首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although a number of studies have been carried out on alkaline phosphatase (A1-P), this enzyme has not definitely been detected in synapses at the electron-microscopic level. Recently, we have successfully demonstrated, by perfusing specimens with 1% glutaraldehyde for fixation for as short a time as 8-10 min, that A1-P activity is localized on the presynaptic and postsynaptic membranes of the rat central nervous system (CNS). There were four types of presynaptic membrane: (1) those with the activity only on the membrane, (2) those with the activity only on the synaptic vesicle membrane, (3) those with the activity on both the presynaptic membrane and the synaptic vesicle membrane, and (4) those entirely free of the activity. The postsynaptic membranes were classified into two varieties: (1) those with the activity in the postsynaptic membrane and the postsynaptic thickening, and (2) those entirely without the activity. Thus, the occurrence of the enzyme activity assumed various combinations of presynaptic and postsynaptic involvement. The incidence of synapses either with presynaptic or postsynaptic activity varied distinctly from site to site.  相似文献   

2.
Brain-derived neurotrophic factor (BDNF) has been implicated in several forms of long-term potentiation (LTP) at different hippocampal synapses. Using two-photon imaging of FM 1-43, a fluorescent marker of synaptic vesicle cycling, we find that BDNF is selectively required for those forms of LTP at Schaffer collateral synapses that recruit a presynaptic component of expression. BDNF-dependent forms of LTP also require activation of L-type voltage-gated calcium channels. One form of LTP with presynaptic expression, theta burst LTP, is thought to be of particular behavioral importance. Using restricted genetic deletion to selectively disrupt BDNF production in either the entire forebrain (CA3 and CA1) or in only the postsynaptic CA1 neuron, we localize the source of BDNF required for LTP to presynaptic neurons. These results suggest that long-term synaptic plasticity has distinct presynaptic and postsynaptic modules. Release of BDNF from CA3 neurons is required to recruit the presynaptic, but not postsynaptic, module of plasticity.  相似文献   

3.
Serial synapses occur between small profiles in the neuropil of Aplysia abdominal ganglion. Material was fixed in phosphate buffered OsO4, embedded in epon, and sections were stained with uranyl acetate and lead citrate. A class of synapses had the following characteristics: (1) synaptic vesicles clustered against the presynaptic membrane, (2) a widened extracellular space of about 20 nm containing electron-dense material, (3) straightening of the pre- and postsynaptic membranes, and (4) no postsynaptic membrane specialization. Some density between the presynaptic membrane and the adjacent synaptic vesicles was occasionally observed. Synapses occurred between small profiles in the neuropil (typical profile diameters were 1–3 m?m). In this sample of approximately 100 synapses, four serial synapses were identified. The serial synaptic profiles were all small. In addition to the finding of serial synapses, 40% of the postsynaptic profiles contained vesicles similar to the synaptic vesicles seen in presynaptic profile. Serial synapses may be the anatomical substrate of presynaptic inhibition and facilitation and of dishabituation.  相似文献   

4.
Fine-structural characteristics of synaptic contacts were investigated in the central nervous system of different species of lamellibranch molluscs. Neuropile of the ganglia is characterized by regular occurrence of ultrastructurally well-defined polarized chemical synapses resembling those described in other invertebrate species and vertebrates. In addition to the generally observed membrane thickenings, enhanced density of synaptic membranes, cleft material and vesicle clustering on the presynaptic membrane, synapses are occasionally characterized by other and pinocytotic invaginations. Synaptic connections were distinguished on the basis of the vesicle content of the presynaptic terminal. Different forms of synaptic configurations (divergence, convergence, presynaptic modification) were observed in the ganglia.  相似文献   

5.
Synaptosomal plasma membranes were isolated from Torpedo cholinergic synaptosomes which had been purified as previously described or repurified by equilibrium centrifugation. The synaptosomal plasma membrane could be distinguished from postsynaptic membranes by the absence of postsynaptic specific markers (nicotinic AChR) and by its low intramembrane particle complement after freeze fracture. In addition, the presynaptic membrane fraction contained acetylcholinesterase. Gel electrophoresis permitted the identification of a major protein component of the presynaptic membrane fraction which had a molecular weight of 67,000. This protein was not found in postsynaptic membrane or synaptic vesicle fractions. Thus it appeared to be specific to the nerve terminal plasma membrane.  相似文献   

6.
Using the electron-microscope technique of Lewis and Shute, we studied the localization of the acetylcholinesterase (AChE) activity in the hypoglossal, facial and spinal-cord motor nuclei of rats. The technique used selectively detects synapses with subsynaptic cisterns (type C synapses) as well as heavy deposits of reaction products in the rough endoplasmic reticulum, in fragments of the nuclear envelope, in some Golgi zones and on parts of the pericaryal plasma membrane, the axolemma and the dendritic membrane. In C synapses, AChE activity was located in the synaptic cleft and on the membrane of presynaptic boutons. Some C synapses exhibited distinct synaptic specialization in the form of multiple 'active zones'. These zones were characterized by dense presynaptic projections, short dilations of the synaptic cleft, and postsynaptic densities localized between the postsynaptic membrane and the outer membrane of the subsynaptic cistern. Within the postsynaptic densities, rows of rod- or channel-like structures were observed. The subsynaptic cisterns were continuous with the positive rough endoplasmic reticulum. The results are discussed in terms of the possible role of C synapses in the regulation of AChE synthesis in postsynaptic cholinergic neurons and/or in the regulation of AChE release into the extracellular space as well as in the establishment of new synaptic contacts.  相似文献   

7.
Summary Spinal cord neurons from 9-day chick embryos were maintained in culture for up to 35 days and then fixed in 4% cacodylate-buffered glutaraldehyde containing 2% tannic acid. After about 15 days in culture a small percentage of the synaptic specializations present were characterized by striking electron-dense striations averaging 15 nm in width, oriented perpendicular to the postsynaptic membrane. These structures increased in frequency with time in culture (to a maximum of about 10% of all synapses in the oldest cultures); they were asymmetrical, protruding approximately 8 nm into the synaptic cleft, and more deeply (approximately 15–18 nm), into the postsynaptic cytoplasm. On the basis of earlier work by Sealock (1980) they are interpreted as concentrations of acetylcholine receptors.Similar membrane differentiations were also seen associated with active-zone areas of a few presynaptic membranes, and the possibility that these represent presynaptic acetylcholine receptors is discussed. Additional observations reported are (1) the presence of striations resembling those seen at the postsynaptic membrane in the membranes of some postsynaptic vesicles, and (2) filamentous links between the striations and cytoskeletal elements of the postsynaptic cell.  相似文献   

8.
Synaptosomes are isolated synapses produced by subcellular fractionation of brain tissue. They contain the complete presynaptic terminal, including mitochondria and synaptic vesicles, and portions of the postsynaptic side, including the postsynaptic membrane and the postsynaptic density (PSyD). A proteomic characterisation of synaptosomes isolated from mouse brain was performed employing the isotope-coded affinity tag (ICAT) method and tandem mass spectrometry (MS/MS). After isotopic labelling and tryptic digestion, peptides were fractionated by cation exchange chromatography and cysteine-containing peptides were isolated by affinity chromatography. The peptides were identified by microcapillary liquid chromatography-electrospray ionisation MS/MS (muLC-ESI MS/MS). In two experiments, peptides representing a total of 1131 database entries were identified. They are involved in different presynaptic and postsynaptic functions, including synaptic vesicle exocytosis for neurotransmitter release, vesicle endocytosis for synaptic vesicle recycling, as well as postsynaptic receptors and proteins constituting the PSyD. Moreover, a large number of soluble and membrane-bound molecules serving functions in synaptic signal transduction and metabolism were detected. The results provide an inventory of the synaptic proteome and confirm the suitability of the ICAT method for the assessment of synaptic structure, function and plasticity.  相似文献   

9.
Summary The synaptic contacts made by carp retinal neurons were studied with electron microscopic techniques. Three kinds of contacts are described: (1) a conventional synapse in which an accumulation of agranular vesicles is found on the presynaptic side along with membrane densification of both pre- and postsynaptic elements; (2) a ribbon synapse in which a presynaptic ribbon surrounded by a halo of agranular vesicles faces two postsynaptic elements; and (3) close apposition of plasma membranes without any vesicle accumulation or membrane densification.In the external plexiform layer, conventional synapses between horizontal cells are described. Horizontal cells possess dense-core vesicles about 1,000 Å in diameter. Membranes of adjacent horizontal cells of the same type (external, intermediate or internal) are found closely apposed over broad regions.In the inner plexiform layer ribbon synapses occur only in bipolar cell terminals. The postsynaptic elements opposite the ribbon may be two amacrine processes or one amacrine process and one ganglion cell dendrite. Amacrine processes make conventional synaptic contacts onto bipolar terminals, other amacrine processes, amacrine cell bodies, ganglion cell dendrites and bodies. Amacrine cells possess dense-core vesicles. Ganglion cells are never presynaptic elements. Serial synapses between amacrine processes and reciprocal synapses between amacrine processes and bipolar terminals are described. The inner plexiform layer contains a large number of myelinated fibers which terminate near the layer of amacrine cells.This work was supported by an N.I.H. grant NB 05404-05 and a Fight for Sight grant G-396 to P.W. and N.I.H. grant NB 05336 to J.E.D. The authors wish to thank Mrs. P. Sheppard and Miss B. Hecker for able technical assistance. P.W. is grateful to Dr. G. K. Smelser, Department of Ophthalmology, Columbia University, for the use of his electron microscope facilities.  相似文献   

10.
Summary Afferent and efferent synapses of hair cells in the organ of Corti of the guinea pig have been examined in freeze-fracture replicas.Afferent synapse In the inner hair cells, intramembranous particles 10 nm in diameter are aggregated on the ridge on the P-face of the presynaptic membrane directly beneath the synaptic rod. In the outer hair cells, in which the synaptic rod is located in the presynaptic cytoplasm underneath the presynaptic membrane, small aggregations of intramembranous particles 10 nm in diameter can be found on the P-face of the presynaptic membrane corresponding to the site of the presynaptic dense projection. Intramembranous particles 10 nm in diameter are also densely aggregated on the P-face of the postsynaptic membrane of the outer hair cells.Efferent synapse of the outer hair cells Large intramembranous particles 13 nm in diameter are distributed in clusters composed of four to ten particles on the P-face of the presynaptic membrane. In the P-face of the postsynaptic membrane, disc-like aggregations of intramembranous particles 9 nm in diameter are found. The subsynaptic cistern covers the cytoplasmic surface of the postsynaptic membrane of the efferent synapse; it may cover more than one postsynaptic membrane when several efferent synapses are in close proximity to one another.  相似文献   

11.
Summary The ultrastructure of synapses between the cord giant fibres (lateral and medial) and the motor giant fibres in crayfish, Astacus pallipes, third abdominal ganglia have been examined. These electrotonic synapses are asymmetrical, they have synaptic vesicles only in the presynaptic fibre, and they have synaptic cleft widths normally of about 100 Å but narrowed to about 50 Å in restricted areas. Localized increases in density of the synaptic cleft and adjacent membranes also occur within a synapse, and synaptic vesicles are most tightly grouped at the membrane in such areas. Tight or gap junctions with 30 Å or narrower widths have not been found, but the junctions probably function in a similar way to gap junctions.Three small nerves are closely associated with the synapses between the giant fibres. One of these small nerves has round synaptic vesicles and is thought to be excitatory on morphological grounds; one has flattened vesicles and is thought to be inhibitory; and one is postsynaptic to the lateral giant and the two small presynaptic nerves. It is proposed that these small nerves modulate activity in the much larger giant fibre synapse.  相似文献   

12.
To study the function of endosomes at synapses we analyzed the localization and function of two Drosophila endosomal proteins, Hook and Deep orange (Dor), at the larval neuromuscular junction. Hook, a negative regulator of endocytic trafficking, and Dor, a positive regulator of endocytic trafficking, are highly enriched at synapses, especially close to postsynaptic membranes. Mutations in hook (hk) and dor do not affect synaptic vesicle recycling, as assessed by electrophysiological analysis of synaptic transmission and behavioral studies of double mutants with shi(ts) mutations that alter vesicle recycling. However, hk and dor mutations alter the number of presynaptic varicosities (synapse size) in opposing ways. Synapse size is increased in hk(11) mutants and is decreased in dor(4) mutants. Double mutants for dor and hk show a dor-like phenotype. These effects on synapse size parallel known functions of Hook and Dor in endocytosis and strongly indicate a role for endocytic trafficking in the regulation of synapse size in vivo. Our observations suggest a model in which Hook and Dor function in later stages of endocytosis is essential for regulating synaptic plasma membrane composition but not synaptic vesicle recycling.  相似文献   

13.
The ultrastructure of synapses from the molecular layer of parietal cortex was examined in two groups of unanesthetized rats. Rats of the first group were killed by stunning across the back of the neck, and those of the second group by the introduction of fixative through a preimplanted carotid artery cannula. Comparison of synapses from the two groups revealed that the distribution of synaptic types was the same. A larger percentage of synapses of the cannulated group has vesicle attachment sites than did those of the stunned group. The area and perimeter of the presynaptic terminals were significantly larger in synapses from the cannulated group, although the equivalent length of the postsynaptic thickening was less. The mean value for synaptic curvature was greater in the cannulated group, although over 80% of synapses in both groups had positive curvatures. No significant differences were found between the groups for the relationships between presynaptic terminal area and synaptic vesicle number, and between postsynaptic thickening length and synaptic curvature. Membrane recycling is suggested as a mechanism of accounting for the differences. The preponderance of postively-curved synapses in unanesthetized material may indicate a preponderance of functioning synapses.  相似文献   

14.
Actin plays important roles in a number of synaptic processes, including synaptic vesicle organization and exocytosis, mobility of postsynaptic receptors, and synaptic plasticity. However, little is known about the mechanisms that control actin at synapses. Actin dynamics crucially depend on LIM kinase 1 (LIMK1) that controls the activity of the actin depolymerizing proteins of the ADF/cofilin family. While analyses of mouse mutants revealed the importance of LIMK1 for both pre- and postsynaptic mechanisms, the ADF/cofilin family member n-cofilin appears to be relevant merely for postsynaptic plasticity, and not for presynaptic physiology. By means of immunogold electron microscopy and immunocytochemistry, we here demonstrate the presence of ADF (actin depolymerizing factor), a close homolog of n-cofilin, in excitatory synapses, where it is particularly enriched in presynaptic terminals. Surprisingly, genetic ablation of ADF in mice had no adverse effects on synapse structure or density as assessed by electron microscopy and by the morphological analysis of Golgi-stained hippocampal pyramidal cells. Moreover, a series of electrophysiological recordings in acute hippocampal slices revealed that presynaptic recruitment and exocytosis of synaptic vesicles as well as postsynaptic plasticity were unchanged in ADF mutant mice. The lack of synaptic defects may be explained by the elevated n-cofilin levels observed in synaptic structures of ADF mutants. Indeed, synaptic actin regulation was impaired in compound mutants lacking both ADF and n-cofilin, but not in ADF single mutants. From our results we conclude that n-cofilin can compensate for the loss of ADF in excitatory synapses. Further, our data suggest that ADF and n-cofilin cooperate in controlling synaptic actin content.  相似文献   

15.
I have developed a detailed biophysical model of the chemical synapse which hosts voltage-dependent presynaptic ion channels and takes into account the capacitance of synaptic membranes. I find that at synapses with a relatively large cleft resistance (e.g., mossy fiber or giant calyx synapse) the rising postsynaptic current could activate, within the synaptic cleft, electrochemical phenomena that induce rapid widening of the presynaptic action potential (AP). This mechanism could boost fast Ca(2+) entry into the terminal thus increasing the probability of subsequent synaptic releases. The predicted difference in the AP waveforms generated inside and outside the synapse can explain the previously unexplained fast capacitance transient recorded in the postsynaptic cell at the giant calyx synapse. I propose therefore the mechanism of positive ephaptic feedback that acts between the postsynaptic and presynaptic cell contributing to the basal synaptic transmission at large central synapses. This mechanism could also explain the supralinear voltage dependence of EPSCs recorded at hyperpolarizing membrane potentials in low extracellular calcium concentration.  相似文献   

16.
Ehlers MD  Heine M  Groc L  Lee MC  Choquet D 《Neuron》2007,54(3):447-460
Synaptic activity regulates the postsynaptic accumulation of AMPA receptors over timescales ranging from minutes to days. Indeed, the regulated trafficking and mobility of GluR1 AMPA receptors underlies many forms of synaptic potentiation at glutamatergic synapses throughout the brain. However, the basis for synapse-specific accumulation of GluR1 is unknown. Here we report that synaptic activity locally immobilizes GluR1 AMPA receptors at individual synapses. Using single-molecule tracking together with the silencing of individual presynaptic boutons, we demonstrate that local synaptic activity reduces diffusional exchange of GluR1 between synaptic and extraynaptic domains, resulting in postsynaptic accumulation of GluR1. At neighboring inactive synapses, GluR1 is highly mobile with individual receptors frequently escaping the synapse. Within the synapse, spontaneous activity confines the diffusional movement of GluR1 to restricted subregions of the postsynaptic membrane. Thus, local activity restricts GluR1 mobility on a submicron scale, defining an input-specific mechanism for regulating AMPA receptor composition and abundance.  相似文献   

17.
Recent findings demonstrate that synaptic channels are directly involved in the formation and maintenance of synapses by interacting with synapse organizers. The synaptic channels on the pre- and postsynaptic membranes possess non-conducting roles in addition to their functional roles as ion-conducting channels required for synaptic transmission. For example, presynaptic voltage-dependent calcium channels link the target-derived synapse organizer laminin β2 to cytomatrix of the active zone and function as scaffolding proteins to organize the presynaptic active zones. Furthermore, postsynaptic δ2-type glutamate receptors organize the synapses by forming transsynaptic protein complexes with presynaptic neurexins through synapse organizer cerebellin 1 precursor proteins. Interestingly, the synaptic clustering of AMPA receptors is regulated by neuronal activity-regulated pentraxins, while postsynaptic differentiation is induced by the interaction of postsynaptic calcium channels and thrombospondins. This review will focus on the non-conducting functions of ion-channels that contribute to the synapse formation in concert with synapse organizers and active-zone-specific proteins.  相似文献   

18.
Recent findings demonstrate that synaptic channels are directly involved in the formation and maintenance of synapses by interacting with synapse organizers. The synaptic channels on the pre- and postsynaptic membranes possess non-conducting roles in addition to their functional roles as ion-conducting channels required for synaptic transmission. For example, presynaptic voltage-dependent calcium channels link the target-derived synapse organizer laminin β2 to cytomatrix of the active zone and function as scaffolding proteins to organize the presynaptic active zones. Furthermore, postsynaptic δ2-type glutamate receptors organize the synapses by forming transsynaptic protein complexes with presynaptic neurexins through synapse organizer cerebellin 1 precursor proteins. Interestingly, the synaptic clustering of AMPA receptors is regulated by neuronal activity-regulated pentraxins, while postsynaptic differentiation is induced by the interaction of postsynaptic calcium channels and thrombospondins. This review will focus on the non-conducting functions of ion-channels that contribute to the synapse formation in concert with synapse organizers and active-zone-specific proteins.  相似文献   

19.
The synapses in the stratum lacunosum-molecular (str. L-M) of CA1 hippocampal field in 3-month old and 24-month old rats were examined using quantitative ultrastructural methods. No significant difference in the density of synapses and postsynaptic dendritic spines was found between the two age groups. The area of presynaptic terminals and postsynaptic dendritic spines was decreased slightly but significantly in the group of aged as compared to that in the group of young-mature rats. The vesicle number per presynaptic terminal, per area of presynaptic terminals and per volume of neuropil was not changed while the vesicle number per area of synaptic contact zones (SCZ) was increased in the group of aged rats. The mean length, total length and total surface of SCZ were diminished in the group of aged as compared to those in the group of young-mature rats. The same width of the str.radiatum and str.L-M in the two age groups showed that there was no any shrinkage of the neuropil in aged rats. The quantitative alterations in the synapses were accompanied by an increased number of dense and lamellar bodies in presynaptic terminals as well as with a presence of hypertrophic astroglial processes.  相似文献   

20.
A Zeidan  NE Ziv 《PloS one》2012,7(7):e42314
Neuroligins (Nlgns) are postsynaptic, integral membrane cell adhesion molecules that play important roles in the formation, validation, and maturation of synapses in the mammalian central nervous system. Given their prominent roles in the life cycle of synapses, it might be expected that the loss of neuroligin family members would affect the stability of synaptic organization, and ultimately, affect the tenacity and persistence of individual synaptic junctions. Here we examined whether and to what extent the loss of Nlgn-1 affects the dynamics of several key synaptic molecules and the constancy of their contents at individual synapses over time. Fluorescently tagged versions of the postsynaptic scaffold molecule PSD-95, the AMPA-type glutamate receptor subunit GluA2 and the presynaptic vesicle molecule SV2A were expressed in primary cortical cultures from Nlgn-1 KO mice and wild-type (WT) littermates, and live imaging was used to follow the constancy of their contents at individual synapses over periods of 8-12 hours. We found that the loss of Nlgn-1 was associated with larger fluctuations in the synaptic contents of these molecules and a poorer preservation of their contents at individual synapses. Furthermore, rates of synaptic turnover were somewhat greater in neurons from Nlgn-1 knockout mice. Finally, the increased GluA2 redistribution rates observed in neurons from Nlgn-1 knockout mice were negated by suppressing spontaneous network activity. These findings suggest that the loss of Nlgn-1 is associated with some use-dependent destabilization of excitatory synapse organization, and indicate that in the absence of Nlgn-1, the tenacity of excitatory synapses might be somewhat impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号