首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hal3 protein of Saccharomyces cerevisiae inhibits the activity of PPZ1 type-1 protein phosphatases and functions as a regulator of salt tolerance and cell cycle control. In plants, two HAL3 homologue genes in Arabidopsis thaliana, AtHAL3a and AtHAl3b, have been isolated and the function of AtHAL3a has been investigated through the use of transgenic plants. Expressions of both AtHAL3 genes are induced by salt stress. AtHAL3a overexpressing transgenic plants exhibit improved salt and sorbitol tolerance. In vitro studies have demonstrated that AtHAL3 protein possessed 4'-phosphopantothenoylcysteine decarboxylase activity. This result suggests that the molecular function of plant HAL3 genes is different from that of yeast HAL3. To understand the function of plant HAL3 genes in salt tolerance more clearly, three tobacco HAL3 genes, NtHAL3a, NtHAL3b, and NtHAL3c, from Nicotiana tabacum were identified. NtHAL3 genes were constitutively expressed in all organs and under all conditions of stress examined. Overexpression of NtHAL3a improved salt, osmotic, and lithium tolerance in cultured tobacco cells. NtHAL3 genes could complement the temperature-sensitive mutation in the E. coli dfp gene encoding 4'-phosphopantothenoyl-cysteine decarboxylase in the coenzyme A biosynthetic pathway. Cells overexpressing NtHAL3a had an increased intracellular ratio of proline. Taken together, these results suggest that NtHAL3 proteins are involved in the coenzyme A biosynthetic pathway in tobacco cells.  相似文献   

2.
The yeast HAL2 gene encodes a lithium- and sodium-sensitive phosphatase that hydrolyses 3'-phosphoadenosine-5'-phosphate (PAP). Salt toxicity in yeast results from Hal2 inhibition and accumulation of PAP, which inhibits sulphate assimilation and RNA processing. We have investigated whether the model plant Arabidopsis thaliana contains sodium-sensitive PAP phosphatases. The Arabidopsis HAL2-like gene family is composed of three members: AtAHL and AtSAL2, characterized in the present work, and the previously identified AtSAL1. The AtAHL and AtSAL2 cDNAs complement the auxotrophy for methionine of the yeast hal2 mutant and the recombinant proteins catalyse the conversion of PAP to AMP in a Mg(2+)-dependent reaction sensitive to inhibition by Ca2+ and Li+. The PAP phosphatase activity of AtAHL is sensitive to physiological concentrations of Na+, whereas the activities of AtSAL1 and AtSAL2 are not. Another important difference is that AtAHL is very specific for PAP while AtSAL1 and AtSAL2 also act as inositol polyphosphate 1-phosphatases. AtAHL constitutes a novel type of sodium-sensitive PAP phosphatase which could act co-ordinately with plant sulphotransferases and serve as target of salt toxicity in plants.  相似文献   

3.
The product of the yeast HAL2 gene (Hal2p) is an in vivo target of sodium and lithium toxicity and its overexpression improves salt tolerance in yeast and plants. Hal2p is a metabolic phosphatase which catalyses the hydrolysis of 3'-phosphoadenosine-5'-phosphate (PAP) to AMP. It is, the prototype of an evolutionarily conserved family of PAP phosphatases and the engineering of sodium insensitive enzymes of this group may contribute to the generation of salt-tolerant crops. We have solved the crystal structure of Hal2p in complex with magnesium, lithium and the two products of PAP hydrolysis, AMP and Pi, at 1.6 A resolution. A functional screening of random mutations of the HAL2 gene in growing yeast generated forms of the enzyme with reduced cation sensitivity. Analysis of these mutants defined a salt bridge (Glu238 ellipsis Arg152) and a hydrophobic bond (Va170 ellipsis Trp293) as important framework interactions determining cation sensitivity. Hal2p belongs to a larger superfamily of lithium-sensitive phosphatases which includes inositol monophosphatase. The hydrophobic interaction mutated in Hal2p is conserved in this superfamily and its disruption in human inositol monophosphatase also resulted in reduced cation sensitivity.  相似文献   

4.
3', 5'-Bisphosphate nucleotidase is a ubiquitous enzyme that converts 3'-phosphoadenosine-5'-phosphate to adenosine-5'-phosphate and inorganic phosphate. These enzymes are highly sensitive to sodium and lithium and, thus, perform a crucial rate-limiting metabolic step during salt stress in yeast. Recently, we have identified a bisphosphate nucleotidase gene (DHAL2) from the halotolerant yeast Debaryomyces hansenii. One of the unique features of Dhal2p is that it contains an N-terminal 54-amino-acid-residue hydrophobic extension. In this study, we have shown that Dhal2p exists as a cytosolic as well as a membrane-bound form and that salt stress markedly influences the accumulation of the latter form in the cell. We have demonstrated that the N-terminal hydrophobic region was necessary for the synthesis of the membrane-bound isoform. It appeared that an alternative translation initiation was the major mechanism for the synthesis of these two forms. Moreover, the two forms exhibit significant differences in their substrate specificity. Unlike the cytosolic form, the membrane-bound form showed very high activity against inositol-1,4-bisphosphate. Thus, the present study for the first time reports the existence of multiple forms of a bisphosphate nucleotidase in any organism.  相似文献   

5.
The regulation of intracellular ion concentrations is a fundamental property of living cells. Although many ion transporters have been identified, the systems that modulate their activity remain largely unknown. We have characterized two partially redundant genes from Saccharomyces cerevisiae, HAL4/SAT4 and HAL5, that encode homologous protein kinases implicated in the regulation of cation uptake. Overexpression of these genes increases the tolerance of yeast cells to sodium and lithium, whereas gene disruptions result in greater cation sensitivity. These phenotypic effects of the mutations correlate with changes in cation uptake and are dependent on a functional Trk1-Trk2 potassium transport system. In addition, hal4 hal5 and trk1 trk2 mutants exhibit similar phenotypes: (i) they are deficient in potassium uptake; (ii) their growth is sensitive to a variety of toxic cations, including lithium, sodium, calcium, tetramethylammonium, hygromycin B, and low pH; and (iii) they exhibit increased uptake of methylammonium, an indicator of membrane potential. These results suggest that the Hal4 and Hal5 protein kinases activate the Trk1-Trk2 potassium transporter, increasing the influx of potassium and decreasing the membrane potential. The resulting loss in electrical driving force reduces the uptake of toxic cations and improves salt tolerance. Our data support a role for regulation of membrane potential in adaptation to salt stress that is mediated by the Hal4 and Hal5 kinases.  相似文献   

6.
7.
The progressive salinization of irrigated land poses a threat to the future of agriculture in arid regions. The identification of crucial metabolic steps in salt tolerance is important for the understanding of stress physiology and may provide the tools for its genetic engineering. In the yeast Saccharomyces cerevisiae we have isolated a gene, HAL2, which upon increase in gene dosage improves growth under NaCl and LiCl stresses. The HAL2 protein is homologous to inositol phosphatases, enzymes known to be inhibited by lithium salts. Complementation analysis demonstrated that HAL2 is identical to MET22, a gene involved in methionine biosynthesis. Accordingly, methionine supplementation improves the tolerance of yeast to NaCl and LiCl. These results demonstrate an unsuspected interplay between methionine biosynthesis and salt tolerance.  相似文献   

8.
Tomato cv Rio Grande plants were transformed with yeast halotolerance genes (HAL I or HAL II) using pPM7HAL I or pJRM16HAL II, with p35GUSINT as control. Transformation efficiency varied in the three constructs, with highest transformation found with p35GUSINT. Final selection of the transgenic plants was made on the basis of PCR. Transgene integration and copy number were assessed by Southern hybridisation. The primary transformants were allowed to self-pollinate and the expected Mendelian ratios were studied in second-generation progeny. Five independent homozygous lines each of HAL I and HAL II, as well as the control, were characterised to study inter-transformant expression variability. The transformants showed considerable variability in expression of the respective genes, as shown by salt tolerance assays, chlorophyll content and peroxidase activity. The transgene expression in transgenic lines was analysed by semi-quantitative RT-PCR. In response to different salt concentrations, transgenic plants over-expressing HAL I and HAL II had significantly (α=0.05) better performance than the control This study presents the comparative responses of the three constructs under the same transformation conditions and suggests possible mechanisms governed by yeast HAL I and HAL II genes, which seem to work in a coordinated manner by relatively decreasing osmotic and oxidative shock at different rates. Our results suggest that the yeast HAL I increases K(+) /Na(+) selectivity and has a more functional role than HAL II in improving salt tolerance of the tomato cv Rio Grande grown in Pakistan.  相似文献   

9.
10.
In Saccharomyces cerevisiae, the Sho1 protein is one of two potential osmosensors that can activate the kinase cascade of the HOG pathway in response to increased extracellular osmolarity. Two novel SHO1-like genes, HwSHO1A and HwSHO1B, have been cloned from the saltern-inhabiting, extremely halotolerant black yeast Hortaea werneckii. The HwSho1 protein isoforms are 93.8% identical in their amino-acid sequences, and have a conserved SH3 domain. When the HwSHO1 genes were transferred into S. cerevisae cells lacking the SHO1 gene, both of the HwSho1 isoforms fully complemented the function of the native S. cerevisiae Sho1 protein. Through microscopic and biochemical validation, we demonstrate that in S. cerevisiae, both of the HwSho1 proteins have characteristic subcellular localizations similar to the S. cerevisiae Sho1 protein, and they can both activate the HOG pathway under conditions of osmotic stress. To a lower extent, crosstalk to the mating pathway expressing HwSho1 proteins is conserved in the PBS2 deleted S. cerevisiae strain. These data show that the HwSho1 proteins from H. werneckii are true functional homologs of the Sho1 protein of S. cerevisiae.  相似文献   

11.
Forty-two yeast strains from 27 species belonging to seven genera, selected for their ability to grow in 10% NaCl, have been analysed for their resistance to salt concentrations up to 5 M, by calculating the Minimum Inhibitory Concentrations (MIC). Using eight different NaCl concentrations from 0 to 5M, results show that halotolerance (MIC) ranges from 1.7 to 3.8 M NaCl, with an avera ge around 2.5 M and confirm that the most halotolerant strains belong to the speciesDebaryomyces hansenii. Since a real halophily could not be found in these isolates, and is generally questioned to be present among the yeast, the effects of NaCl has been measured as salt enhancement effect on growth (MSE), which is defined as the rate between the growth at a given NaCl concentration and theowth in the medium without addition of salt. The implications of these findings in food microbial ecology and technology are discussed.  相似文献   

12.
We previously analyzed the transgenic lines of tomato cv Rio Grande over-expressing the yeast HAL I and HAL II genes for their response to salt stress under in vitro conditions. In this study, six homozygous tomato lines harbouring the yeast HAL I or HAL II genes with highest expression level were selected for exploring their physiological responses against different salt stresses in the field. These transgenic plants showed significant growth and improved water content in comparison with control under 100 and 150 mM salt stress conditions. The HAL I and HAL II lines showed better Ca2+ content than their control counterparts. Furthermore, the transgenic lines exhibited lower values of relative electrical conductivity and improved resistance against the fungal pathogens Fusarium oxysporum and Alternaria solani when tested by detached leaf and agar tube dilution assays. Physiological analyses carried out in this study suggest an involvement of multiple mechanisms in transgenic tomato plants harbouring yeast genes to confer biotic and abiotic tolerance under stress conditions.  相似文献   

13.
We have isolated a novel yeast gene, HAL1, which upon overexpression improves growth under salt stress. In addition, disruption of this gene decreases salt tolerance. Therefore HAL1 constitutes a rate-limiting determinant for halotolerance. It encodes a polar protein of 32 kDa located in the yeast cytoplasm and unrelated to sequences in data banks. The expression of this gene is increased by high concentrations of either NaCl, KCl or sorbitol. On the other hand, the growth advantage obtained by overexpression of HAL1 is specific for NaCl stress. In cells overexpressing HAL1, sodium toxicity seems to be counteracted by an increased accumulation of potassium. The HAL1 protein could interact with the transport systems which determine intracellular K+ homeostasis. The HAL1 gene and encoded protein are conserved in plants, being induced in these organisms by salt stress and abscisic acid. These results suggest that yeast serves as a convenient model system for the molecular biology of plant salt tolerance.  相似文献   

14.
The yeast HAL1 gene improves salt tolerance of transgenic tomato   总被引:28,自引:0,他引:28       下载免费PDF全文
Overexpression of the HAL1 gene in yeast has a positive effect on salt tolerance by maintaining a high internal K(+) concentration and decreasing intracellular Na(+) during salt stress. In the present work, the yeast gene HAL1 was introduced into tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens-mediated transformation. A sample of primary transformants was self-pollinated, and progeny from both transformed and non-transformed plants (controls) were evaluated for salt tolerance in vitro and in vivo. Results from different tests indicated a higher level of salt tolerance in the progeny of two different transgenic plants bearing four copies or one copy of the HAL1 gene. In addition, measurement of the intracellular K(+) to Na(+) ratios showed that transgenic lines were able to retain more K(+) than the control under salt stress. Although plants and yeast cannot be compared in an absolute sense, these results indicate that the mechanism controlling the positive effect of the HAL1 gene on salt tolerance may be similar in transgenic plants and yeast.  相似文献   

15.
16.
ABSTRACT: BACKGROUND: Rough lemon (Citrus jambhiri Lush.) is the most commonly used Citrus rootstock in south Asia. It is extremely sensitive to salt stress that decreases the growth and yield of Citrus crops in many areas worldwide. Over expression of the yeast halotolerant gene (HAL2) results in increasing the level of salt tolerance in transgenic plants. RESULTS: Transformation of rough lemon was carried out by using Agrobacterium tumefaciens strains LBA4404 harboring plasmid pJRM17. Transgenic shoots were selected on kanamycin 100 mg L-1along with 250 mg L-1 each of cefotaxime and vancomycin for effective inhibition of Agrobacterium growth. The Murashige and Skoog (MS) medium containing 200 muM acetoseryngone (AS) proved to be the best inoculation and co-cultivation medium for transformation. MS medium supplemented with 3 mg L-1of 6-benzylaminopurine (BA) showed maximum regeneration efficiency of the transformed explants. The final selection of the transformed plants was made on the basis of PCR and Southern blot analysis. CONCLUSION: Rough lemon has been successfully transformed via grobacterium tumefaciens with beta-glucuronidase (GUS) and HAL2. Various factors affecting gene transformation and regeneration efficiency were also investigated.  相似文献   

17.
Protein phosphatase (PP2B) whose activity is stimulated 12-20-fold by Ca2+/calmodulin (CaM) was partially purified by CaM-Sepharose and heparin-agarose chromatographies from cell extract of the yeast Saccharomyces cerevisiae. PP2B activity was not detectable in a mutant in which two genes (CMP1 and CMP2) encoding homologs of mammalian PP2B catalytic subunit were disrupted. We have previously shown that the double gene disruption has no significant effect on the growth of yeast [1991, Mol. Gen. Genet. 227, 52-59]. The results indicated that CMP1 and CMP2 are the only genes that encode the PP2B catalytic polypeptide in S. cerevisiae, and PP2B activity is not essential for the growth of the yeast under normal conditions.  相似文献   

18.
Saccharomyces cerevisiae (S.?cerevisiae) encounters a multitude of stresses during industrial processes such as wine fermentation including ethanol toxicity. High levels of ethanol reduce the viability of yeast and may prevent completion of fermentation. The identification of ethanol-tolerant genes is important for creating stress-resistant industrial yeast, and S.?cerevisiae genomic resources have been utilized for this purpose. We have employed a molecular barcoded yeast open reading frame (MoBY-ORF) high copy plasmid library to identify ethanol-tolerant genes in both the S.?cerevisiae S288C laboratory and M2 wine strains. We find that increased dosage of either RCN1 or RSA3 improves tolerance of S288C and M2 to toxic levels of ethanol. RCN1 is a regulator of calcineurin, whereas RSA3 has a role in ribosome maturation. Additional fitness advantages conferred upon overproduction of RCN1 and RSA3 include increased resistance to cell wall degradation, heat, osmotic and oxidative stress. We find that the M2 wine yeast strain is generally more tolerant of stress than S288C with the exception of translation inhibition, which affects M2 growth more severely than S288C. We conclude that regulation of ribosome biogenesis and ultimately translation is a critical factor for S.?cerevisiae survival during industrial-related environmental stress.  相似文献   

19.
Chen H  Zhang B  Hicks LM  Xiong L 《PloS one》2011,6(10):e26661
Abiotic stress, such as drought and high salinity, activates a network of signaling cascades that lead to the expression of many stress-responsive genes in plants. The Arabidopsis FIERY1 (FRY1) protein is a negative regulator of stress and abscisic acid (ABA) signaling and exhibits both an inositol polyphosphatase and a 3',5'-bisphosphate nucleotidase activity in vitro. The FRY1 nucleotidase degrades the sulfation byproduct 3'-phosphoadenosine-5'-phosphate (PAP), yet its in vivo functions and particularly its roles in stress gene regulation remain unclear. Here we developed a LC-MS/MS method to quantitatively measure PAP levels in plants and investigated the roles of this nucleotidase activity in stress response and plant development. It was found that PAP level was tightly controlled in plants and did not accumulate to any significant level either under normal conditions or under NaCl, LiCl, cold, or ABA treatments. In contrast, high levels of PAP were detected in multiple mutant alleles of FRY1 but not in mutants of other FRY1 family members, indicating that FRY1 is the major enzyme that hydrolyzes PAP in vivo. By genetically reducing PAP levels in fry1 mutants either through overexpression of a yeast PAP nucleotidase or by generating a triple mutant of fry1 apk1 apk2 that is defective in the biosynthesis of the PAP precursor 3'-phosphoadenosine-5'-phosphosulfate (PAPS), we demonstrated that the developmental defects and superinduction of stress-responsive genes in fry1 mutants correlate with PAP accumulation in planta. We also found that the hypersensitive stress gene regulation in fry1 requires ABH1 but not ABI1, two other negative regulators in ABA signaling pathways. Unlike in yeast, however, FRY1 overexpression in Arabidopsis could not enhance salt tolerance. Taken together, our results demonstrate that PAP is critical for stress gene regulation and plant development, yet the FRY1 nucleotidase that catabolizes PAP may not be an in vivo salt toxicity target in Arabidopsis.  相似文献   

20.
Once the plant coenzyme A (CoA) biosynthetic pathway has been elucidated by comparative genomics, it is feasible to analyze the physiological relevance of CoA biosynthesis in plant life. To this end, we have identified and characterized Arabidopsis (Arabidopsis thaliana) T-DNA knockout mutants of two CoA biosynthetic genes, HAL3A and HAL3B. The HAL3A gene encodes a 4'-phosphopantothenoyl-cysteine decarboxilase that generates 4'-phosphopantetheine. A second gene, HAL3B, whose gene product is 86% identical to that of HAL3A, is present in the Arabidopsis genome. HAL3A appears to have a predominant role over HAL3B according to their respective mRNA expression levels. The hal3a-1, hal3a-2, and hal3b mutants were viable and showed a similar growth rate as that in wild-type plants; in contrast, a hal3a-1 hal3b double mutant was embryo lethal. Unexpectedly, seedlings that were null for HAL3A and heterozygous for HAL3B (aaBb genotype) displayed a sucrose (Suc)-dependent phenotype for seedling establishment, which is in common with mutants defective in beta-oxidation. This phenotype was genetically complemented in aaBB siblings of the progeny and chemically complemented by pantethine. In contrast, seedling establishment of Aabb plants was not Suc dependent, proving a predominant role of HAL3A over HAL3B at this stage. Total fatty acid and acyl-CoA measurements of 5-d-old aaBb seedlings in medium lacking Suc revealed stalled storage lipid catabolism and impaired CoA biosynthesis; in particular, acetyl-CoA levels were reduced by approximately 80%. Taken together, these results provide in vivo evidence for the function of HAL3A and HAL3B, and they point out the critical role of CoA biosynthesis during early postgerminative growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号