首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I H Still  P Vince  J K Cowell 《Genomics》1999,58(2):165-170
We have recently identified a novel gene, TACC1 (transforming acidic coiled coil-containing gene 1), which is located close to FGFR1 within a region amplified in breast cancer on human chromosome 8p11. The coiled coil domain of this gene identified a series of cDNAs in the expressed sequence tag database, which suggested the existence of a family of TACC genes comprising at least three family members. We have now characterized the human and mouse TACC3 cDNAs, and demonstrate that this gene is upregulated in various cancer cell lines, and at Embryonic Day 15 in mice, suggesting that the TACC3 protein is involved in the control of cell growth and differentiation. The TACC3 gene maps telomeric to the FGFR3 gene in 4p16.3, close to a region disrupted by translocation breakpoints associated with multiple myeloma. Thus, TACC1, TACC2, and TACC3 map close to the corresponding FGFR1, FGFR2, and FGFR3 genes. The phylogenetic relationship among the three TACC genes is similar to that of the three FGFR family members. These relationships suggest that the FGFR and TACC genes arose from a physically linked ancestral gene pair. Subsequently, this gene pair has undergone two successive rounds of gene duplication to give rise to the three FGFR/TACC gene pairs on chromosomes 4, 8, and 10.  相似文献   

2.
TACC2 is a member of the transforming acidic coiled-coil-containing protein family and is associated with the centrosome-spindle apparatus during cell cycling. In vivo, the TACC2 gene is expressed in various splice forms predominantly in postmitotic tissues, including heart, muscle, kidney, and brain. Studies of human breast cancer samples and cell lines suggest a putative role of TACC2 as a tumor suppressor protein. To analyze the physiological role of TACC2, we generated mice lacking TACC2. TACC2-deficient mice are viable, develop normally, are fertile, and lack phenotypic changes compared to wild-type mice. Furthermore, TACC2 deficiency does not lead to an increased incidence of tumor development. Finally, in TACC2-deficient embryonic fibroblasts, proliferation and cell cycle progression as well as centrosome numbers are comparable to those in wild-type cells. Therefore, TACC2 is not required, nonredundantly, for mouse development and normal cell proliferation and is not a tumor suppressor protein.  相似文献   

3.
Despite the existence of effective antiandrogen therapy for prostate cancer, the disease often progresses to castration-resistant states. Elucidation of the molecular mechanisms underlying the resistance for androgen deprivation in terms of the androgen receptor (AR)-regulated pathways is a requisite to manage castration-resistant prostate cancer (CRPC). Using a ChIP-cloning strategy, we identified functional AR binding sites (ARBS) in the genome of prostate cancer cells. We discovered that a centrosome- and microtubule-interacting gene, transforming acidic coiled-coil protein 2 (TACC2), is a novel androgen-regulated gene. We identified a functional AR-binding site (ARBS) including two canonical androgen response elements in the vicinity of TACC2 gene, in which activated hallmarks of histone modification were observed. Androgen-dependent TACC2 induction is regulated by AR, as confirmed by AR knockdown or its pharmacological inhibitor bicalutamide. Using long-term androgen-deprived cells as cellular models of CRPC, we demonstrated that TACC2 is highly expressed and contributes to hormone-refractory proliferation, as small interfering RNA-mediated knockdown of TACC2 reduced cell growth and cell cycle progression. By contrast, in TACC2-overexpressing cells, an acceleration of the cell cycle was observed. In vivo tumor formation study of prostate cancer in castrated immunocompromised mice revealed that TACC2 is a tumor-promoting factor. Notably, the clinical significance of TACC2 was demonstrated by a correlation between high TACC2 expression and poor survival rates. Taken together with the critical roles of TACC2 in the cell cycle and the biology of prostate cancer, we infer that the molecule is a potential therapeutic target in CRPC as well as hormone-sensitive prostate cancer.  相似文献   

4.
Overexpression of the c-erbB-2 protein in human breast tumor cell lines   总被引:6,自引:0,他引:6  
The c-erbB-2 proto-oncogene is amplified in a high percentage of primary human breast tumors, suggesting that the overexpression of this gene may be involved in the development of human breast cancer. We have investigated five human breast tumor cell lines and have detected amplified c-erbB-2 gene copies in two of them. This amplification leads to overexpression of the c-erbB-2 protein. In addition, two other cell lines have elevated protein levels without gene amplification, suggesting that other mechanisms can lead to overexpression of the c-erbB-2 protein. These results are similar to those that we obtained during a study of primary breast tumors (Berger et al.: Cancer Res 48:1238-1243, 1988). These breast tumor cell lines should be useful for an analysis of c-erbB-2 expression and of the mechanisms that in some cases lead to overexpression.  相似文献   

5.
6.
7.
8.
Colorectal cancer is the third most common cancer in the world. Ubiquitin–proteasome system has shown to be activated in colorectal and other malignancies. UBE2Q1 is a novel human gene that encodes a putative E2 ubiquitin conjugating enzyme. Here, we investigated the expression pattern of UBE2Q1 gene in cell lines and tissues from human colorectal tumors. Quantitative (q) RT-PCR were employed to evaluate the expression levels of the mRNA for UBE2Q1 in colorectal cancer cell lines (HT29/219, LS180, SW742, Caco2, HTC116, SW48, SW480 and SW1116). Expression of UBE2Q1 at the protein levels were assessed by Western blotting in cell lines as well as in 43 human colorectal tumor tissues. All cell lines tested expressed UBE2Q1 gene at the level of both mRNA and protein, with the SW1116 line representing the lowest level of expression. The cell lines HT29/219 and SW742 showed the highest levels of UBE2Q1 protein and mRNA respectively. When compared to corresponding normal tissues, malignant parts of colorectal tumors showed increased levels of UBE2Q1 immunoreactivity in 32 (74.42 %) of cases. These data suggest that UBE2Q1 is differentially expressed in colorectal cell lines and shows overexpression in colorectal tumors.  相似文献   

9.
10.
Insulin-like growth factor I (IGF-I) activity has been reported to be produced by several human cancers. Identification of RNAs transcribed from the IGF-I gene has been complicated by the detection of multiple hybridizing bands on Northern analysis. To determine if any of these RNAs are transcribed from the IGF-I gene, we have used a sensitive and specific ribonuclease (RNAse) protection assay for IGF-I. We have also studied the breast cancer tissue expression of IGF-I using in situ hybridization histochemistry. We have found no IGF-I mRNA in breast (zero of 11) or colon cancer (zero of 9) cell lines; both of these tumors have been previously reported to express IGF-I mRNA. However, three of three neuroepithelioma and one of two Ewing's sarcoma cell lines express IGF-I mRNA; therefore, in these tumors IGF-I may be an autocrine growth factor. In contrast to breast cancer cell lines, RNA extracted from breast tissues has easily detectable IGF-I mRNA. In situ hybridizations show that IGF-I mRNA is expressed in the stromal cells, and not by normal or malignant epithelial cells. These findings suggest that although IGF-I is not produced by breast epithelial cells it may function as either a paracrine stimulator of epithelial cells or an autocrine stimulator of stromal cells.  相似文献   

11.
Summary To establish a model system for preclinical radioimmunotherapy studies, attempts were made to graft 16 different human breast carcinoma cell lines into BALB/c nu/nu (nude) mice. Nine produced serially transplantable tumors growing at a variable rate, whereas seven failed to do so. Conversely, three new cell lines were established in monolayer culture from transplantable human breast tumors in nude mice. Twelve selected tumors and their corresponding cell lines were characterized for DNA ploidy, % S-phase, and breast epithelial mucin expression by immunohistochemistry and flow cytometry. A wide diversity of these cellular characteristics were found in that each tumor was unique and distinct from the others. DNA ploidy differed among the tumors but was not affected by switching between in vitro to in vivo growth. Some tumors expressed similar levels of the breast mucin both in vitro and in vivo, whereas most expressed lower levels as transplantable tumors. There was a good correlation between immunohistochemical and flow cytometric determination of surface and cytoplasmic mucin expression, and with both techniques estrogen and progesterone receptor positive tumors had significantly higher levels of mucin expression than receptor negative tumors. These 12 transplantable breast tumors, with their corresponding cell lines, provide an excellent model system for testing radioimmunotherapy and other therapeutic reagents because they exhibit diverse phenotypic characteristics that represented a mini-population of breast cancer patients’ tumors, allowing assessment of the effect of therapy when confronted with different breast tumors’ genotype and phenotype.  相似文献   

12.
13.
Tripartite-motif containing 22 (TRIM22) is a direct p53 target gene and inhibits the clonogenic growth of leukemic cells. Its expression in Wilms tumors is negatively associated with disease relapse. This study addresses if TRIM22 expression is de-regulated in breast carcinoma. Western blotting analysis of a panel of 10 breast cancer cell lines and 3 non-malignant mammary epithelial cell lines with a well-characterized TRIM22 monoclonal antibody showed that TRIM22 protein is greatly under-expressed in breast cancer cells as compared to non-malignant cell lines. Similarly, TRIM22 protein is significantly down-regulated in breast tumors as compared to matched normal breast tissues. Study of cell lines with methylation inhibitor and bisulfite sequencing indicates that TRIM22 promoter hypermethylation may not be the cause for TRIM22 under-expression in breast cancer. Instead, we found that TRIM22 protein level correlates strongly (R = 0.79) with p53 protein level in normal breast tissue, but this correlation is markedly impaired (R = 0.48) in breast cancer tissue, suggesting that there is some defects in p53 regulation of TRIM22 gene in breast cancer. This notion is supported by cell line studies, which showed that TRIM22 was no longer inducible by p53-activating genotoxic drugs in breast cancer cell lines and in a p53 null cell line H1299 transfected with wild type p53. In conclusion, this study shows that TRIM22 is greatly under-expressed in breast cancer. p53 dysfunction may be one of the mechanisms for TRIM22 down-regulation.  相似文献   

14.
15.
Chemokines and their receptors are involved in the development and cancer progression. The chemokine CXCL12 interacts with its receptor, CXCR4, to promote cellular adhesion, survival, proliferation and migration. The CXCR4 gene is upregulated in several types of cancers, including skin, lung, pancreas, brain and breast tumors. In pancreatic cancer and melanoma, CXCR4 expression is regulated by DNA methylation within its promoter region. In this study we examined the role of cytosine methylation in the regulation of CXCR4 expression in breast cancer cell lines and also correlated the methylation pattern with the clinicopathological aspects of sixty-nine primary breast tumors from a cohort of Brazilian women. RT-PCR showed that the PMC-42, MCF7 and MDA-MB-436 breast tumor cell lines expressed high levels of CXCR4. Conversely, the MDA-MB-435 cell line only expressed CXCR4 after treatment with 5-Aza-CdR, which suggests that CXCR4 expression is regulated by DNA methylation. To confirm this hypothesis, a 184 bp fragment of the CXCR4 gene promoter region was cloned after sodium bisulfite DNA treatment. Sequencing data showed that cell lines that expressed CXCR4 had only 15% of methylated CpG dinucleotides, while the cell line that not have CXCR4 expression, had a high density of methylation (91%). Loss of DNA methylation in the CXCR4 promoter was detected in 67% of the breast cancer analyzed. The absence of CXCR4 methylation was associated with the tumor stage, size, histological grade, lymph node status, ESR1 methylation and CXCL12 methylation, metastasis and patient death. Kaplan-Meier curves demonstrated that patients with an unmethylated CXCR4 promoter had a poorer overall survival and disease-free survival. Furthermore, patients with both CXCL12 methylation and unmethylated CXCR4 had a shorter overall survival and disease-free survival. These findings suggest that the DNA methylation status of both CXCR4 and CXCL12 genes could be used as a biomarker for prognosis in breast cancer.  相似文献   

16.
MTAP is a ubiquitously expressed gene important for adenine and methionine salvage. The gene is located at 9p21, a chromosome region often deleted in breast carcinomas, similar to CDKN2A, a recognized tumor suppressor gene. Several research groups have shown that MTAP acts as a tumor suppressor, and some therapeutic approaches were proposed based on a tumors´ MTAP status. We analyzed MTAP and CDKN2A gene (RT-qPCR) and protein (western-blotting) expression in seven breast cancer cell lines and evaluated their promoter methylation patterns to better characterize the contribution of these genes to breast cancer. Cytotoxicity assays with inhibitors of de novo adenine synthesis (5-FU, AZA and MTX) after MTAP gene knockdown showed an increased sensitivity, mainly to 5-FU. MTAP expression was also evaluated in two groups of samples from breast cancer patients, fresh tumors and paired normal breast tissue, and from formalin-fixed paraffin embedded (FFPE) core breast cancer samples diagnosed as Luminal-A tumors and triple negative breast tumors (TNBC). The difference of MTAP expression between fresh tumors and normal tissues was not statistically significant. However, MTAP expression was significantly higher in Luminal-A breast tumors than in TNBC, suggesting the lack of expression in more aggressive breast tumors and the possibility of using the new approaches based on MTAP status in TNBC.  相似文献   

17.
Human claudin-1 is an integral protein component of tight junctions, a structure controlling cell-to-cell adhesion and, consequently, regulating paracellular and transcellular transport of solutes across human epithelia and endothelia. Recently, a claudin-1 (CLDN1) cDNA has been isolated from human mammary epithelial cells (HMECs). CLDN1 expression in HMECs, in contrast to low or undetectable levels of expression in a number of breast tumors and breast cancer cell lines, points to CLDN1 as a possible tumor-suppressor gene. In order to evaluate the CLDN-1 gene in sporadic and hereditary breast cancer, we have characterized its genomic organization and have screened the four coding exons for somatic mutations in 96 sporadic breast carcinomas and for germline mutations in 93 breast cancer patients with a strong family history of breast cancer. In addition, we have compared the 5'-upstream sequences of the human and murine CLDN1 genes to identify putative promoter sequences and have examined both the promoter and coding regions of the human gene in the breast cancer cell lines showing decreased CLDN1 expression. In the sporadic tumors and hereditary breast cancer patients, we have found no evidence to support the involvement of aberrant CLDN1 in breast tumorigenesis. Likewise, in the breast cancer cell lines, no genetic alterations in the promoter or coding sequences have been identified that would explain the loss of CLDN1 expression. Other regulatory or epigenetic factors may be involved in the down-regulation of this gene during breast cancer development.  相似文献   

18.
19.
20.
The identification and validation of new cancer-specific T cell epitopes continues to be a major area of research interest. Nevertheless, challenges remain to develop strategies that can easily discover and validate epitopes expressed in primary cancer cells. Regarded as targets for T cells, peptides presented in the context of the major histocompatibility complex (MHC) are recognized by monoclonal antibodies (mAbs). These mAbs are of special importance as they lend themselves to the detection of epitopes expressed in primary tumor cells. Here, we use an approach that has been successfully utilized in two different infectious disease applications (WNV and influenza). A direct peptide-epitope discovery strategy involving mass spectrometric analysis led to the identification of peptide YLLPAIVHI in the context of MHC A*02 allele (YLL/A2) from human breast carcinoma cell lines. We then generated and characterized an anti-YLL/A2 mAb designated as RL6A TCRm. Subsequently, the TCRm mAb was used to directly validate YLL/A2 epitope expression in human breast cancer tissue, but not in normal control breast tissue. Moreover, mice implanted with human breast cancer cells grew tumors, yet when treated with RL6A TCRm showed a marked reduction in tumor size. These data demonstrate for the first time a coordinated direct discovery and validation strategy that identified a peptide/MHC complex on primary tumor cells for antibody targeting and provide a novel approach to cancer immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号