首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly soluble quercetin glycoside, alphaG-rutin, is a glucose adduct of insoluble rutin, and intestinal absorption and metabolism of alphaG-rutin has not been known. We investigated the intestinal absorption and metabolism of alphaG-rutin by using portal and duodenal cannulated rats and the isolated rat intestinal mucosa. After a duodenal instillation of alphaG-rutin (150 mumol), intact alphaG-rutin, rutin and quercetin were appeared in the portal blood and these concentrations were similarly increased at 15 min. Portal quercetin reached a peak value at 60 min, and the value was higher than those of alphaG-rutin and rutin at that time. Quercetin-conjugates were also increased 30 min after the instillation. The remaining of alphaG-rutin metabolites, mainly rutin, in the intestine were 58% of instilled alphaG-rutin after 150 min. In the experiment by using the isolated mucosa of the jejunum, ileum and cecum, alphaG-rutin and rutin, but not quercetin, appeared in the serosal sides of all segments, and they were increased linearly from 10 to 100 mmol/l of mucosal alphaG-rutin. We also showed portal injected alphaG-rutin was very rapidly cleared from the blood, and appeared a large amount of conjugates. In conclusion, a soluble flavonoid-glycoside, alphaG-rutin, was absorbed as glycosides into the portal blood. A part of alphaG-rutin was hydrolyzed to rutin, but not to aglycone, through the intestine.  相似文献   

2.
In vivo studies on rats have demonstrated that considerable amounts of iodide are transported from the bloodstream into the gastric lumen. The mechanisms for and functional significance of this transport are poorly understood. Active (driven by Na(+)/K(+)-ATPase) iodide transport into thyroid follicular cells is mediated by the sodium-iodide symporter (NIS), which is also abundantly expressed in gastric mucosa. We aimed to further investigate the iodide transport in gastric mucosa and the possible role of NIS in this transport process. Iodide transport in rat gastric mucosa was studied in vitro in an Ussing chamber system using (125)I as a marker. The system allows measurements in both directions over a mucosal specimen. A considerable transport of iodide (from the serosal to the mucosal side) was established across the gastric mucosa, whereas in the opposite direction (mucosa to serosa), iodide transport was negligible. Sodium perchlorate (NaClO(4)), a competitive inhibitor of NIS, and ouabain, an inhibitor of the Na(+)/K(+)-ATPase, both attenuated gastric iodide transport from the serosal to the mucosal side. To investigate a possible neuroendocrine regulation of the iodide transport identified to occur from the serosal to the mucosal side of the stomach, thyroid-stimulating hormone (TSH), thyrotropin-releasing hormone (TRH), vasoactive intestinal peptide (VIP), histamine, or nitric oxide donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) was added. None of these substances influenced the iodide transport. We conclude that iodide is actively transported into the gastric lumen and that this transport is at least partly mediated by NIS. Additional investigations are needed to understand the regulation and significance of this transport.  相似文献   

3.
Fluxes of D-xylose-1-C14 (xylose) across the wall of the isolated intestine of the bullfrog were studied. When sodium was the principal cation in the mucosal bathing fluid, the transport rate of xylose from the mucosa to the serosa was about 5 times greater than the transport rate from the serosa to the mucosa, indicating an active intestinal transport for this sugar. With potassium as the principal cation on the mucosal side, the transport rate of xylose from the mucosal to the serosal compartment is reduced about 5 to 6 times without appreciable change in the serosal to mucosal transport. The asymmetry was also considerably reduced when ouabain was added to the mucosal and serosal compartments. The data confirm the in vitro and in vivo observations indicating active transport of xylose and are also in accord with the earlier findings that active transport of sugars in the intestine is dependent upon the presence of sodium ions in the mucosal compartment and is inhibited by cardioactive steroids. Since the chemical constitution of xylose does not meet the requirements which were hitherto considered necessary for active transport of sugars in the intestine, this structural requirement has to be revised.  相似文献   

4.
UDP-glucuronosyltransferase expressed in the rat intestinal epithelial cells is important as the first barrier against chemicals. The distribution of 1-naphthol and its glucuronide formed in rat intestine was estimated by using everted intestine. Roughly 60% of the 1-naphthol added to the mucosal fluid was absorbed into the mucosa of the small intestine and colon within 30 min. Approximately 66% of the 1-naphthol absorbed in the proximal intestine was secreted intraluminally as a glucuronide, and a minimal 9% was transported into the serosal fluid as a glucuronide. In the distal intestine, approximately 34% was secreted intraluminally and 30% was transported into the serosal fluid as a glucuronide. The greatest amount of the glucuronide (37% of the absorbed 1-naphthol) was transported into the serosal fluid, whereas a minimal 7% was secreted intraluminally in the colon. In marked contrast, the colon was found to transport 1-naphthol-glucuronide from the mucosal fluid into the serosal fluid at an approximately 8-fold higher rate than that of the small intestine. These results suggest that, in the small intestine, phenolic xenobiotics are mostly glucuronidated and secreted intraluminally and that the resulting glucuronide is absorbed and transported into the serosal side of the colon.  相似文献   

5.
  • 1.1. Isolated midguts of the freshwater snail Biomphalaria glabrata were mounted in an incubation chamber in saline containing 2 mM glucose and perfused with the same solution. External and internal media were continuously gassed with carbogen gas (95% O2, 5% CO2). In order to measure the flux rates of glucose [14C]glucose was applied in the perfusion medium or in the incubation medium. Net fluxes of glucose were calculated as the differences between unidirectional in- and effluxes.
  • 2.2. A directed net flux from the mucosal to the serosal side of the intestine was demonstrated (mucosal to serosal = 50 ± 10 nmol cm−2hr−1(N = 6) serosal to mucosal 7 ± 1 nmol cm−2hr−1 (N = 6), net flux = 43 nmol cm−2hr−1).r
  • 3.3. The active transport of glucose was reduced by the presence of metabolic inhibitors, cyanide (1 mM) and dinitrophenol (1 mM) on the mucosal as well as on the serosal side. Ouabain (1 mM) inhibited the transport rate only when it was added on the serosal side. Amiloride (1 mM) had no effect on the transport rate whether added on the mucosal or on the serosal side.
  • 4.4. Inhibition of glucose transport by oubain, a specific inhibitor of Na+/K+-ATPase, suggests that glucose transport is secondary active and coupled to Na+-transport.
  相似文献   

6.
Experiments were performed to investigate whether the fluid transported across the small intestine is isoosmotic with the mucosal solution when the active transport of glucose is partially inhibited. Everted hamster mid small intestine was incubated in one of the following four mucosal solutions: (1) Isotonic control, Krebs-Ringer bicarbonate solution containing 10 mM glucose (KRBSG), (2) Isotonic with phlorizin, KRBSG + 5X10-5 M phlorizin, (3) Hypertonic control, KRBSG + 50 mM mannitol, (4) Hypertonic with phlorizin, KRBSG + 50 MM mannitol + 5x10-5 M phlorizin. The serosal surface of the intestine was not bathed. Results indicate that the transported fluid was always isoosmotic with any of the mucosal solutions used. When the mucosal solution was made hypertonic with mannitol, the concentration of glucose and electrolytes in the absorbate increased, and as a result, the absorbate became hypertonic and isoosmotic with the mucosal solution. The presence of phlorizin either in the isotonic or in the hypertonic mucosal solution decreased the glucose concentration of the absorbate, but the transported fluid became isoosmotic with the mucosal solution due to a higher concentration of Na, K, and their associated anions. Phlorizin caused a decrease in the transmural potential difference. In spite of this, the presence of this glucoside in the mucosal solution increased the transport of sodium in relation to glucose transport. It is suggested that, at the concentrations used, phlorizin inhibits sodium movement through the electrogenic pathway, but increases the transport of this ion through the non-electrogenic route. This increase in neutral sodium transport seems to compensate for the low concentration of glucose in the absorbate, so that the absorbate becomes isoosmotic with the mucosal solution whether the latter is isotonic or hypertonic. It is suggested further that isoosmotic transport of fluid is an inherent property of the small intestine and that there may be an osmoregulatory mechanism in the gut which controls this process.  相似文献   

7.
Rat everted jejunal sacs were incubated for 15 and 30 min at 37 degrees C in oxygenated Krebs-Henseleit buffer, pH 7.4, containing 0.2 microM [3H]-thiamin (3H-T) or [3H]-thiamin monophosphate (3H-TMP) with and without 10 mM 1-phenylalanine (PAL) or 2.5 mM levamisole (LEV). The concentrations of 3H-T and its phosphoesters in sac wall and serosal fluid were determined by a radiometric method after electrophoretic separation. In separate experiments, thiamin pyrophosphokinase (TPKase) and thiamin pyrophosphatase (TPPase) activities were determined in mucosal scrapings, with and without PAL or LEV, by using a radiometric and a colorimetric method, respectively. 3H-TMP was transported partly unchanged by an active mechanism similarly to 3H-T, but less efficiently. During transport, 3H-TMP was also enzymatically transformed to thiamin (T) and thiamin pyrophosphate, which accumulated in the tissue. In the serosal fluid, the concentration of 3H-TMP exceeded that of 3H-T. Presence of PAL or LEV with 3H-T or 3H-TMP in the incubation medium reduced the serosal transport and the tissue content of T compounds. LEV caused a dose-dependent inhibition of TPKase without affecting TPPase, whereas PAL inhibited both activities to about the same extent. These results indicate that the transport of TMP involves a number of different processes similar to those responsible for T transport. The effects of PAL and LEV underline the importance of phosphorylation-dephosphorylation coupling.  相似文献   

8.
Damage to the stomach results in excessive movement of hydrogen ion (H+) out of the lumen, and increased movement of sodium (Na+) and potassium (K+) into the lumen. Histamine liberation during damage probably adds to the destruction by increased capillary permeability and formation of edema. Previous reports have shown that the synthetic prostaglandin analogue 16,16-dimethyl prostaglandin E2 (Dm PGE2) protects dog gastric mucosa from aspirin- and ethanol-induced gastric mucosa damage. The effects of dm PGE2 on bile salt (sodium taurocholate) induced injury has not been investigated. Using the canine Heidenhain pouch, the present study examined the action of dm PGE2 on gastric mucosal damage induced by 5 mM sodium taurocholate in 100 mM HCl. Bile salt damaged the pouch mucosa as evidenced by an increased loss of H+, and increased net fluxes of both Na+ and K+. There was also an increase in the histamine content of the fluid irrigating the Heidenhain pouch. Intravenous injection of dm PGE2 in the doses 0.1 and 1.0 microgram/kg 1/2 h before administration of the sodium taurocholate in HCl significantly reduced the net loss of H+ and the gain of Na+, K+, and histamine. It is concluded the dm PGE2 effectively protects the canine gastric mucosa from the damaging effects of bile salt and that the mechanism of dm PGE2 protection of canine oxyntic mucosa may be mediated in part via inhibition of the gastric mucosal release of histamine.  相似文献   

9.
Mineo H  Hara H  Tomita F 《Life sciences》2001,69(5):517-526
We examined the effect of short-chain fatty acids (SCFAs) on Ca absorption from the large intestine in rats in vitro. An Ussing-type chamber technique was used to determine the net transport of Ca from the luminal side to the basolateral side of isolated epithelium in cecum and colon preparations. The concentration of Ca in the serosal and mucosal Tris buffer solution was 1.25 mM and 10 mM, respectively. Both solutions were warmed at 37 degrees C and bubbled with 95% O2 and 5% CO2. During and after the incubation period (30 min or 60 min), the Ca concentration in the serosal medium was determined and the net transepithelial Ca transport was evaluated. The addition of 80 mM acetic acid, 40 mM propionic acid and 10 mM butyric acid to the mucosal medium increased net Ca absorption (about 300%) in the cecum and colon. An individual application of acetic, propionic or butyric acid (0.01 to 100 mM) to the mucosal medium also increased net Ca absorption at doses of 10 mM and /or 100 mM in the cecum and colon. An increase in solute concentration in the mucosal medium by addition of glycerol or PGE400, or a decrease in pH (7.0-3.0) by addition of HCl did not affect transepithelial Ca transport. We concluded that SCFAs affect the epithelial tissue and promote Ca absorption from the large intestine in vitro. The enhancement of Ca transport induced by SCFAs might be involved in the paracellular transport mechanism.  相似文献   

10.
The aim of this study was to analyze the relationship of the Na+/Ca2+ exchanger, cytosolic calcium, and chloride to the transepithelial transport of sodium in isolated frog skin. Sodium transport was measured as amiloride-inhibitable short circuit current (SCC). We studied the effect of variations in the concentrations of external chloride and of the manipulation of calcium on sensitive amiloride SCC. Modifications in the movement of Ca2+ were induced by an ionophore, A23187, and a Ca2+ channel blocker, nifedipine. Calcium ionophore A23187 (5 and 20 microM), in a normal Ringer's solution, increased SCC and transepithelial potential difference (PD). In contrast, nifedipine (20 microM) reduced SCC and PD. The role of the Na+/Ca2+ exchanger was studied using dichlorobenzamil (DCB, 50 microM) and quinacrine (1 mM), inhibitors of this exchanger. They selectively increased SCC and PD on the mucosal side of the skin, with no effect on the serosal side. This response occurred only in the presence of extracellular calcium. Replacement of NaCl by sodium methanesulfonate or the addition of furosemide (1 mM) at the serosal compartment, decreased basal SCC and PD and blocked the response to A23187 and the mucosal effect of DCB and quinacrine. These results suggest the presence of an Na+/Ca2+ exchanger located on the mucosal side of the frog skin, which participates in the transepithelial sodium transport. The action of this exchanger may be modulated by external chloride and calcium. J. Exp. Zool. 289:23-32, 2001.  相似文献   

11.
K A Hubel  K S Renquist 《Life sciences》1988,42(18):1781-1788
Ouabain, when added to fluid bathing rabbit ileal mucosa mounted in a flux chamber, transiently increases short circuit current, implying a paradoxical secretory response. To determine the cause of this change, we studied unidirectional fluxes of 36Cl and 23Na and the effects of ion substitution, of reduced Ca concentration, verapamil, tetrodotoxin and atropine. Ouabain 0.1 mM, transiently increased the serosal to mucosal flux of Cl and Na, increased Isc and PD and reduced ion conductance. The Isc response to ouabain was diminished by reducing the bath fluid concentration of Cl, of Ca, and by adding verapamil. Tetrodotoxin both delayed and reduced the maximal Isc response; atropine had no effect. We conclude that ouabain acts by releasing a neurotransmitter of unknown identity and by increasing the serosal to mucosal flux of Cl.  相似文献   

12.
The ion activities in the lateral spaces of the unilateral preparation of the gallbladder of Rana catesbiana were measured by double-barrelled ion-selective microelectrodes. The bladders were bathed in a saline solution with a low osmolarity (62 mOsm) containing, in mM: 27 Na+, 27 Cl-, 2 K+, 1 Ca++, 4 HCO3-. Working at reduced osmolarities had the advantage of an increased volume transport and of widened intercellular spaces. The reference barrel recorded an electrical potential of +2.7 mV in the spaces; they contained a solution similar to the external solution. The electrodes recorded a Na+ concentration of 27 mM, a K+ concentration of 1.7 mM, a Ca++ concentration of 0.69 mM and a Cl- concentration of 28.5 mM. In the spaces there was a lower resistance between the tip of the electrode and the serosal bath than that recorded with the tip in the lumen, and injection of fluorescent dye (11 A diameter) via the electrodes did not stain the cells. The concentrations in the secretion were similar to those in the spaces. The intracellular compartment had an apparent K+ concentration of 95 mM, and the concentrations of Na+ and Cl- were both about 5 mM. These data indicate that when the gallbladder is bathed with hypotonic solutions and is transporting fluid at approximately three or four times the normal rate, there are no significant osmotic gradients between the lumen and the lateral spaces. It is suggested that transcellular transport of water is implemented by a combination of high osmotic permeabilities across both mucosal and serosal cell membranes and low reflection coefficients (for K+ salts) at the serosal cell membranes.  相似文献   

13.
The association between Cl-, HCO3- and H+ transported by toad bladders was investigated. Net mucosal to serosal Cl- transport by Colombian toad bladders was stimulated by incubation in HCO3- free solutions. In addition, when Colombian or Dominican toad bladders were exposed to low HCO3- concentrations on the mucosal side and 25 mM HCO3- on the serosal side, net mucosal leads to serosal Cl- transport was induced. Neither acetazolamide nor cyanide significantly inhibited Cl- transport under these conditions. The presence of a pH gradient, more acid on the mucosal side, also induced net mucosal leads to serosal Cl- transport. The results suggest that Cl- transport by toad bladders may occur by exchange with HCO3- or OH-; this process may not require carbonic anhydrase or oxidative metabolism. The Cl- transport by toad bladders is qualitatively different from the electrogenic Cl- transport of the thick limb of Henle's loop, but may be similar to a process which occurs in other portions of the nephron.  相似文献   

14.
The fluid and solute transport properties of pleural tissue were studied by using specimens of intact visceral and parietal pleura from adult sheep lungs. The samples were transferred to the laboratory in a Krebs-Ringer solution at 4 degrees C within 1 h from the death of the animal. The pleura was then mounted as a planar sheet in a Ussing-type chamber. The results that are presented in this study are the means of six different experiments. The spontaneous potential difference and the inhibitory effects of sodium nitroprusside (SNP), ouabain, and amiloride on transepithelial electrical resistance (R(TE)) were measured. The spontaneous potential difference across parietal pleura was 0.5 +/- 0.1 mV, whereas that across visceral pleura was 0.4 +/- 0.1 mV. R(TE) of both pleura was very low: 22.02 +/- 4.1 Omega. cm2 for visceral pleura and 22.02 +/- 3.5 Omega. cm2 for parietal pleura. There was an increase in the R(TE) when SNP was added to the serosal bathing solution of parietal pleura and to the serosal or mucosal bathing solution in visceral pleura. The same was observed when ouabain was added to the mucosal surface of visceral pleura and to either the mucosal or serosal surface of parietal pleura. Furthermore, there was an increase in R(TE) when amiloride was added to the serosal bathing solution of parietal pleura. Consequently, the sheep pleura appears to play a role in the fluid and solute transport between the pleural capillaries and the pleural space. There results suggest that there is a Na+ and K+ transport across both the visceral and parietal pleura.  相似文献   

15.
La3+ was used to assess the role of membrane-bound Ca2+ in the regulation of basal and antidiuretic hormone (ADH)-induced Na+ transport by the isolated toad urinary bladder. Na+ transport was monitored by means of a short-circuit current (Isc) device. Mucosal La3+ (0.5-5 mM) increased Isc, while serosal La3+ (5 mM) produced a biphasic response (stimulation followed by inhibition). The stimulatory effects of La3+ were additive when present on both sides and were suppressed by mucosal amiloride or serosal ouabain. The action of mucosal La+ was reversible but the inhibition produced by serosal La3+ was not. In the presence of serosal La3+ the natriferic effect of ADH was abolished, but Theophylline, dibutyryl-cAMP, Amphotericin B, mucosal La3+, mucosal low pH, and phospho(enol) pyruvate, were able to increase Isc. These results suggest that Ca2+ binding sites in apical and basolateral membranes may play a key role in the modulation of both basal and ADH-induced Na+ transport. Serosal La3+ apparently inactivates the hormone-receptor interaction and/or the link between the ADH-receptor complex and the activation of adenylate cyclase, but does not interfere with the operation of the Na+ "pump", the basal activity of adenylate cyclase or any of the intracellular events that mediate the effect of ADH on Na+ transport.  相似文献   

16.
The effects of theophylline and dibutyryl cyclic AMP, on in vitro unidirectional galactose fluxes across the mucosal and serosal borders of rabbit ileum have been studied. 1. When Ringer [galactose] = 2mM, theophylline and dibutyryl cyclic AMP reduce both mucosal-serosal and serosal-mucosal galactose flux by approx. 50%. The K1 for theophylline inhibition of flux in both directions is 2 mM. 1 mM dibutyryl cyclic AMP elicits a maximal inhibitory response. Concurrent with the inhibition in transmural galactose fluxes, theophylline and dibutyryl cyclic AMP increase the tissue accumulation of [galactose] and the specific-activity ratio R of 3H : 14C-labelled galactose coming from the mucosal and serosal solutions respectively. It is deduced that theophylline and dibutyryl cyclic AMP are without effect on the mucosal unidirectional permeability to galactose but cause a symmetrical reduction in serosal entry and exit permeability. 2. Reduction in the asymmetry of the mucosal border to galactose by reducing Ringer [Na], raising Ringer [galctose] or adding ouabain reduces the theophylline-dependent increase in galactose accumulation. 3. Hypertonicity in the serosal solution increases the permeability of the serosal border to galactose and reduces tissue galactose accumulation. Serosal hypertonicity partially reverses the theophylline-depedent effects on galactose transport. Replacing Ringer chloride by sulphate abolishes the theophylline-dependent effects on galactose transport. 4. It is considered that the theophylline-dependent increase in galactose accumulation results from the reduction in serosal permeability. This is shown to be a quantitatively consistent inference. 5. Further support for the view that the asymmetric transport of galactose in rabbit ileum results from convective-diffusion is presented.  相似文献   

17.
Iodide secretion across different regions of rat small intestine has been investigated in vitro using the standard Wilson-Wiseman technique. Net I- secretion was observed along the entire small intestine, being significantly higher in the central region. Anaerobic conditions, ouabain (2 mM) and Na+ free Ringer solution prevented net I- secretion, whilst both theophylline (1 mM) and carbachol (0,1 mM) enhanced the observed basal intestinal I- secretion. Furthermore, Ca2+-deprived bathing solutions significantly reduced intestinal I- secretion. Epithelial I- uptake from both mucosal and serosal sides was measured by using a Ussing-type chamber technique. The initial rate of I- uptake across the mucosal membrane was significantly higher in the central region than in the proximal part of rat small intestine. No significant differences were observed in the rate of I- uptake from the serosal side. These studies suggest that mucosal I- permeability might determine the direction of net I- intestinal transport and that cytosolic Ca2+ may be a physiological regulator of intestinal I- transport.  相似文献   

18.
The effect of baicalein on mucosal ion transport in the rat distal colon was investigated in Ussing chambers. Mucosal addition of baicalein (1-100 microM) elicited a concentration-dependent short-circuit current (I(sc)) response. The increase in I(sc) was mainly due to Cl(-) secretion. The presence of mucosal indomethacin (10 microM) significantly reduced both the basal and subsequent baicalein-evoked I(sc) responses. The baicalein-induced I(sc) were inhibited by mucosal application of diphenylamine-2-carboxylic acid (100 microM) and glibenclamide (500 microM) and basolateral application of chromanol 293B (30 microM), a blocker of K(v)LQT1 channels and Ba(2+) ions (5 mM). Treatment of the colonic mucosa with baicalein elicited a threefold increase in cAMP production. Pretreating the colonic mucosa with carbachol (100 microM, serosal) but not thapsigargin (1 microM, both sides) abolished the baicalein-induced I(sc). Addition of baicalein subsequent to forskolin induced a further increase in I(sc). These results indicate that the baicalein evoked Cl(-) secretion across rat colonic mucosa, possibly via a cAMP-dependent pathway. However, the action of baicalein cannot be solely explained by its cAMP-elevating effect. Baicalein may stimulate Cl(-) secretion via a cAMP-independent pathway or have a direct effect on cystic fibrosis transmembrane conductance regulator.  相似文献   

19.
1. Electrical parameters and transepithelial glucose and galactose transport were determined in vitro across anterior and posterior intestine of the culture fish Sparus aurata. 2. Electrical potential difference (PD) and short-circuit current (Isc) were serosa-positive in anterior intestine, while they were serosa-negative or near zero in posterior intestine. 3. Tissue conductance (Gt) was higher in posterior than in anterior intestine. In both parts it was decreased when the Na ion was omitted in mucosal and serosal reservoirs. 4. Addition of glucose or galactose to the mucosal side of intestine caused an increase in PD and Isc in posterior intestine but did not significantly change PD and Isc in anterior intestine. 5. Isotopic flux of glucose and galactose measurements in short-circuit conditions showed a net active glucose and galactose absorption in posterior intestine, while in anterior intestine active transport of glucose or galactose was not observed. 6. The net transport of glucose and galactose in posterior intestine was decreased to zero in the absence of Na in mucosal and serosal reservoirs or in the presence of ouabain (1 mM) in serosal solution.  相似文献   

20.
The proximal colon of the new-born pig maintains a stable short-circuit current which is partly dependent upon the presence of methionine. This interaction betweeen methionine and short-circuit current shows Michaelis-Menten knetics with a Km of 0.24 mM and a V of 27 muA.cm-2. The net flux of methionine to the serosal surface of proximal colons also shows a hyperbolic relation to the external concentration of methionine (Km 0.38 mM; V 10.4 nmol.cm-2. min-1). The proximal colon concentrates methionine within its epithelium giving a mucosal to medium ratio of 11.2 +/- 1.9 (90 min incubation in 1 mM methionine). The ability of the colon to transport methionine across and concentrate methionine within its mucosa is maintained for at least 24 h after birth. Colonic transport of amino acids could be physiologically important in the pig, where the immediate post-natal transfer of immune globulins has been shown to cause a temporary inhibition of normal intestinal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号