首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When isolated from resting parietal cells, the majority of the (H+ + K+)-ATPase activity was recovered in the microsomal fraction. These microsomal vesicles demonstrated a low K+ permeability, such that the addition of valinomycin resulted in marked stimulation of (H+ + K+)-ATPase activity, and proton accumulation. When isolated from stimulated parietal cells, the (H+ + K+)-ATPase was redistributed to larger, denser vesicles: stimulation-associated (s.a.) vesicles. S.a. vesicles showed an increased K+ permeability, such that maximal (H+ + K+)-ATPase and proton accumulation activities were observed in low K+ concentrations and no enhancement of activities occurred on the addition of valinomycin. The change in subcellular distribution of (H+ + K+)-ATPase correlated with morphological changes observed with stimulation of parietal cells, the microsomes and s.a. vesicles derived from the intracellular tubulovesicles and the apical plasma membrane, respectively. Total (H+ + K+)-ATPase activity recoverable from stimulated gastric mucosa was 64% of that from resting tissue. Therefore, we tested for latent activity in s.a. vesicles. Permeabilization of s.a. vesicles with octyl glucoside increased (H+ + K+)-ATPase activity by greater than 2-fold. Latent (H+ + K+)-ATPase activity was resistant to highly tryptic conditions (which inactivated all activity in gastric microsomes). About 20% of the non-latent (H+ + K+)-ATPase activity was also resistant to trypsin digestion. We interpret these results as indicating that, of the s.a. vesicles, approx. 55% have a right-side-out orientation and are impermeable to ATP, 10% right-side-out and permeable to ATP, and 35% have an inside-out orientation.  相似文献   

2.
In order to study the "sidedness" of the ligands of the Na+, K+-ATPase in the phosphorylation from [32P]ATP, tight vesicles were prepared from guinea pig kidney and partially purified by a two-stage sucrose and Ficoll gradient centrifugation procedure. These vesicles were derived presumably from plasma membrane fragments resealed after the initial disruption of the cells during homogenization. Tightness of the vesicles was estimated according to activation by the nonionic detergent, Triton X-100. Treatment with Triton X-100 increased both the activity of the Na+, K+-ATPase and its Na+-dependent phosphorylation from [32P]ATP at least three-fold. Activation of both functions also appeared when the vesicles were shocked osmotically. These results suggest that the preparation contains a major population of tight normal vesicles (approximately 75%) in which the phosphorylation site faces the intravesicular solution. In the response to ouabain breakdown of the phosphoenzyme was inhibited in vesicles treated with Triton X-100 but not in intact ones as if ouabain could not get to its binding site. Correspondingly in phosphorylation from ATP pretreatment with ouabain in the presence of inorganic phosphate produced less inhibition in intact vesicles than in those disrupted with Triton X-100 beforehand. These data suggest the presence of an everted vesicle fraction in the preparation (approximately 20%). Apparently only a small fraction of the vesicles was leaky. In the everted vesicles the action of K+ on the phosphoenzyme was slow. In order to accelerate the dephosphorylation in intact vesicles as effectively as in disrupted ones, K+ had to be added before the start of phosphorylation. This supports the view that K+ was acting from the side of the membrane opposite to that where the gamma-phosphoryl group was accepted from ATP.  相似文献   

3.
Resting rat light gastric membranes prepared through 2H2O and Percoll gradient centrifugations were enriched not only with (H+-K+)-ATPase and K+ transport activity (Im, W. B., Blakeman, D. P., and Davis, J. P. (1985) J. Biol. Chem. 260, 9452-9460), but also with a K+-independent, ATP-dependent H+-pumping activity. This intravesicular acidification has been ascribed to an oligomycin-insensitive H+-ATPase which differed from (H+-K+)-ATPase in several respects. The H+-ATPase is electrogenic, apparently of lower capacity, required a lower optimal ATP concentration (4 microM for the H+-ATPase and 500 microM for (H+-K+)-ATPase), of lower sensitivity to vanadate and sulfhydryl agents such as p-chloromercuribenzoate and N-ethylmaleimide, and insensitive to SCH 28,080, a known competitive inhibitor of (H+-K+)-ATPase with respect to K+. Operation of the H+-ATPase, however, appeared to interfere with the K+ transport activity in the light gastric membranes, probably through development of intravesicular positive membrane potential; for example, micromolar levels of Mg2+-ATP fully inhibited K+ uptake and stimulated K+ efflux as measured with 86Rb+. Involvement of (H+-K+)-ATPase in the K+ transport is not likely, since the inhibitory effect of Mg2+-ATP continued even after removal of the nucleotide with an ATP-scavenging system. Moreover, nigericin, an electroneutral H+/K+ exchanger, could bypass the inhibitory effect of Mg2+-ATP and equilibrate the membrane vesicles with 86Rb+ while valinomycin, an electrogenic K+ ionophore, could not. Finally, the H+-ATPase could possibly be involved in the acid secretory process, since its H+-pumping activity was removed from the light gastric membrane fraction upon carbachol treatment, along with the K+ transport and (H+-K+)-ATPase activities. We have speculated that the H+-ATPase is responsible for maintaining the K+-permeable intracellular membrane vesicles acidic and K+ free during the resting state of acid secretion and may contribute to basal acid secretion.  相似文献   

4.
A rapid and reproducible method has been developed for the simultaneous isolation of basolateral and brush-border membranes from the rabbit renal cortex. The basolateral membrane preparation was enriched 25-fold in (Na+ + K+)-ATPase and the brush-border membrane fraction was enriched 12-fold in alkaline phosphatase, whereas the amount of cross-contamination was low. Contamination of these preparations by mitochondria and lysosomes was minimal as indicated by the low specific activities of enzyme markers, i.e., succinate dehydrogenase and acid phosphatase. The basolateral fraction consisted of 35-50% sealed vesicles, as demonstrated by detergent (sodium dodecyl sulfate) activation of (Na+ + K+)-ATPase activity and [3H]ouabain binding. The sidedness of the basolateral membranes was estimated from the latency of ouabain-sensitive (Na+ + K+)-ATPase activity assayed in the presence of gramicidin, which renders the vesicles permeable to Na+ and K+. These studies suggest that nearly 90% of the vesicles are in a right-side-out orientation.  相似文献   

5.
Experiments from other laboratories conducted with Leishmania donovani promastigote cells had earlier indicated that the plasma membrane Mg2+-ATPase of the parasite is an extrusion pump for H+. Taking advantage of the pellicular microtubular structure of the plasma membrane of the organism, we report procedures for obtaining sealed ghost and sealed everted vesicle of defined polarity. Rapid influx of H+ into everted vesicles was found to be dependent on the simultaneous presence of ATP (1 mm) and Mg2+ (1 mm). Excellent correspondence between rate of H+ entry and the enzyme activity clearly demonstrated the Mg2+-ATPase to be a true H+ pump. H+ entry into everted vesicle was strongly inhibited by SCH28080 (IC50 = approximately 40 microm) and by omeprazole (IC50 = approximately 50 microm), both of which are characteristic inhibitors of mammalian gastric H+,K+-ATPase. H+ influx was completely insensitive to ouabain (250 microm), the typical inhibitor of Na+,K+-ATPase. Mg2+-ATPase activity could be partially stimulated with K+ (20 mm) that was inhibitable (>85%) with SCH28080 (50 microm). ATP-dependent rapid efflux of 86Rb+ from preloaded vesicles was completely inhibited by preincubation with omeprazole (150 microm) and by 5,5'-dithiobis-(2-nitrobenzoic acid) (1 mm), an inhibitor of the enzyme. Assuming Rb+ to be a true surrogate for K+, an ATP-dependent, electroneutral stoichiometric exchange of H+ and K+(1:1) was established. Rapid and 10-fold active accumulation of [U-(14)C]2-deoxyglucose in sealed ghosts could be observed when an artificial pH gradient (interior alkaline) was imposed. Rapid efflux of [U-(14)C]d-glucose from preloaded everted vesicles could also be initiated by activating the enzyme, with ATP. Taken together, the plasma membrane Mg2+-ATPase has been identified as an electroneutral H+/K+ antiporter with some properties reminiscent of the gastric H+,K+-ATPase. This enzyme is possibly involved in active accumulation of glucose via a H+-glucose symport system and in K+ accumulation.  相似文献   

6.
An endogenous Na+, K+-ATPase inhibitor termed endobain E has been isolated from rat brain which shares several biological properties with ouabain. This cardiac glycoside possesses neurotoxic properties attributable to Na+, K+-ATPase inhibition, which leads to NMDA receptor activation, thus supporting the concept that Na+/K+ gradient impairment has a critical impact on such receptor function. To evaluate potential direct effects of endobain E and ouabain on NMDA receptors, we assayed [3H]dizocilpine binding employing a system which excludes ionic gradient participation. Brain membranes thoroughly washed and stored as pellets ('non-resuspended' membranes) or after resuspension in sucrose ('resuspended' membranes) were employed. Membrane samples were incubated with 4 or 10 nM ligand with or without added endobain E or ouabain, in the presence of different glutamate plus glycine combinations, with or without spermidine. [3H]dizocilpine basal binding and Na+, K+- and Mg2+-ATPase activities proved very similar in 'non-resuspended' or 'resuspended' membranes. Endobain E decreased [3H]dizocilpine binding to 'resuspended' membranes in a concentration-dependent manner, attaining roughly 50% binding inhibition with the highest endobain E concentration assayed. Among tested conditions, only in 'resuspended' membranes, with 4 nM ligand and with 1x10(-8) M glutamate plus 1x10(-5) M glycine, was [3H]dizocilpine binding enhanced roughly +24% by ouabain (1 mM). After Triton X-100 membrane treatment, which drastically reduces Na+, K+-ATPase activity, the effect of ouabain on binding was lost whereas that of endobain E remained unaltered. Results indicate that not only membrane preparation but also treatment and storage are crucial to observe direct endobain E and ouabain effects on NMDA receptor, which are not attributable to changes in Na+, K+-ATPase activity or to Na+/K+ equilibrium alteration.  相似文献   

7.
A method is described for isolating plasma membrane vesicles from bovine tracheal epithelium. The procedure yields highly purified apical membranes which are enriched 19-fold in the marker enzyme, alkaline phosphatase. Contamination of this fraction by other organelles is minimal. Basolateral membranes isolated from the same preparation have a 4-fold enrichment of (Na+ + K+)-ATPase and a 2-fold reduction in alkaline phosphatase specific activity compared to the starting material. Assays of Na+ uptake by the apical membrane vesicles demonstrate their suitability for transport studies. Transport of Na+ into an intravesicular space was demonstrated by (1) a linear inverse correlation between Na+ uptake and medium osmolarity; (2) complete release of accumulated Na+ by treatment with detergent; and (3) a marked temperature-dependence of Na+ uptake rate. Other features of Na+ transport were (1) inhibition by amiloride; (2) insensitivity to furosemide; and (3) anion-dependence of uptake rate with the following selectivity:SCN- greater than Cl- greater than gluconate-.  相似文献   

8.
To prevent sodium toxicity in plants, Na(+) is excluded from the cytosol to the apoplast or the vacuole by Na(+)/H(+) antiporters. The secondary active transport of Na(+) to apoplast against its electrochemical gradient is driven by plasma membrane H(+)-ATPases that hydrolyze ATP and pump H(+) across the plasma membrane. Current methods to determine Na(+) flux rely either on the use of Na-isotopes ((22)Na) which require special working permission or sophisticated equipment or on indirect methods estimating changes in the H(+) gradient due to H(+)-ATPase in the presence or absence of Na(+) by pH-sensitive probes. To date, there are no methods that can directly quantify H(+)-ATPase-dependent Na(+) transport in plasma membrane vesicles. We developed a method to measure bidirectional H(+)-ATPase-dependent Na(+) transport in isolated membrane vesicle systems using atomic absorption spectrometry (AAS). The experiments were performed using plasma membrane-enriched vesicles isolated by aqueous two-phase partitioning from leaves of Populus tomentosa. Since most of the plasma membrane vesicles have a sealed right-side-out orientation after repeated aqueous two-phase partitioning, the ATP-binding sites of H(+)-ATPases are exposed towards inner side. Leaky vesicles were preloaded with Na(+) sealed for the study of H(+)-ATPase-dependent Na(+) transport. Our data implicate that Na(+) movement across vesicle membranes is highly dependent on H(+)-ATPase activity requiring ATP and Mg(2+) and displays optimum rates of 2.50 microM Na(+) mg(-1) membrane protein min(-1) at pH 6.5 and 25 degrees C. In this study, for the first time, we establish new protocols for the preparation of sealed preloaded right-side-out vesicles for the study of H(+)-ATPase-dependent Na(+) transport. The results demonstrate that the Na(+) content of various types of plasma membrane vesicle can be directly quantified by AAS, and the results measured using AAS method were consistent with those determined by the previous established fluorescence probe method. The method is a convenient system for the study of bidirectional H(+)-ATPase-dependent Na(+) transport with membrane vesicles.  相似文献   

9.
A method for preparation of highly purified basolateral plasma membranes from rat kidney proximal tubular cells is reported. These membranes were assayed for the presence of vesicles as well as for their orientation. (Na+ + K+)-ATPase activity and [3H]ouabain binding studies with membranes treated with or without SDS revealed that the preparation consisted of almost 100% vesicles. The percentage of inside-out vesicles was found to be approx. 70%. This percentage was determined measuring the (Na+ + K+)-ATPase activity in K+-loaded vesicles and in membranes treated with or without trypsin and SDS. These membranes represent a very efficient tool to assay the correlation between active transport and ATPase activities in basolateral plasma membranes from rat kidney proximal tubular cells.  相似文献   

10.
Transverse tubule vesicles were isolated from frog skeletal muscle by a procedure initially described by Rosemblatt et al. (J. Biol. Chem. 256, 8140-8148 (1981)) and later modified by Hidalgo et al. (J. Biol. Chem. 258, 13937-13945 (1983]. A large fraction of the isolated vesicles (80-90%) were sealed, as indicated by the detergent induced increase in (Na+ + K+)-ATPase activity and ATP-dependent ouabain binding. To determine the orientation of the sealed vesicles binding of digoxin, a lipid soluble derivative of ouabain, was measured. The same values of ATP-dependent digoxin binding were found with or without detergents, indicating that all the vesicles that are sealed have the ATP site accessible, and hence are sealed with the cytoplasmic side-out (inside-out orientation). The transverse tubule preparation isolated from frog muscle is highly purified, as indicated by its cholesterol content and its (Na+ + K+)-ATPase activity; negligible contamination with sarcoplasmic reticulum was observed, as indicated by the protein composition and the lack of measurable Ca2+-ATPase activity of the isolated transverse tubules. High initial rates of Mg2+-ATPase activity were found, with the peculiar property of being inhibited during the course of the reaction. Addition of lysophosphatidylcholine or saponin partially prevented the inhibition of Mg2+-ATPase activity during the reaction.  相似文献   

11.
ATP plus Mg2+ plus Na+ supported [3H]ouabain binding to canine left ventricular tissue homogenates and microsomal (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity from the same tissue were measured. A linear relationship was found between the initial velocity of [3H]ouabain binding to tissue homogenates and microsomal (Na+ + K+)-ATPase activity from the same tissue in the presence and absence of in vivo bound digoxin. In vivo bound digoxin reduced both measurements. With tissue from digoxin-free hearts, a linear relationship was also obtained between the initial velocity and the maximum level of [3H]ouabain binding to tissue homogenate. Binding of [3H]ouabain to whole tissue homogenate is a convenient method for estimating (Na+ + K+)-ATPase activity in small left ventricular biopsy samples.  相似文献   

12.
Monoclonal antibodies against horse kidney outer medulla (Na+ + K+)-ATPase were prepared. One of these antibodies (M45-80), was identified as an IgM, recognized the alpha subunit of the enzyme. M45-80 had the following effects on horse kidney (Na+ + K+)-ATPase: (1) it inhibited the enzyme activity by 50% in 140 mM Na+ and by 80% in 8.3 mM Na+; (2) it increased the Na+ concentration necessary for half-maximal activation (K0.5 for Na+) from 12.0 to 57.6 mM, but did not affect K0.5 for K+; (3) it slightly increased the K+-dependent p-nitrophenylphosphatase (K-pNPPase) activity; (4) it inhibited phosphorylation of the enzyme with ATP by 30%, but did not affect the step of dephosphorylation; and (5) it enhanced the ouabain binding rate. These data are compatible with a stabilizing effect on the E2 form of (Na+ + K+)-ATPase. M45-80 was concluded to bind to the extracellular surface of the plasmamembrane, based on the following evidence: (1) M45-80 inhibited by 50% the ouabain-sensitive 86Rb+ uptake in human intact erythrocytes from outside of the cells; (2) the inhibition of (Na+ + K+)-ATPase activity in right-side-out vesicles of human erythrocytes was greater than that in inside-out vesicles; and (3) the fluorescence intensity due to FITC-labeled rabbit anti-mouse IgM that reacted with M45-80 bound to the right-side-out vesicles was much greater than that in the case of the inside-out vesicles.  相似文献   

13.
Dinitrophenyl S-glutathione is accumulated by inside-out vesicles made from human erythrocytes in a process totally dependent on ATP and Mg2+. The vesicles were shown to accumulate dinitrophenyl S-glutathione against a concentration gradient. The vesicles were able to concentrate this glutathione derivative even in the absence of membrane potential. This indicated that the ATP-dependent uptake of dinitrophenyl S-glutathione by inside-out vesicles represented an active transport process. Neither extravesicular EGTA nor intravesicular ouabain inhibited the transport process, indicating that neither the Ca2+-ATPase nor the Na+, K+-ATPase were involved. These results indicated that dinitrophenyl S-glutathione uptake by inside-out vesicles probably represented primary active transport. The uptake of dinitrophenyl S-glutathione was a linear function of time (up to 5 h) and vesicle protein. The rate of uptake was optimal between pH 7.0 and 8.0 and at 37 degrees C. The Km values determined for dinitrophenyl S-glutathione and ATP were 0.29 mM and 1 mM, respectively. The transport process was completely inhibited by vanadate and by p-hydroxymercuribenzene sulphonate and inhibited to a lesser extent by N-ethylmaleimide. GTP could efficiently substitute for ATP as an energy source for the transport process, but CTP and UTP were comparatively much less effective.  相似文献   

14.
We have prepared human blood lymphocyte membrane vesicles of high purity in sufficient quantity for detailed enzyme analysis. This was made possible by the use of plateletpheresis residues, which contain human lymphocytes in amounts equivalent to thousands of milliliters of blood. The substrate specificity and the kinetics of the cofactor and substrate requirements of the human lymphocyte membrane Na+, K+-ATPase activity were characterized. The Na+, K+-ATPase did not hydrolyze ADP, AMP, ITP, UTP, GTP or TTP. The mean ATPase stimulated by optimal concentrations of Na+ and K+ (Na+, K+-ATPase) was 1.5 nmol of P(i) hydrolyzed, microgram protein-1, 30 min-1 (range 0.9-2.1). This activity was completely inhibited by the cardiac glycoside, ouabain. The K(m) for K+ was approximately 1.0 mM and the K(m) for Na+ was approximately 15 mM. Active Na+ and K+ transport and ouabain-sensitive ATP production increase when lymphocytes are stimulated by PHA. Na+, K+-ATPase activity must increase also to transduce energy for the transport of Na+ and K+. Some studies have reported that PHA stimulates the lymphocyte membrane ATPase directly. We did not observe stimulation of the membrane Na+, K+-ATPase when either lymphocytes or lymphocyte membranes were treated with mitogenic concentrations of PHA. Moreover, PHA did not enhance the reaction velocity of the Na+, K+-ATPase when studied at the K(m) for ATP, Na+, K+ OR Mg++, indicating that it does not alter the affinity of the enzyme for its substrate or cofactors. Thus, our data indicate that the increase in ATPase activity does not occur as a direct result of PHA action on the cell membrane.  相似文献   

15.
Experiments using liposomes with (Na+ + K+)-ATPase incorporated showed that in the presence of extravesicular Mg2+, acetyl phosphate was able to stimulate Na+ uptake when the liposomes contained Na+ or choline and were K+-free; this acetyl phosphate-dependent Na+ transport was similar to the ATP-dependent transport observed with 0.003 mM or 3 mM ATP. When the intravesicular solution contained K+, there was an ATP-dependent Na+ uptake which was large with 3 mM ATP and small (about the size seen in K+-free liposomes) with 0.003 mM ATP; in this case, although acetyl phosphate produced a slight activation of Na+ transport, the effect was not statistically significant. All ATP and acetyl phosphate-stimulated Na+ transport disappeared in the absence of extravesicular Mg2+ or in the presence of ouabain in the intravesicular solution. These results are consistent with the hypothesis that, at the concentration used, acetyl phosphate can replace ATP in the catalytic but not in the regulatory site of the (Na+ + K+)-ATPase and active Na+ transport system. This suggests that as far as the early stages of the pump cycle are concerned the role of ATP is simply to phosphorylate.  相似文献   

16.
Recent studies have suggested that the colonic H+,K+-ATPase (HKalpha2) can secrete either Na+ or H+ in exchange for K+. If correct, this view would indicate that the transporter could function as either a Na+ or a H+ pump. To investigate this possibility a series of experiments was performed using apical membranes from rat colon which were enriched in colonic H+,K+-ATPase protein. An antibody specific for HKalpha2 was employed to determine whether HKalpha2 functions under physiological conditions as a Na+-dependent or Na+-independent K+-ATPase in this same membrane fraction. K+-ATPase activity was measured as [gamma-32P]ATP hydrolysis. The Na+-dependent K+-ATPase accounted for approximately 80% of overall K+-ATPase activity and was characterized by insensitivity to Sch-28080 but partial sensitivity to ouabain. The Na+-independent K+-ATPase activity was insensitive to both Sch-28080 and ouabain. Both types of K+-ATPase activity substituted NH4+ for K+ in a similar manner. Furthermore, our results demonstrate that when incubated with native distal colon membranes, the blocking antibody inhibited dramatically Na+-dependent K+-ATPase activity. Therefore, these data demonstrate that HKalpha2 can function in native distal colon apical membranes as a Na+-dependent K+-ATPase. Elucidation of the role of the pump as a transporter of Na+ versus H+ or NH4+ versus K+ in vivo will require additional studies.  相似文献   

17.
Sarcolemmal vesicles were prepared from bovine cardiac muscle by differential and discontinuous sucrose density gradient centrifugation. Na+/K+-ATPase was purified 33-fold to a specific activity of 53 +/- 0.5 (12) mumol Pi X mg-1 X h-1, binding sites for strophantin 20-fold to a density of 56.3 +/- 5.3 (14) pmol/mg and that for the calcium antagonist nitrendipine 5.5-fold to a density of 0.72 +/- 0.07 (6) pmol/mg. The specific activity of the Na+/Ca2+ exchanger was 61.1 +/- 3.7 (6) nmol/mg. The vesicles had an intravesicular volume of 20 +/- 4 (4) microliter/mg and 56.9 +/- 6 (4)% of the vesicles were right-side-out oriented. Several peptides of the purified membranes were phosphorylated in the presence of Mg . ATP and EGTA. Most of the radioactive phosphate was incorporated into a peptide with an apparent molecular mass of 22 kDa. Denaturation of the membranes at 100 degrees C changed the mobility of this peptide to 15 kDa and 11 kDa. This peptide could not be distinguished from a sarcoplasmic reticulum peptide of similar molecular mass. The phosphorylation of the sarcolemmal peptide was stimulated by Ca2+/calmodulin, cAMP and the catalytic subunit of cAMP-dependent protein kinase. A comparison of the phosphorylation of sarcolemmal membranes with that of sarcoplasmic reticulum showed that Ca2+/calmodulin stimulated in each membrane, the phosphorylation of the 22-kDa peptide and a 44-kDa peptide, and in the sarcoplasmic reticulum the phosphorylation of an additional peptide of 55-kDa. Ca2+/calmodulin-dependent phosphorylation of a 55-kDa peptide could not be demonstrated in sarcolemma, regardless if sarcolemmal membranes were incubated together with sarcoplasmic reticulum or if the phosphorylation was carried out in the presence of purified cardiac myosin light chain kinase or phosphorylase kinase. 'Depolarization' induced Ca2+ uptake which was measured according to Bartschat, D.K., Cyr, D.L. and Lindenmayer, G.E. [(1980) J. Biol. Chem. 255, 10044-10047] was 5 nmol/mg protein. This uptake was not enhanced after preincubation of the vesicles with Mg . ATP or Mg . ATP and cAMP-dependent protein kinase. The value of 5 nmol/mg protein is in agreement with the theoretical amount of Ca2+ which can be accumulated by the bovine cardiac sarcolemma in the absence of a driving force other than the Ca2+ gradient. The potassium-stimulated Ca2+ uptake was not blocked by the organic Ca2+ channel blockers. Prolonged incubation of Mg . ATP with sarcolemmal vesicles in the presence of various ATPase inhibitors led to the hydrolysis of ATP. The liberated phosphate precipitated with Ca2+ in the presence of LaCl3. These precipitates amounted to an apparent Ca2+ uptake ranging from 50 to over 1000 nmol/mg. The results suggest that potassium-stimulated Ca2+ uptake of bovine cardiac sarcolemmal vesicles is not enhanced in the presence of ATP or by phosphorylation of a 22-kDa peptide.  相似文献   

18.
K Fendler  E Grell  M Haubs    E Bamberg 《The EMBO journal》1985,4(12):3079-3085
The transport activity of purified Na+K+-ATPase was investigated by measuring the electrical pump current induced on black lipid membranes. Discs containing purified Na+K+-ATPase from pig kidney were attached to planar lipid bilayers in a sandwich-like structure. After the addition of only microM concentrations of an inactive photolabile ATP derivative [P3-1-(2-nitro)phenylethyladenosine 5'-triphosphate, caged ATP] ATP was released after illumination with u.v.-light, which led to a transient current in the system. The transient photoresponse indicates that the discs and the underlying membrane are capacitatively coupled. Stationary pump currents were obtained after the addition of the H+, Na+ exchanging agent monensin together with valinomycin to the membrane system, which increased the permeability of the black lipid membrane for the pumped ions. In the absence of ADP and Pi the half saturation for the maximal photoeffect was obtained at 6.5 microM released ATP. The addition of ADP decreased the pump activity. Pump activity was obtained only in the presence of Mg2+ together with Na+ and Na+ and K+. No pump current was obtained in the presence of Mg2+ together with K+. The electrical response was blocked completely by the Na+K+-ATPase-specific inhibitors vanadate and ouabain. No pump currents were observed with a chemically modified protein, which was labelled on the ATP binding site with fluoresceine isothiocyanate. The method described offers the possibility of investigating by direct electrical measurements ion transport of Na+K+-ATPase with a large variety of different parameters.  相似文献   

19.
The fluorescing sulfhydryl reagent N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM) inactivates purified (Na+ + K+)-ATPase at 20 microM. This inactivation results in a decrease of the ouabain-binding capacity of the enzyme. Treatment of (Na+ + K+)-ATPase, embedded in right-side-out-oriented vesicles, by DACM does not affect ouabain binding to the enzyme. Incorporation of DACM into the alpha subunit of (Na+ + K+)-ATPase embedded in right-side-out vesicles is also not affected by the presence or absence of 100 microM ouabain. It is therefore concluded that a sulfhydryl group does not reside within the ouabain-binding site of (Na+ + K+)-ATPase.  相似文献   

20.
An increase in endogenous Na+,K+-ATPase inhibitor(s) with digitalis-like properties has been reported in chronic renal insufficiency, in Na+-dependent experimental hypertension and in some essential hypertensive patients. The present study specifies some properties and some biochemical characteristics of a semipurified compound from human urine having digitalis-like properties. The urine-derived inhibitor (endalin) inhibits Na+,K+-ATPase activity and [3H]-ouabain binding, and cross-reacts with anti-digoxin antibodies. The inhibitory effect on ATPases of endalin is higher on Na+,K+-ATPase than on Mg2+-ATPase and Ca2+-ATPase. The mechanism of endalin action on highly purified Na+,K+-ATPase was compared to that of ouabain and was similar in that it reversibly inhibited Na+,K+-ATPase activity; it inhibited Na+,K+-ATPase non-competitively with ATP; its inhibitory effect was facilitated by Na+; K+ decreased its inhibitory effect on Na+,K+-ATPase; it competitively inhibited ouabain binding to the enzyme; its binding was maximal in the presence of Mg2+ and Pi; it decreased the Na+ pump activity in human erythrocytes; it reduced serotonin uptake by human platelets; and it was diuretic and natriuretic in rat bioassay. The endalin differed from ouabain in only three aspects: its inhibitory effect was not really specific for Na+,K+-ATPase; its binding to the enzyme was undetectable in the presence of Mg2+ and ATP; it was not kaliuretic in rat bioassay. Endalin is a reversible and partial specific inhibitor of Na+,K+-ATPase, its Na+,K+-ATPase inhibition closely resembles that of ouabain and it could be considered as one of the natriuretic hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号