首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sarcoplasmic reticulum vesicles were preloaded with unlabeled CaCl2, and 45Ca2+ incorporation into the vesicles was determined by adding 45CaCl2 to the external medium in the presence of ATP and ADP. In the absence of added MgCl2, the steady state rate of the (ATP, ADP)-dependent 45Ca2+ incorporation was extremely low, being in good agreement with that of the Ca2+-dependent ATP hydrolysis which was catalyzed by the membrane-bound (Ca2+, Mg2+)-ATPase. In contrast, it was greatly increased by addition of MgCl2 and became much higher than the steady state rate of the Ca2+-dependent ATP hydrolysis. The kinetic analysis of the results gave support to the probability that the MgCl2 addition markedly shifted the equilibrium of the reaction of Caout . EP and Cain . EP represent phosphoenzymes with bound Ca2+ which is exposed to the external medium and to the internal medium, respectively).  相似文献   

2.
Sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle were solubilized with a high concentration of dodecyl octaethyleneglycol monoether (C12E8) and the kinetic properties of the Ca2+,Mg2+-dependent ATPase [EC 3.6.1.3] were studied. The following results were obtained: 1. SR ATPase solubilized in C12E8 retains high ability to form phosphoenzyme ([EP] = 4--5 mol/10(6) g protein) for at least two days in the presence of 5 mM Ca2+, 0.5 M KCl, and 20% glycerol at pH 7.55. 2. The ATPase activity was dependent on both Mg2+ and Ca2+. However, the rate of E32P decay after the addition of unlabeled ATP was independent of Mg2+. 3. Most of the EP formed in the absence of Mg2+ was capable of reacting with ADP to form ATP in the backward reaction. However, in the presence of 5 mM Mg2+, the amount of ATP formed was markedly reduced without loss of the reactivity of the EP with ADP. 4. The removal of C12E8 from the ATPase by the use of Bio-Beads resulted in the full restoration of the Mg2+ dependency of the EP decomposition. 5. These results strongly suggest that in the case of SR solubilized with a high concentration of C12E8 the decomposition of phosphoenzyme is Mg2+ independent and ATP is mainly hydrolyzed through Mg2+-dependent decomposition of an enzyme-ATP complex, which is in equilibrium with phosphoenzyme and ADP.  相似文献   

3.
The amount of Ca2+ bound to the Ca2+,Mg2+-dependent ATPase of deoxycholic acid-treated sarcoplasmic reticulum was measured during ATP hydrolysis by the double-membrane filtration method [Yamaguchi, M. & Tonomura, Y. (1979), J. Biochem. 86, 509--523]. The maximal amount of phosphorylated intermediate (EP) was adopted as the amount of active site of the ATPase. In the absence of ATP, 2 mol of Ca2+ bound cooperatively to 1 mol of active site with high affinity and were removed rapidly by addition of EGTA. AMPPNP did not affect the Ca2+ binding to the ATPase in the presence of MgCl2. Under the conditions where most EP and ADP sensitive at steady state (58 microM Ca2+, 50 microM EGTA, and 20 mM MgCl2 at pH 7.0 and 0 degrees C), bound Ca2+ increased by 0.6--0.7 mol per mol active site upon addition of ATP. The time course of decrease in the amount of bound 45Ca2+ on addition of unlabeled Ca2+ + EGTA was biphasic, and 70% of bound 45Ca2+ was slowly displaced with a rate constant similar to that of EP decomposition. Similar results were obtained for the enzyme treated with N-ethylmaleimide, which inhibits the step of conversion of ADP-sensitive EP to the ADP-insensitive one. Under the conditions where most EP was ADP insensitive at steady state (58 microM Ca2+, 30 microM EGTA, and 20 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ increased slightly, then decreased slowly by 1 mol per mol of EP formed after addition of ATP. Under the conditions where about a half of EP was ADP sensitive (58 microM Ca2+, 25 microM EGTA, and 1 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ did not change upon addition of ATP. These findings suggest that the Ca2+ bound to the enzyme becomes unremovable by EGTA upon formation of ADP-sensitive EP and is released upon its conversion to ADP-insensitive EP.  相似文献   

4.
Two reaction intermediates of H-meromyosin (HMM) ATPase [EC 3.6.1.3], E2AT32P, and (see article), were formed by mixing excess HMM with AT32P. Then a large excess of unlabelled ATP was added, and the amount of AT32P liberated from E2AT32P was measured as the difference between the total amount of AT32P in the reaction mixture and the amount of AT32P bound to HMM, obtained by filtering the mixture after adding charcoal to adsorb nucleotides (charcoal-filtration method). The amount of free AT32P was also measured as the amount of glucose-6-32P formed within 15 sec after adding large excesses of hexokinase [EC 2.7.1.1] and glucose to the reaction mixture. The rate constant, k-2, for the step E2ATP yields E plus ATP was calculated at various KCl concentrations from the time-course of liberation of AT32P. The intermediate, (see article), was formed by mixing HMM with AT32P in a molar ratio of 1:2, and the rate constant, k-6, for the step (see article) was also determined by the same procedures used for k-2. In 0.5 M KCl and 2 mM MgCl2 at pH 7.8 and 0 degrees, k-2 and k-6 were 0.002 sec-1 and 0.1 sec-1 or more, respectively. From the rate constants determined in this work and the rate and equilibrium constants which we reported previously, the standard free energy changes (kcal/mole) for formation of various reaction intermediates in the reaction of HMM ATPase in 0.5 M KCl and 2 mM MgCl2 at pH 7.8 and 0 degrees were calculated to be as follows: (see article).  相似文献   

5.
Previously, we proposed the following reaction machanism for the transport ATPase (EC 3.6.1.3) reaction in the presence of high concentrations of Mg2+ and Na+:(see article). Some kinetic and thermodynamic properties of steps 3 and 4 were investigated, and the following results were obtained. 1. When the reaction was started by adding ATP to the enzyme in the presence of 50 mM Na+ and 0.5 mM K+ or in the presence of 50mM Na+ and 0.5mM Rb+, the amount of E ADP P increased with time and maintained a constant level after reaching a maximum. We could not observe the initial burst of EP formation, which was observed by Post er al. in the presence of 8 mM Na+ and 0.01 mM Rb+. 2. The existence of quasi-equilibrium between E2ATP and E ADP P in the presence of low concentrations of Na+ was suggested by the fact that the values of the reciprocal of the equilibrium constant, K3 of step 3 obtained by the following three methods were almost the same. a) The value of 1+K3 was estimated from the ratio of vo/[EP] to kd, where vo is the rate of ATP hydrolysis in the steady state, [EP] the concentration of EP, and kd the first-order rate constant of EP disappearance after stopping EP formation. b) This value was also calculated from the ratio of the amount of P1 liberated to that of decrease in EP after stopping EP formation. c) The value of K3 was also calculated from the initial rapid decrease in EP on adding K+ and EDTA, assuming that the rapid decrease was due to a shift of the equilibrium toward E2ATP on adding K+. For example, the value of K3 with 10mM NaCL and 0.5mM KCL was 7--11. Although ATP formation due to a shift of the equilibrium toward E2ATP by a K+ jump in the presence of a low concentration of Na+ was observed at 0 degrees, the amount of ATP formed by a K+ jump at 15 degrees was less than the value expected from the shift of the equilibrium. 3. The values of delta H degrees and delta S degrees of step 3 were estimated in the presence of a sufficient amount of Na+ and in the absence of K+. They were +4--+5 kcal mole minus 1 and +15--+16 entropy units mole minus1, respectively. On the basis of kinetic studies of the elementary steps and the overall reaction of Na+-K+-dependent ATPase [EC 3.6.1.3], we (1--4) showed that a phosphorylated intermediate, EP, is formed via two kinds of enzyme-substrate complex, E1ATP and E2ATP, that the EP is in K+-dependent quasi-equilibrium with E2ATP, and that in the presence of high concentration of Mg2+, EP is in a high-energy state and contains bound ADP, E ADP P.(see article).  相似文献   

6.
Hydrolysis of acetyl phosphate is inhibited by high concentrations of Pi and MgCl2, probably due to an increase in the steady-state level of phosphoenzyme formed from Pi in the medium. A dual effect of ADP during steady-state hydrolysis of acetyl phosphate was observed. ADP inhibited hydrolysis in the presence of 5 mM MgCl2 and no added Pi, whereas it stimulated hydrolysis when phosphoenzyme formation by Pi was favored by including 6 mM Pi and 20 mM MgCl2 in the assay medium. ATP inhibited acetyl phosphate hydrolysis in both of these assay media. When phosphoenzyme formation by Pi in the presence of acetyl phosphate was stimulated at Ca2+ concentrations sufficient to saturate the low-affinity Ca2+-binding sites, ADP stimulated acetyl phosphate hydrolysis and also promoted ATP synthesis by reversal of the catalytic cycle. The rate of ATP synthesis was dependent on ADP, Pi and Ca2+. Phosphoenzyme formation by Pi and MgCl2, whether in the absence of Ca2+ and acetyl phosphate, or during acetyl phosphate hydrolysis, was inhibited by ADP and ATP. These results suggest that ADP interacts with different intermediates of the catalytic cycle and that expression of inhibition or activation of acetyl phosphate hydrolysis depends on the steady-state level of phosphoenzyme formed by Pi.  相似文献   

7.
Reaction of the purified Ca2+-ATPase of sarcoplasmic reticulum at 0 degrees C at low [gamma-32P]ATP (0.1 to 0.67 microM) and enzyme (0.025 to 0.24 microM) concentration in the presence of 0.11 to 30 mM Ca2+ without added Mg2+ has resulted in the formation of phosphorylated intermediate (EP:maximal level of EP = 0.45 mol/mol of enzyme) at a very slow rate. Under these conditions, the reaction steps in which EP decomposition takes place are completely prevented. This has permitted us to study the EP formation reaction and its reversal specifically, with a considerably improved time resolution. An apparent rate constant of EP formation (Vf) increases in parallel with the concentration of Ca . ATP, but not with those of Mg . ATP, or of protonated or fully ionized free ATP. This suggests that Ca . ATP is the substrate under these conditions. If Co2+ or Mn2+ are in excess over the other ions during the reaction, Vf varies in parallel with [Co . ATP] or [Mn . ATP]. Thus, it appears that either Ca2+, Co2+, or Mn2+ can be complexed with ATP to form the effective substrate. An apparent rate constant of the back reaction of EP initiated by addition of ADP to EP (Vr) increases in proportion to [ADP] or [H . ADP], but is inhibited by increasing concentrations of the ADP complex with Ca2+ or Mg2+, indicating that free ADP or protonated ADP, or both, are actual substrates for the back reaction of EP. These results suggest a new type of site to which the metal moiety of metal . ATP complex remains bound after the release of ADP from the enzyme. An acid-stable phosphorylated intermediate (EP) produced in the presence of high Ca2+ concentrations (e.g. 0.11 mM) without added Mg2+ does not decompose spontaneously, and the major portion (approximately 90%) of this EP (EPD+) reacts with ADP to form ATP (ADP-sensitive). Upon chelating Ca2+ with ethylene glycol bis(beta-amino-ethyl ether)N,N,N',N'-tetraacetic acid (EGTA), EPD+ is converted to another form of EP (EPD-), which is unreactive with ADP (or ADP-insensitive). Addition of Mg2+, after initiation of the reaction leading to EPD- by EGTA, results in rapid production of Pi from a portion of EPD- with KMg approximately equal to 3.3 x 10(3) M-1. The fraction of EPD- that is Mg2+-sensitive (EPD-,M+) increases with reaction time at a much slower rate than the Mg2+-insensitive portion of EPD- (EPD-,M-). These results suggest that the enzyme reaction involves the sequential formation of at least three forms of acid-stable EP, viz. in the order of formation, EPD+, EPD-,M-, and EPD-,M+. The equilibrium between EPD+ and EPD-,M- is shifted by higher [K+] and [Ca2+] towards EPD+.  相似文献   

8.
The ratio between Ca2+ uptake and Ca(2+)-dependent ATP hydrolysis measured in sarcoplasmic reticulum vesicles of rabbit skeletal muscle was found to vary greatly depending on the concentrations of oxalate or Pi used. In the presence of 5 mM oxalate, 20 mM Pi, and 1 mM Pi, the ratios found were in the range of 1.4-2.3, 0.6-0.8, and 0.01-0.10, respectively. The rates of Ca2+ exchange and ATP synthesis were measured at the steady state by adding trace amounts of 45Ca and 32Pi, after the vesicles had been loaded with Ca2+. In the presence of 1 mM Pi, 10 mM MgCl2, and 0.2 mM CaCl2, the ratio between Ca2+ exchange and ATP synthesis varied from 9 to 14. This ratio approached two when Ca2+ in the medium was reduced to a very low level, or when in the presence of Ca2+, dimethyl sulfoxide was added to the assay medium, or when the Pi concentration was raised from 1 to 20 mM. A ratio of two was also measured when the steady state was attained using ITP instead of ATP. In all the conditions that led to a ratio close to two, there was an increase in the fraction of enzyme phosphorylated by Pi. It is proposed that the coupling between Ca2+ translocation and ATP hydrolysis or synthesis is modulated by the phosphorylation of the ATPase by Pi.  相似文献   

9.
An acid-stable phosphoprotein was formed in a microsomal membrane fraction isolated from bovine aortic smooth muscle in the presence of Mg2+ + ATP and Ca2+. The microsomes also showed Ca2+ uptake activity. The Ca2+ dependence of phosphoprotein formation and of Ca2+ uptake occurred over the same range of Ca2+ concentration (1-10 microM), and resembled similar findings from rabbit skeletal microsomes. The molecular weight of the phosphorylated protein, estimated by SDS-gel electrophoresis, was approximately 105,000. The phosphoprotein was labile at alkaline pH, and its decomposition was accelerated by hydroxylamine. Half-maximum incorporation of 32P in the presence of 10 microM Ca2+ occurred at 60 nM ATP. The calcium-dependent phosphoprotein formation was not affected by 5 mM NaN3, but was inhibited in a dose-dependent fashion by ADP with a 50% inhibition occurring at 180 microM. Fifty mM MgCl2 was required for the maximal phosphorylation. The rate of phosphoprotein decomposition after adding 2 mM EGTA was accelerated by varying the Mg2+ concentration from 10 microM to 3 mM. Alkaline pH (9.0) slowed the rate of phosphoprotein decay. Optimal Ca2+-dependent phosphoprotein occurred at 15 degrees C over a broad pH range (6.4 to 9.0). The activation energy of EGTA-induced phosphoprotein decomposition was 25.6 kcal/mol between 0 and 16 degrees C and 14.6 kcal/mol between 16 and 30 degrees C. The phosphoprotein formed by aortic microsomes was thus quite similar to the acid-stable phosphorylated intermediate of the Ca2+-transport ATPase of sarcoplasmic reticulum from skeletal and cardiac muscle. These data suggest that the Ca2+-dependent phosphoprotein is a reaction intermediate of the Ca2+,Mg2+-ATPase of the aortic microsomes.  相似文献   

10.
Na+-K+-Dependent ATPase [EC 3.6.1.3] was preincubated with ATP in the presence of a high concentration of MgCl2, and the phosphorylated intermediate, EP, was formed by adding a high concentration of NaCl. The following results showed that EP was converted from an ADP-sensitive to an ADP-insensitive form by a single turnover of the ATPase reaction. 1. After initiating the reaction by adding NaCl, almost all the EP was at first sensitive to added ADP, but its sensitivity to ADP decreased with increase in the time interval between the additions of NaCl and of ADP. 2. Both in the presence and absence of KCl, the time course of the replacement of ADP-sensitive EP by ADP-insensitive EP coincided with the time course of the decomposition of EP after addition of EDTA.  相似文献   

11.
N Stahl  W P Jencks 《Biochemistry》1987,26(24):7654-7667
Phosphorylation of the sarcoplasmic reticulum calcium ATPase, E, is first order with kb = 70 +/- 7 s-1 after free enzyme was mixed with saturating ATP and 50 microM Ca2+; this is one-third the rate constant of 220 s-1 for phosphorylation of enzyme preincubated with calcium, cE.Ca2, after being mixed with ATP under the same conditions (pH 7.0, Ca2+-loaded vesicles, 100 mM KCl, 5 mM Mg2+, 25 degrees C). Phosphorylation of E with ATP and Ca2+ in the presence of 0.25 mM ADP gives approximately 50% E approximately P.Ca2 with kobsd = 77 s-1, not the sum of the forward and reverse rate constants, kobsd = kf + kr = 140 s-1, that is expected for approach to equilibrium if phosphorylation were rate limiting. These results show that (1) kb represents a slow conformational change, rather than phosphoryl transfer, and (2) different pathways are followed for the phosphorylation of E and of cE.Ca2. The absence of a lag for phosphorylation of E with saturating ATP and Ca2+ indicates that all other steps, including the binding of Ca2+ ions and phosphoryl transfer, have rate constants of greater than 500 s-1. Chase experiments with unlabeled ATP or with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) show that the rate constants for dissociation of [gamma-32P]ATP and Ca2+ are comparable to kb. Dissociation of ATP occurs at 47 s-1 from E.ATP.Ca2+ and at 24 s-1 from E.ATP. Approximately 20% phosphorylation occurs following an EGTA chase 4.5 ms after the addition of 300 microM ATP and 50 microM Ca2+ to enzyme. This shows that Ca2+ binds rapidly to the free enzyme, from outside the vesicle, before the conformational change (kb). The fraction of Ca2+-free E.[gamma-32P]ATP that is trapped to give labeled phosphoenzyme after the addition of Ca2+ and a chase of unlabeled ATP is half-maximal at 6.8 microM Ca2+, with a Hill slope of n = 1.8. The calculated dissociation constant for Ca2+ from E.ATP.Ca2 is approximately 2.2 X 10(-10) M2 (K0.5 = 15 microM). The rate constant for the slow phase of the biphasic reaction of E approximately P.Ca2 with 1.1 mM ADP increases 2.5-fold when [Ca2+] is decreased from 50 microM to 10 nM, with half-maximal increase at 1.7 microM Ca2+. This shows that Ca2+ is dissociating from a different species, aE.ATP.Ca2, that is active for catalysis of phosphoryl transfer, has a high affinity for Ca2+, and dissociates Ca2+ with k less than or equal to 45 s-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The effects of K+, Na+ and nucleotides (ATP or ADP) on the steady-state phosphorylation from [32P]Pi (0.5 and 1 mM) and acetyl [32P]phosphate (AcP) (5 mM) were studied in membrane fragments and in proteoliposomes with partially purified pig kidney Na,K-ATPase incorporated. The experiments were carried out at 20 degrees C and pH 7.0. In broken membranes, the Pi-induced phosphoenzyme levels were reduced to 40% by 10 mM K+ and to 20% by 10 mM K+ plus 1 mM ADP (or ATP); in the presence of 50 mM Na+, no E-P formation was detected. On the other hand, with AcP, the E-P formation was reduced by 10 mM K+ but was 30% increased by 50 mM Na+. In proteoliposomes E-P formation from Pi was (i) not influenced by 5-10 mM K+cyt or 100 mM Na+ext, (ii) about 50% reduced by 5, 10 or 100 mM K+ext and (iii) completely prevented by 50 mM Na+cyt. Enzyme phosphorylation from AcP was 30% increased by 10 mM K+cyt or 50 mM Na+cyt; these E-P were 50% reduced by 10-100 mM K+ext. However, E-P formed from AcP without K+cyt or Na+cyt was not affected by extracellular K+. Fluorescence changes of fluorescein isothiocyanate labelled membrane fragments, indicated that E-P from AcP corresponded to an E2 state in the presence of 10 mM Na+ or 2 mM K+ but to an E1 state in the absence of both cations. With pNPP, the data indicated an E1 state in the absence of Na+ and K+ and also in the presence of 20 mM Na+, and an E2 form in the presence of 5 mM K+. These results suggest that, although with some similarities, the reversible Pi phosphorylation and the phosphatase activity of the Na,K-ATPase do not share the whole reaction pathway.  相似文献   

13.
Phosphorylation by ATP of E.*Ca2 (sarcoplasmic reticulum vesicles (SRV) with bound 45Ca2+) during 5-10 ms leads to the occlusion of 2 *Ca2+/EPtot [quench by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) alone] in both "empty" (10 microM free Ca2+in) or "loaded" SRV (20-40 mM free Ca2+in). The rate of Ca2+ "internalization" from the occluded E approximately P.*Ca2 was measured by using an ADP + EGTA quench; a *Ca2+ ion that is not removed by this quench is defined as internalized. In the presence of 20-40 mM unlabeled Ca2+ inside SRV, 1 *Ca2+/EPtot is internalized from 45Ca-labeled E approximately P.*Ca2 with a first-order rate constant of kl = 34 s-1. Empty SRV take up 2 *Ca2+/EPtot with the same initial rate, but the overall rate constant is kobsd = 17 s-1. The apparent rate constant (kb = 17 s-1) for internalization of the second *Ca2+ is inhibited by [Ca]in, with K0.5 approximately 1.3 mM and a Hill coefficient of n = 1.1. These data show that the two Ca2+ ions are internalized sequentially, presumably from separate sequential sites in the channel. [32P]EP.Ca2 obtained by rapid mixing of E.Ca2 with [gamma-32P]ATP and EGTA disappears in a biphasic time course with a lag corresponding to approximately 34 s-1, followed by EP* decay with a rate constant of approximately 17 s-1. This shows that both Ca2+ ions must be internalized before the enzyme changes its specificity for catalysis of phosphoryl transfer to water instead of to ADP. Increasing the concentration of ATP from 0.25 to 3 mM accelerates the rate of 45Ca2+ internalization from 34 to 69 s-1 for the first Ca2+ and from 17 to 34 s-1 for the second Ca2+. High [ATP] also accelerates both phases of [32P]EP.Ca2 disappearance by the same factor. The data are consistent with a single form of ADP-sensitive E approximately P.Ca2 that sequentially internalizes two ions. The intravesicular volume was estimated to be 2.0 microL/mg, so that one turnover of the enzyme gives 4 mM internal [Ca2+].  相似文献   

14.
Phosphorylation of beta-connectin (titin 2), an elastic protein of chicken breast muscle, occurred in the presence of [gamma-32P] ATP, 0.2 mM CaCl2 and 25 mM phosphate buffer, pH 7.0. Addition of 3 mM MgCl2 did not affect the phosphorylation. However, Ca2+ ions were required for the phosphorylation and EGTA inhibited it even if MgCl2 were present. Myosin light chain kinase (gizzard MLCK), cAMP dependent protein kinase (A kinase), and protein kinase C (C kinase) did not phosphorylate beta-connectin in vitro under optimal conditions. Thus it appears that beta-connectin, possibly containing a domain homologous with MLCK, has an autophosphorylating action.  相似文献   

15.
Using manual rapid-mixing procedures in which small, equal volumes of Escherichia coli F1-ATPase and [gamma-32P]ATP were combined at final concentrations of 2 and 0.2 microM, respectively (i.e., unisite catalysis conditions), it was shown that greater than or equal to 66% of the 32P became bound to the enzyme, with the ratio of bound ATP/bound Pi equal to 0.4 and the rate of dissociation of bound [32P]Pi equal to 3.5 x 10(-3) s-1, similar to previously published values. Azide is known to inhibit cooperative but not unisite catalysis in F1-ATPase [Noumi, T., Maeda, M., & Futai, M. (1987) FEBS Lett. 213, 381-384]. In the presence of 1 mM sodium azide, 99% of the 32P became bound to the enzyme, with the ratio of bound ATP/bound Pi being 0.57. These experiments demonstrated that when conditions are used which minimize cooperative catalysis, most or all of the F1 molecules bind substoichiometric ATP tightly, hydrolyze it with retention of bound ATP and Pi, and release the products slowly. The data justify the validity of previously published rate constants for unisite catalysis. Unisite catalysis in E. coli F1-ATPase was studied at varied pH from 5.5 to 9.5 using buffers devoid of phosphate. Rate constants for ATP binding/release, ATP hydrolysis/resynthesis, Pi release, and ADP binding/release were measured; the Pi binding rate constant was inferred from the delta G for ATP hydrolysis. ATP binding was pH-independent; ATP release accelerated at higher pH. The highest KaATP (4.4 x 10(9) M-1) was seen at physiological pH 7.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We previously reported (J. Biochem. 70,95--123 (1971) that the time course of Pi liberation in the reaction of Ca2+, Mg2+--dependent ATPase [EC 3.6.1.3.] of fragmented sarcoplasmic reticulum (SR) consists of a lag phase, a burst phase, and a steady phase. We also showed that the rate constant, kd, of decomposition of the phosphorylated intermediate (E approximately P) decreases during the initial phase, and suggested that the burst phase is due to transition of the kd value. Recently, Froehlich and Taylor (J. Biol. Chem. 250, 2013--2021 (1975)) claimed that the Pi burst is caused by the formation of an acid-labile intermediate containing phosphate (E.P) formed by rapid hydrolysis of E approximately P. In the present study, the transition of the kd value during the initial phase was measured precisely, and the results showed that the burst phase is due to a transition in the kd value, not to the existence of E-P. The main results obtained were as follows: 1. After the SR had been phosphorylated with [gamma-32P]ATP in the presence of Mg2+ and Ca2+ ions, further phosphorylated was stopped by the addition of EGTA. The concentration of E approximately 32P then decreased exponentially with time. 2. The first-order rate constants, kd, of decomposition of E aproximately 32P after adding EGTA decreased with increase in the interval, t, between the start of E approximately 32P formation and the time of adding EGTA...  相似文献   

17.
The characteristics of ATP synthesis in cell envelope vesicles of Halobacterium halobium were further studied. The results confirmed the previous conclusion (Mukohata et al. (1986) J. Biochem. 99, 1-8) that the ATP synthase in this extremely halophilic archaebacterium can not be an ordinary type of F0F1-ATPase, which has been thought to be ubiquitous among all the aerobic organisms on our biosphere. The ATP synthesis was activated most in 1 M NaCl and/or KCl, and at 40 degrees C, and at 80 mM MgCl2 where F0F1-ATPase loses its activity completely. The synthesis was negligible at 10 degrees C, and at 5 mM MgCl2. The Km for ADP was about 0.3 mM in the presence of 20 mM Pi, 1 M NaCl, 80 mM MgCl2, and 10 mM PIPES at pH 6.8 and 20 degrees C. The ATP synthesis was not inhibited by NaN3 and quercetin (specific inhibitors for F0F1-ATPase) or vanadate (for E1E2-ATPase) or ouabain (for Na+,K+-ATPase) or P1,P5-di(adenosine-5')pentaphosphate (AP5A, for adenylate kinase). The ATP synthesis was not inhibited by modification (pretreatment) with NaN3 or 5'-p-fluorosulfonylbenzoyladenosine (FSBA). On the contrary, the ATP synthesis was rather non-specifically inhibited by N-ethylmaleimide (NEM), trinitrobenzenesulfonate (TNBS), phenylglyoxal, and pyridoxal phosphate. 7-Chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) as well as N,N'-dicyclohexylcarbodiimide (DCCD) was found to be a specific inhibitor at least partly, because the NBD-Cl inhibition was partly prevented by ADP added to the modification mixture.  相似文献   

18.
Partial reactions of potassium-stimulated ATP phosphohydrolase from hog gastric mucosa were studied by means of a rapid-mixing apparatus. At 21 degrees C, in the presence of 2 mM MgCl2 and 5 microM [gamma-32P]ATP there was a rapid phosphorylation of the enzyme with a pseudofirst order rate constant of 1400 min-1. Addition of the ATP about 120 ms before the MgCl2 increased this rate constant to 4400 min-1. In the absence of MgCl2 there was no phosphorylation. Addition of 4 or 10 mM KCl to the phosphoenzyme which had been formed in the absence of KCl produced a rapid initial rate of dephosphorylation (k = 2600 and 3200 min-1 respectively). An additional slow component of dephosphorylation was observed when unlabeled ATP was added together with the KCl (k = 700 to 900 min-1). At a 4 mM concentration, KCl stimulated the ATPase activity about 9-fold. At higher concentrations, the activity was reduced in parallel with a reduction of the steady state level of phosphoenzyme. Addition of KCl to the enzyme before the addition of ATP plus MgCl2 resulted in a low rate and extent of phosphorylation. KCl appeared to inhibit the phosphorylation at a level preceeding the E.ATP complex.  相似文献   

19.
Energetics of the calcium-transporting ATPase   总被引:11,自引:0,他引:11  
A thermodynamic cycle for catalysis of calcium transport by the sarcoplasmic reticulum ATPase is described, based on equilibrium constants for the microscopic steps of the reaction shown in Equation 1 under a single set of experimental (formula; see text) conditions (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4): KCa = 5.9 X 10(-12) M2, K alpha ATP = 15 microM, Kint = 0.47, K alpha ADP = 0.73 mM, K'int = 1.7, K"Ca = 2.2 X 10(-6) M2, and Kp = 37 mM. The value of K"Ca was calculated by difference, from the free energy of hydrolysis of ATP. The spontaneous formation of an acylphosphate from Pi and E is made possible by the expression of 12.5 kcal mol-1 of noncovalent binding energy in E-P. Only 1.9 kcal mol-1 of binding energy is expressed in E X Pi. There is a mutual destabilization of bound phosphate and calcium in E-P X Ca2, with delta GD = 7.6 kcal mol-1, that permits transfer of phosphate to ADP and transfer of calcium to a concentrated calcium pool inside the vesicle. It is suggested that the ordered kinetic mechanism for the dissociation of E-P X Ca2, with phosphate transfer to ADP before calcium dissociation outside and phosphate transfer to water after calcium dissociation inside, preserves the Gibbs energies of these ligands and makes a major contribution to the coupling in the transport process. A lag (approximately 5 ms) before the appearance of E-P after mixing E and Pi at pH 6 is diminished by ATP and by increased [Pi]. This suggests that ATP accelerates the binding of Pi. The weak inhibition by ATP of E-P formation at equilibrium also suggests that ATP and phosphate can bind simultaneously to the enzyme at pH 6. Rate constants are greater than or equal to 115 s-1 for all the steps in the reaction sequence to form E-32P X Ca2 from E-P, Ca2+ and [32P]ATP at pH 7. E-P X Ca2 decomposes with kappa = 17 s-1, which shows that it is a kinetically competent intermediate. The value of kappa decreases to 4 s-1 if the intermediate is formed in the presence of 2 mM Ca2+. This decrease and inhibition of turnover by greater than 0.1 mM Ca2+ may result from slow decomposition of E-P X Ca3.  相似文献   

20.
The F1 and F1-inhibitor-protein complex synthesized tightly bound ATP from ADP and Pi when the organic solvents dimethylsulfoxide (20-50% v/v), ethylene glycol (20-60% v/v) or poly(ethylene glycol) 4000 and 8000 (30-50% w/v) were included in the assay media. There was no synthesis of tightly bound ATP in the absence of organic solvents. In the presence of 50% dimethylsulfoxide, maximal synthesis of ATP was obtained at pH values between 6.5 and 7.7. In both F1 and F1-inhibitor-protein there was no synthesis of ATP in the absence of MgCl2. The rate of ATP synthesis became faster as the MgCl2 concentration in the medium was raised from 0.1-10 mM. The Km for Pi of F1 was in the range of 0.8-1.5 mM. The Km for Pi of the F1-inhibitor-protein was much higher than that of F1 and could not be measured. In the presence of 10 mM MgCl2 and 2 mM Pi, the rate constants of ATP synthesis by F1 and F1-inhibitor-protein were 5.2-10.4 h-1 and 3.5-5.9 h-1 respectively. For both enzymes the rate constant of ATP hydrolysis was 0.69 h-1. The tightly bound ATP of F1 and F1-inhibitor-protein were hydrolyzed at a much slower rate when either the Pi concentration or the MgCl2 concentration was suddenly decreased. Both in presence and absence of Mg2+, 40-60% of the radioactive tightly bound ATP synthesized by F1 was hydrolyzed when non-radioactive ATP was added to the assay medium. This was not observed when F1-inhibitor-protein was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号