The course and ramification pattern of the lateral plantar nerve was studied in serial sections from 4 fetal feet and in dissections from 34 adult feet with special reference to the so called first branch. This branch was found in all of the observed fetal and adult specimen. From its originating point the nerve runs immediately distally to the medial process of the calcaneal tuberosity in a lateral direction to the proximal part of the abductor digiti minimi muscle. During its course the FB gives two branches. One of them penetrates sometimes the insertion of the quadratus plantae muscle, whereas in adult feet it always sends fibres to the periosteum around the medial process of the calcaneal tuberosity and the long plantar ligament. The other innervates the flexor digitorum brevis muscle. The site of a possible entrapment is located between the abductor hallucis muscle and the medial head of the quadratus plantae muscle. There is strong indirect evidence that the nerve is of a mixed type consisting of sensory fibres for the calcaneal periosteum and the medial head of the quadratus plantae muscle. There is strong indirect evidence that the nerve is of a mixed type consisting of sensory fibres for the calcaneal periosteum and the long plantar ligament as well as motor fibres for the quadratus plantae, flexor digitorum brevis and abductor digiti minimi muscles, which may explain the characteristic pain complaints of the heel pain syndrome. The occurrence of a stiff fascia perforated by the nerve branch or a bursa around the insertion of the plantar aponeurosis as has been described by several authors and which was put forward as a possible aetiological factor could not be confirmed in our material.  相似文献   

10.
A comparative histologic survey was conducted on the dorsal root, sciatic, tibial and medial plantar nerves of 90- and 110-week-old B6C3F1 female mice reared in either solid-floor cages covered in sawdust or wire-mesh-floor cages. Age-related peripheral nerve lesions, characterized by axonal degeneration and remyelination, were present in all nerves surveyed, and were especially prominent in the sciatic and medial plantar nerves at 110 weeks of age but, there were no differences associated with the type of cage floor in clinical signs, grasping power of the fore- and hind-limbs, motor nerve conduction velocity or histopathologic findings at these ages.  相似文献   

11.
Anatomic basis of plantar flap design   总被引:4,自引:0,他引:4  
Safe planes exist for plantar incisions that minimize the possibility of subcutaneous nerve injury and are therefore useful in flap design. Nerve branch orientation in the plantar subcutaneous tissue is specific and guides dissection so as to avoid producing anesthesia in weight-bearing areas. An extensive proximal plantar subcutaneous plexus exists that permits elevation of plantar flaps in a superficial plane. This is due to the major contribution that the dorsal circulation makes to the skin of the plantar surface. The blood supply to the non-weight-bearing midsole area is not from the medial plantar artery exclusively. This is a watershed area with important lateral plantar artery and dorsalis pedis artery contributions as well. It is not necessary or desirable to base plantar flaps on a myocutaneous or fasciocutaneous supply with its required deep dissection. Local plantar flaps can be designed to include sensation and abundant blood supply without the need for "subfascial" dissection. Subcutaneous sensory plantar flaps designed in accordance with these principles promise a more ideal solution for the treatment of plantar defects.  相似文献   

12.
The authors report a simple, single-step procedure to promote the distal transfer of the instep island flap for coverage of the submetatarsal weight-bearing zone. First described in 1991 by Martin et aI, this procedure remained unknown. As opposed to the medial plantar flap, this technique proposes an instep island flap based on the lateral plantar artery. The inflow and outflow of blood is assured by the anastomosis between the dorsalis pedis and lateral plantar vessels. This approach allows for the transfer of similar tissue and provides adequate coverage of the weight-bearing zone of the distal forefoot.  相似文献   

13.
The medialis pedis flap: a new fasciocutaneous flap   总被引:8,自引:0,他引:8  
An anatomic study (30 fresh specimens dissected) and clinical experience (5 patients) have shown the reliability of a fasciocutaneous flap raised from the medial side of the foot. The artery that supplies the flap is issued from the medial plantar artery. The arch of rotation allows one to cover some specific areas, such as the medial malleolus, posterior aspect of the heel, and distal insertion of Achilles tendon.  相似文献   

14.
A 36-year-old woman sustained an amputation of her right leg at the thigh level and a degloving injury of her left foot and ankle region in an accident during a suicide attempt. Primarily, her left foot was covered with a split skin graft, resulting in a soft-tissue defect at the medial malleolus and at the calcaneus bone. Reconstruction was planned with a free latissimus dorsi muscle flap. Preoperative examinations revealed an arteria peronea magna with a hyperplastic peroneal artery solely providing arterial blood supply to the foot. The arteria peronea magna divided into two branches proximal to the upper ankle joint, replacing the dorsal pedis artery and the medial plantar artery. Tibial posterior and tibial anterior arteries were hypoplastic-aplastic. Microvascular end-to-end anastomoses of the flap vessels to the medial branch ("medial plantar artery") of the arteria peronea magna and its concomitant vein at the medial malleolar bone level were successfully performed. The postoperative course was uneventful. Four weeks postoperatively, the patient started walking assisted by a prosthesis on her right thigh stump. This experience demonstrates that even in a case of arteria peronea magna, free flap surgery for lower limb salvage is a reliable and worthwhile method.  相似文献   

15.
Biofeedback based on electromyograms (EMGs) has been recently proposed to reduce exaggerated postural activity. Whether the effect of EMG biofeedback on the targeted muscles generalizes to – or is compensated by – other muscles is still an open question we address here. Fourteen young individuals were tested in three 60 s standing trials, without and with EMG-audio feedback: (i) collectively from soleus and medial gastrocnemius and (ii) from medial gastrocnemii. The Root Mean Square (RMS) of bipolar EMGs sampled from postural muscles bilaterally was computed to assess the degree of activity and postural sway was assessed from the center of pressure (CoP). In relation to standing at naturally, EMG-audio feedback from soleus and medial gastrocnemii decreased plantar flexors’ activity (∼10 %) but at the cost of increased amplitude of tibialis anterior (∼5%) and vasti muscles (∼20 %) accompanied by a posterior shift of the mean CoP position. However, EMG-audio feedback from medial gastrocnemii reduced only plantar flexors’ activity (∼5%) when compared to standing at naturally. Current results suggest the EMG biofeedback has the potential to reduce calf muscles’ activity without loading other postural muscles especially when using medial gastrocnemii as feedback source, with implications on postural training aimed at assisting individuals in activating more efficiently postural muscles during standing.  相似文献   

16.
Forefoot strike becomes popular among runners because it facilitates better impact attenuation. However, forefoot strike may overload the plantar fascia and impose risk of plantar fasciitis. This study aimed to examine and compare the foot arch deformation and plantar fascia tension between different foot strike techniques in running using a computational modelling approach. A three-dimensional finite element foot model was reconstructed from the MRI of a healthy runner. The foot model included twenty bones, bulk soft tissue, ligaments, tendons, and plantar fascia. The time-series data of segmental kinematics, foot muscle force, and ankle joint reaction force were derived from a musculoskeletal model of the same participant based on the motion capture analysis and input as the boundary conditions for the finite element analysis. Rearfoot strike and forefoot strike running were simulated using a dynamic explicit solver. The results showed that, compared to rearfoot strike, forefoot strike reduced the foot arch height by 9.12% and increased the medial longitudinal arch angle by 2.06%. Forefoot strike also increased the plantar connective tissues stress by 18.28–200.11% and increased the plantar fascia tensile force by 18.71–109.10%. Although it is currently difficult to estimate the threshold value of stress or force that results in injury, forefoot strike runners appeared to be more vulnerable to plantar fasciitis.  相似文献   

17.
Stretching plays an important role in the treatment of plantar fasciitis. Information on the internal stresses/strains of the plantar fascia under stretch is useful in enhancing knowledge on the stretch mechanisms. Although direct measurement can monitor plantar fascia changes, it is invasive and gathers only localized information. The purpose of this paper was to construct a three-dimensional finite element model of the foot to calculate the stretch effects on plantar fascia and monitor its stress/strain distributions and concentrations. A three-dimensional foot model was developed and contained 26 bones with joint cartilages, 67 ligaments and a fan-like solid plantar fascia modeling. All tissues were idealized as linear elastic, homogeneous and isotropic whilst the plantar fascia was assigned as hyperelastic to represent its nonlinearity. The plantar fascia was monitored for its biomechanical responses under various stretch combinations: three toe dorsiflexion angles (windlass effect: 15 degrees , 30 degrees and 45 degrees ) and five Achilles tendon forces (100, 200, 300, 400 and 500N). Our results indicated that the plantar fascia strain increased as the dorsiflexion angles increased, and this phenomenon was enhanced by increasing Achilles tendon force. A stress concentration was found near the medial calcaneal tubercle, and the fascia stress was higher underneath the first foot ray and gradually decreased as it moved toward the fifth ray. The current model recreated the position of the foot when stretch is placed on the plantar fascia. The results provided a general insight into the mechanical and biomechanical aspects of the influences of windlass mechanism and Achilles tendon force on plantar fascia stress and strain distribution. These findings might have practical implications onto plantar fascia stretch approaches, and provide guidelines to its surgical release.  相似文献   

18.
Following active muscle lengthening, steady-state isometric force is elevated compared with an isometric contraction without prior lengthening for the same muscle length and activation level. This property of muscle contraction is known as residual force enhancement (RFE). Here, we aimed to determine whether neural factors may mask some of the mechanical benefits of RFE on plantar flexion torque production. Inherent to lengthening contractions is an increase in cortical and spinal-mediated inhibition, while knee flexion places the medial gastrocnemius at a neuromechanical disadvantage. Neuromuscular properties of the plantar flexors were investigated with a Humac Norm dynamometer in 10 males (∼27 years) with a flexed (90°) and extended (180°) knee and with or without calcaneal tendon vibration (frequency range: 80–110 Hz). There was no effect for vibration (p > 0.05), but there was an effect for knee angle (p < 0.05) such that there was a 2 fold increase in RFE with the knee flexed compared with extended. During submaximal torque matching, following active lengthening there was an activation reduction (electromyography; EMG) of 7.2 and 4.7% with the knee flexed and extended, respectively for soleus as compared with the reference isometric contraction, but no difference for the medial gastrocnemius. Despite attempting to excite Ia input onto the plantar flexor motor neuron pool, vibration had no influence on RFE. Surprisingly, RFE was elevated more for the knee flexed than extended, which was possibly owing to the activation differences across the disparate muscles of the triceps surae during the plantar flexion task.  相似文献   

19.
The present study aimed to clarify the effects of knee joint angle on the behavior of the medial gastrocnemius muscle (MG) fascicles during eccentric plantar flexions. Eight male subjects performed maximal eccentric plantar flexions at two knee positions [fully extended (K0) and 90° flexed (K90)]. The eccentric actions were preceded by static plantar flexion at a 30° plantar flexed position and then the ankle joint was forcibly dorsiflexed to 15° of dorsiflexion with an isokinetic dynamometer at 30°/s and 150°/s. Tendon force was calculated by dividing the plantar flexion torque by the estimated moment arm of the Achilles tendon. The MG fascicle length was determined with ultrasonography. The tendon forces during eccentric plantar flexions were influenced by the knee joint angle, but not by the angular velocity. The MG fascicle lengths were elongated as the ankle was dorsiflexed in K0, but in K90 they were almost constant despite the identical range of ankle joint motion. These results suggested that MG fascicle behavior during eccentric actions was markedly affected by the knee joint angle. The difference in the fascicle behavior between K0 and K90 could be attributed to the non-linear force–length relations and/or to the slackness of tendinous tissues.  相似文献   

20.
Palmar/plantar osteochondral fragments (POF) in fetlock joints commonly affect and influence the athletic performance of horses. In this study, we used the Equine SNP50 BeadChip® to perform a genome‐wide association study of metatarsophalangeal POF in 176 Norwegian Standardbred trotter yearlings. Putative quantitative trait loci (QTL) for medial and/or lateral POF, and medial POF only were identified on ECA1, 2, 7, 9 and 31, whereas for lateral POF, only on ECA7, 11, 27 and X. The moderate number of QTL evidences a complex inheritance and suggests various genes controlling POF development in medial and lateral locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号