首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Seven different tissue culture cells have been cultured with and without mycoplasma (M. hyorhinis) in the presence of various precursors of RNA. Total cellular RNA was isolated and analysed by electrophoresis on polyacrylamide gels. The results obtained with mycoplasma-infected cells can be summarized as follows:
1. 1. When cells are labelled with [8-3H]guanosine or [5-3H]uridine there is some incorporation into host cell 28S and 18S rRNA, but it is less than into mycoplasma 23S and 16S rRNA. [8-3H]guanosine or [5-3H]uridine are also incorporated into host cell and mycoplasma tRNA and mycoplasma 4.7S RNA, but the incorporation into host cell 5S rRNA and low molecular weight RNA components (LMW RNA) is reduced.
2. 2. [5-3H]uracil is not incorporated into host cell RNA but into mycoplasma tRNA, 4.7S RNA, a mycoplasma low molecular weight RNA component M1 and 23S and 16S rRNA.
3. 3. [3H]methyl groups are incorporated into mycoplasma tRNA, 23S and 16S rRNA, but not into host cell 28S, 18S, 5S rRNA nor into mycoplasma 4.7S RNA.
4. 4. With [32P]orthophosphate or [3H]adenosine as precursors, the labelling is primarily in the host RNA.
Mycoplasma infection influences the labelling of RNA primarily by an effect on the utilization of the exogenously added radioactive RNA precursors, since the generation time of mycoplasma infected cells is about the same as that of uninfected cells. Mycoplasma infection may completely prevent the identification of LMW RNA components.  相似文献   

2.
The radioactivity of RNA, DNA and proteins in the liver, muscles and cerebrum of 30-day-old rats after labelling with [3H]uridine, [14C]uridine, [3H]cytidine or [3H]orotic acid was measured. It was found that after administration of [3H]uridine, the proteins were 5 - 10 times more radioactive than the RNA. After administration of [14C]uridine, the proteins were 1 - 2 times more heavily labelled than the RNA. Hydrolysis of the proteins followed by chromatography of the amino acids revealed that the protein labelling was mostly due to [3H]glutamate. In the liver, [3H]orotic acid produced very specific labelling of the RNA. The radioactivity of the proteins is very slight. However, the specific labelling of the RNA in the muscles and cerebrum is not so pronounced with this precursor. [3H]Cytidine is an ideal precursor for RNA. The labelling of protein in all three organs examined is very slight, and furthermore, the specific activity of the RNA is 10 - 20 times higher than after labelling with uridine. We were also able to show that after labelling with radioactive uridine, the method of isolation of RNA by alkaline hydrolysis gives incorrect results, because [3H]amino acids interfere with the measurement of the specific activity of the RNA. The heavy labelling of proteins by [3H]-uridine must also be taken into account in histoautoradiography, because our experiments showed that in liver, the proteins in the cell nucleus are 3 times as radioactive as the nucleic acids. The particulate components of the cytoplasm are even 20 times more radioactive than the nucleic acids.  相似文献   

3.
The NaCl-insoluble (2.5 M, 0 degrees C) fraction of wheat embryo RNA (iRNA) can be labelled when wheat embryos are subjected to either short-term (0.5 h) or long-term (24 h) imbibition in a medium that contains tritium-labelled adenosine, guanosine, cytidine and uridine. Electrophoretic analyses reveal that, after short-term labelling, there is a broadly heterodisperse distribution of radioactivity in 'rapidly labelled' i[3H]RNA, but after long-term labelling, there is an essentially trimodal distribution of radioactivity in i[3H]RNA. End-group analyses reveal that, after short-term labelling, adenosine is the principal 3'-hydroxyl terminus in all centrifugal subfractions of 'rapidly labelled' i[3H]RNA, whereas cytidine (in 5.8S rRNA), guanosine (in 18S rRNA) and uridine (in 26S rRNA) are the principal 3'-hydroxyl termini in centrifugal subfractions of wheat embryo i[3H]RNA. Guanosine is also the principal 3'-hydroxyl terminus in the 18S rRNA of differentiating embryos excized from both monocotyledonous (wheat, barley, corn) and dicotyledonous (pea) seedlings. The implications that the end-group measurements may have for current views about the possible biochemical involvements of 3'-hydroxyl terminal sequences in both mRNA and 18SrRNA are subjects of discussion. Incidental to the principal investigation, an existing technique for analyzing the RNA contents of cellular materials has been appropriately modified to circumvent interference from uv-absorbing pigments, which, when present, prevent application of the method to plant materials.  相似文献   

4.
1. Uptake of [3H]uridine into the nucleotide precursor pool after intraventricular injection occurs with the same intensity in the brain of torpid and normothermic awakened ground squirrels. This indicates that the membrane uridine transporters and uridine kinases operate in the hibernator's brain in a hypothermia-tolerant way. 2. Utilization of the [3H]uridine pool for synthesis of the rapidly labelled RNA in the brain of torpid ground squirrels falls more than eight times against RNA labelling in the brain of the active animals between bouts of hibernation. 3. Two hours from the beginning of the artificially provoked awakening, RNA uridine incorporation in the brain of ground squirrels has risen 6.5 times. 4. Drastic changes in [3H]uridine RNA labelling under the stable uridine uptake exclude the precursors and energy supply as the main factors determining changes in intensity of the brain RNA synthesis in the different stages of hibernation.  相似文献   

5.
RNA synthesis in response to exogenous nucleoside precursors was studied in a suspension culture of rose cells. Exponentially growing and resting cells were prelabeled with [3H] uridine, an excess of unlabeled uridine added, and subsequent isotopic incorporation into nuclear and ribosomal fractions measured. The data were compared to control values in cells continuously labeled in the absence of unlabeled uridine. Addition of uridine to the growing culture reduced the further uptake, and incorporation of [3H] uridine into RNA. In contrast, in resting cells, the addition of uridine (or, purine nucleosides) enhanced the apparent utilization of [3H] uridine in RNA synthesis by 2- to 4-fold.  相似文献   

6.
Labelling of cellular RNA by [32P]orthophosphate can be enhanced up to a factor of three by adding 2 to 10 X 10(-5)M of non-labelled nucleosides to the culture medium. The lag period of labelling can be reduced by a factor of two. Adenosine has the highest effect, while uridine is without effect. Labelling of viral RNA, which occurs in the cytoplasm, is reduced by nucleosides, suggesting that two precursor pools of nucleoside triphosphates are differently affected. The base composition of the labelled RNA cannot be influenced by incubation with non-labelled nucleosides. As a possible explanation for this observation a group translocation transport mechanism is discussed.  相似文献   

7.
The methylation of cytoplasmic ribosomal RNA of cultured sycamore cells (Acer pseudoplatanus L.) was investigated. Labelled 17-S and 26-S rRNA were prepared from cells that had been incubated with either [32P]phosphate, [Me-3H]methionine or [Me-14C]methionine. Ion-exchange resin chromatography of 0.3 M KOH or 1 M HCl hydrolysates and two-dimensional chromatographic analyses of phosphodiesterase plus phosphatase digests of 17-S and 26-S rRNA were performed. 17-S and 26-S rRNA contain 49 and 91 methyl groups per molecule, respectively. These values were verified in sevemral ways. The high degree of methylation of sycamore rRNA, particularly for the 26-S rRNA, contrasts with the situation in all other investigated organisms. Several methylated bases were identified. 7-Methylguanine and 5-methylcytosine both occur in 17-S and 26-S rRNA. N6-Methyladenine and N6,N6-dimethyladenine are restricted to the 17-S rRNA while 3-methyluracil and 1-methyladenine occur in the 26-S rRNA. One hypermodified uridine was also tentatively identified in the small rRNA. In 17-S rRNA, there is one copy of 7-methylguanine, N6-methyladenine and hypermodified uridine and two copies of N6,N6-dimethyladenine. 3-Methyluracil, 1-methyladenine and 5-methylcytosine occur twice, twice and three times, respectively, in 26-S rRNA. 7-Methylguanine and 5-methylcytosine are only in submolar amounts in the 26-S and 17-S rRNA, respectively. There are 40 +/- 2 and 83 +/- 3 2'-O-methylriboses per 17-S and 26-S rRNA molecule, respectively. In addition to the four 2'-O-methylnucleosides, one 2'-O-methylpseudouridine is present in the 17-S rRNA. Several lines of evidence argues for a non-random distribution of the methylriboses. In particular, one and seven Nm-Nm-Np structures occur in the 17-S and 26-S rRNA, respectively. The data are discussed comparatively with the methylation pattern of Escherichia coli, yeast and HeLa cell rRNA.  相似文献   

8.
9.
10.
The stain intensity of the nucleolus organizer regions (NORs) of acrocentric chromosomes was correlated positively with incorporation of [3H]uridine into 18S rRNA and 28S rRNA from cultured diploid human skin fibroblasts. An analysis of these data from twins by a path model indicated that no other common genetic or environmental parameters were required to explain the relationship between NOR scores and uptake of [3H]uridine into mature rRNA species.  相似文献   

11.
12.
13.
Novikoff cells in culture were labeled with L-[methyl-3H]methionine and [U-14C]uridine in the presence of (a) TubHcy2, (b) AdoHcy, (c) homocysteine, (d) tubercidin, or (e) without any additions. Only in cultures labeled in the presence of TubHcy were undermethylated cap structures observed to represent a significant portion of [3H]methyl radioactivity. Novikoff cells in culture were then simultaneously labeled with L-[methyl-3H]methionine and [32P]orthophosphate in the presence or absence of TubHcy. Total cytoplasmic, polysomal and monosomal poly(A)-containing RNAs were analyzed. Both monosomal and polysomal mRNA fractions from TubHcy-treated cells contain partially methylated cap structures, suggesting that 2'-O-methylation of the nucleoside adjacent to the pyrophosphate linkage in caps is not required for transport, ribosomal binding or translation. Comparison of nuclear and cytoplasmic cap structures from normal and inhibited cultures indicate that an altered mRNA population is generated in the presence of TubHcy.  相似文献   

14.
The incorporation of [14C]orotate and [14C]uridine into UMP residues of hnRNA (heterogeneous nuclear RNA) and pre-rRNA (precursors to rRNA) of Eharlich ascites-tumour cells was compared: orotate was incorporated at a markedly higher rate into hnRNA. On the other hand, the rate of incorporation of uridine into pre-rRTNA was even somewhat higher than into hnRNA. The ratio of specific radioactivities of CMP to UMP residues in pre-rRNA and hnRNA was studied. At all times of labelling this ratio was similar for both RNA species independently of the precursor used. On addition of excess unlabelled uridine, the CMP/UMP labelling ratio in both pre-rRNA and hnRNA rose. However, this increase was much more pronounced with hnRNA. It is concluded that nuclear pyrimidine nucleotide pool for RNA synthesis is compartmentalized. The synthesis of hnRNa is supplied preferentially by the large and the small compartment, respectively. A detailed model for the cellular compartmentation of uridine nucleotide precursors to RNA is proposed.U  相似文献   

15.
CMP is known to activate phosphatidylinositol (PtdIns)/inositol (Ins) base exchange and has been reported to activate reversal of PtdIns synthase also. Because it is possible that PtdIns synthase acting in the reverse direction, followed by re-incorporation of ambient Ins, could be responsible for base-exchange activity, we characterized these processes in rat pituitary GH3 cells. In permeabilized GH3 cells prelabelled with [3H]Ins and incubated in buffer with LiCl but without added Ins, CMP stimulated rapid accumulation of [3H]Ins and decreases in [3H]PtdIns; the Km for CMP was 1.7 mM. CDP and CTP were less effective, whereas 2'-CMP, 3'-CMP, other nucleoside monophosphates and cytidine did not influence this process. In permeabilized cells prelabelled to isotopic equilibrium with [3H]Ins and [32P]Pi, CMP stimulated decreases in both the 32P and 3H labelling of PtdIns, but did not increase that of [32P]phosphatidic acid. These findings demonstrate that in the absence of added Ins the effect of CMP is not via activation of base exchange nor via a phospholipase D, but by reversal of PtdIns synthase. In permeabilized cells prelabelled with [3H]Ins and [32P]Pi, unlabelled Ins inhibited loss of 32P labelling of PtdIns caused by CMP while markedly stimulating loss of 3H labelling of PtdIns and release of [3H]Ins. These data demonstrate that Ins inhibits reversal of PtdIns synthase, but stimulates base exchange. We conclude that in GH3 cells reversal of PtdIns synthase and PtdIns/Ins base exchange are both stimulated by CMP, but are distinct processes.  相似文献   

16.
[3H]uridine and [3H]orotic acid were equally utilized for labelling of RNA in mouse liver. Incorporation of [3H]cytidine was 2-3 times as high as that of [3H]-labelled uridine or orotic acid. These results differ from findings in rat liver, where both cytidine and orotic acid are better utilized for RNA labelling than is uridine. The ratio between liver RNA [3H]-activity and volatile [3H]-activity was 2, 3 and 13, respectively, at 300 min after injection of labelled uridine, orotic acid and cytidine, indicating an efficient chanelling of cytidine into liver anabolic pathways.  相似文献   

17.
When 13B hamster-mouse hybrid cells are harvested either right after 4 h of incubation with [me-3H]methionine or following 26 h of "chase" with excess non-radioactive methionine, in both cases about half of the labeled cytoplasmic rRNA is of hamster type. It had been previously shown in this laboratory (Eliceiri, G.L. (1973) Biochim. Biophys. Acta 312, 737-741) that when [3H]uridine was the radioactive precursor about 80% of the labeled cytoplasmic rRNA was of hamster type after a short incubation, and about half after a long incubation. It is postulated that a temporary difference in the specific acitivity of [3H]UTP in possibly segregated mouse and hamster types of nucleoli might account for these results. The master/mouse ratio of cytoplasmic rRNA in hybrid 13B is similar in free and in membrane-bound ribosomes, and in ribosomes of sparse (rapidly growing) cell populations and of confluent (slowly growing) cells.  相似文献   

18.
The Daudi line of human lymphoblastoid cells shows a high sensitivity towards growth inhibition by human interferons. In cells pretreated with 70 reference units/ml of an interferon preparation for 48 h, the incorporation of exogenous [3H]thymidine into DNA is inhibited by as much as 85%. We are investigating the extent to which this effect reflects a true inhibition of the rate of DNA synthesis or whether it may be caused by changes in the metabolic utilization of exogenous thymidine by the cells. Interferon treatment results in a 30% inhibition of the rate of membrane transport and a 60% decrease in the rate of phosphorylation of [3H]thymidine in vivo. The latter effect is due to a decrease in V of thymidine kinase without any change in the value of Km for this enzyme. In addition to these changes, incorporation of [3H]uridine into DNA, which occurs as a result of the intracellular conversion of this precursor into thymidine nucleotides, is also inhibited by 75%, whereas RNA labelling by [3H]uridine is decreased by only 15% in interferon-treated cells. Thus several different metabolic events associated with thymidine nucleotide metabolism and DNA synthesis in Daudi cells are disrupted by interferon treatment.  相似文献   

19.
20.
Kinetic analyses of mRNA and 28-S RNA labeling [3H]uridine revealed distinctly different steady-state specific radioactivities finally reached for uridine in mRNA and 28-S RNA when exogenous [3H]uridine was kept constant for several cell doubling times. While the steady-state label of (total) UTP and of uridine in mRNA responded to the same extent to a suppression of pyrimidine synthesis de novo by high uridine concentrations in the culture medium, uridine in 28-S RNA was scarcely influenced. Similar findings were obtained with respect to labeling of cytidine in the various RNA species due to an equilibration of UTP with CTP [5-3H]Uridine is also incorporated into deoxycytidine of DNA, presumably via dCTP. The specific radioactivity of this nucleosidase attained the same steady-state value as UTP, uridine in mRNA and cytidine in mRNA. The data indicate the existence of two pyrimidine nucleotide pools. One is a large, general UTP pool comprising the bulk of the cellular UTP and serving nucleoplasmic nucleic acid formation (uridine and cytidine in mRNA, deoxycytidine in DNA). Its replenishment by de novo synthesis can be suppressed completely by exogenous uridine above 100 muM concentrations. A second, very small UTP (and CTP) pool with a high turnover provides most of the precursors for nucleolar RNA formation (rRNA). This pool is not subject to feedback inhibition by extracellular uridine to an appreciable extent. Determinations of (total) UTP turnover also show that the bulk of cellular RNA (rRNA) cannot be derived from the large UTP pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号