首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incubation periods independent of nest predation risk or body size. We experimentally tested this correlation by swapping eggs of species with cool incubation temperatures with eggs of species with warm incubation temperatures and similar egg mass. Incubation periods changed (shortened or lengthened) as expected and verified the importance of egg temperature on development rate. Slower development resulting from cooler temperatures may simply be a cost imposed on embryos by parents and may not enhance offspring quality. At the same time, incubation periods of transferred eggs did not match host species and reflect intrinsic differences among species that may result from nest predation and other selection pressures. Thus, geographic variation in embryonic development may reflect more complex interactions than previously recognized.  相似文献   

2.
Incubation periods of Neotropical birds are often longer than those of related species at temperate latitudes. We conducted a common-garden experiment to test the hypothesis that longer tropical incubation periods result from longer embryo development times rather than from different patterns of parental incubation behavior. House wrens, one of few species whose geographic range includes tropical equatorial and temperate high latitudes, have incubation periods averaging 1.2 days longer at tropical latitudes. We incubated eggs of house wrens in Illinois and Panama under identical conditions in mechanical incubators. Even after factoring out differences in egg size, tropical house wrens still required 1.33 days longer, on average, to hatch. We conclude that parental attendance patterns do not account for latitudinal differences in incubation period but that some other as yet unmeasured factor intrinsic to the egg or embryo, or both, extends development time in the tropics.  相似文献   

3.
Nest survival is critical to breeding in birds and plays an important role in life‐history evolution and population dynamics. Studies evaluating the proximate factors involved in explaining nest survival and the resulting temporal patterns are biased in favor of temperate regions. Yet, such studies are especially pertinent to the tropics, where nest predation rates are typically high and environmental conditions often allow for year‐round breeding. To tease apart the effects of calendar month and year, population‐level breeding activity and environmental conditions, we studied nest survival over a 64‐month period in equatorial, year‐round breeding red‐capped larks Calandrella cinerea in Kenya. We show that daily nest survival rates varied with time, but not in a predictable seasonal fashion among months or consistently among years. We found negative influences of flying invertebrate biomass and rain on nest survival and higher survival of nests when nests were more abundant, which suggests that nest predation resulted from incidental predation. Although an increase in nest predation is often attributed to an increase in nest predators, we suggest that in our study, it may be caused by altered predator activity resulting from increased activity of the primary prey, invertebrates, rather than activity of the red‐capped larks. Our results emphasize the need to conduct more studies in Afro‐tropical regions because proximate mechanisms explaining nest predation can be different in the unpredictable and highly variable environments of the tropics compared with the relatively predictable seasonal changes found in temperate regions. Such studies will aid in better understanding of the environmental influences on life‐history variation and population dynamics in birds.  相似文献   

4.
Broad geographic patterns in egg and clutch mass are poorly described, and potential causes of variation remain largely unexamined. We describe interspecific variation in avian egg and clutch mass within and among diverse geographic regions and explore hypotheses related to allometry, clutch size, nest predation, adult mortality, and parental care as correlates and possible explanations of variation. We studied 74 species of Passeriformes at four latitudes on three continents: the north temperate United States, tropical Venezuela, subtropical Argentina, and south temperate South Africa. Egg and clutch mass increased with adult body mass in all locations, but differed among locations for the same body mass, demonstrating that egg and clutch mass have evolved to some extent independent of body mass among regions. A major portion of egg mass variation was explained by an inverse relationship with clutch size within and among regions, as predicted by life-history theory. However, clutch size did not explain all geographic differences in egg mass; eggs were smallest in South Africa despite small clutch sizes. These small eggs might be explained by high nest predation rates in South Africa; life-history theory predicts reduced reproductive effort under high risk of offspring mortality. This prediction was supported for clutch mass, which was inversely related to nest predation but not for egg mass. Nevertheless, clutch mass variation was not fully explained by nest predation, possibly reflecting interacting effects of adult mortality. Tests of the possible effects of nest predation on egg mass were compromised by limited power and by counterposing direct and indirect effects. Finally, components of parental investment, defined as effort per offspring, might be expected to positively coevolve. Indeed, egg mass, but not clutch mass, was greater in species that shared incubation by males and females compared with species in which only females incubate eggs. However, egg and clutch mass were not related to effort of parental care as measured by incubation attentiveness. Ecological and life-history correlates of egg and clutch mass variation found here follow from theory, but possible evolutionary causes deserve further study.  相似文献   

5.
Predation can be an important agent of natural selection shaping parental care behaviours, and can also favour behavioural plasticity. Parent birds often decrease the rate that they visit the nest to provision offspring when perceived risk is high. Yet, the plasticity of such responses may differ among species as a function of either their relative risk of predation, or the mean rate of provisioning. Here, we report parental provisioning responses to experimental increases in the perceived risk of predation. We tested responses of 10 species of bird in north temperate Arizona and subtropical Argentina that differed in their ambient risk of predation. All species decreased provisioning rates in response to the nest predator but not to a control. However, provisioning rates decreased more in species that had greater ambient risk of predation on natural nests. These results support theoretical predictions that the extent of plasticity of a trait that is sensitive to nest predation risk should vary among species in accordance with predation risk.  相似文献   

6.
To understand the global distribution patterns of litter-dwelling thrips, a total 150 leaf litter samples were collected from 6 natural reserves located in three climatic regions, temperate, subtropical and tropical. The results showed the relative abundance of Thysanoptera was over 3.0% in 4 natural reserves from subtropical and tropical zone, and reached 5.9% in one tropical reserve, only less than Acarina and Collembola. In contrast it was only 0.3% in the warm temperate natural reserves, and no thrips were collected in a mid temperate reserve. The order on the average species numbers per plot of litter thrips was tropic > subtropics > temperate (n=25, p<0.05). Mean density of litter thrips per plots in the tropics and subtropics was significantly higher than that in the temperate region (n=25, p<0.05), but the average density was not significantly different between tropical and subtropical zones (n=25, p>0.05). The diversity of litter thrips in the tropics and subtropics was much higher than that in the temperate area based on comparsions of Shannon-Wiener diversity index (H’), Pielou eveness index (J), and Simpson dominance index (D). All of these results indicated that litter-dwelling thrips lived mainly in tropical and subtropical regions; meanwhile, species number and relative abundance increased with decreasing latitude.  相似文献   

7.
Although detected long ago, latitudinal disparity in species richness lacks a consensus regarding its underlying mechanisms. We evaluated whether the main predictions derived from the tropical niche conservatism hypothesis help to explain differences regarding species richness and turnover of species and lineages between forests located in tropical and subtropical climates. If tropical niches are retained, we predict that only a subset of tropical lineages disperses and establishes outside the tropics; tip‐level phylogenetic clustering increases outside the tropics; and the climatic variation drives species richness indirectly via constraints to the distribution of lineages. We compiled 58 checklists along tropical and subtropical sites of riparian forests in southeastern South America. We tested the frequency of niches shifts for species and lineages and the abundance of taxa in each climate. Next, we checked the likelihood of pathways linking climatic and spatial predictors directly with species richness and via phylogenetic clustering estimates. Several lineages only occurred in the tropics, and the number of species and lineages that occurred in both climates was lower than expected by chance. Conversely, few lineages were exclusively subtropical and diversified in the subtropics. Phylogenetic clustering increased in subtropical sites and was correlated with decreasing species richness. An interaction between mean temperature of coldest quarter and precipitation seasonality explained most variation in species richness via increases in phylogenetic clustering. These results support an important contribution of climatic niche conservatism to explain richness disparities between tropics and subtropics, mainly because of the inability of most lineages to colonize the subtropics, which is very likely related to cold intolerance. Since niche conservatism likely drives most of the variation in tree species richness in the region, it provides a mechanistic interpretation of the observed patterns, thus fostering the understanding of richness disparities between these tropical and subtropical tree communities.  相似文献   

8.
西双版纳勐宋热带山地雨林种子植物区系的初步研究   总被引:7,自引:0,他引:7  
西双版纳勐宋的热带山地雨林是一种东南亚热带山地雨林的北缘类型,它在植物区系组成上和群落学特征上是介于热带雨林和南亚热带常绿阔叶林之间的热带山地常绿阔叶林.该区系有种子植物116科327属623种.科、属、种的分布区类型分析表明:科的分布区类型以热带和亚热带分布最多(32.8%),其次是热带到温带分布(23.3%)和典型热带分布(18.1%);属的分布区类型以热带亚洲分布最多(28.4%),其次是泛热带分布(26.8%),热带分布多于温带分布(258:55);种的分布区类型以热带亚洲分布最多(65.0%),其次是中国特有分布(26.5%),热带分布远多于温带分布(431:18).区系的热带性质显著,具有明显的印度-马来西亚植物区系特点,属于热带亚洲区系的一部分.由于特殊的地理位置,西双版纳地区是许多典型热带植物的分布北界,同时又是几种热带成分的交汇地带.  相似文献   

9.
The tropics contain far greater numbers of species than temperate regions, suggesting that rates of species formation might differ systematically between tropical and non-tropical areas. We tested this hypothesis by reconstructing the history of speciation in New World (NW) land birds using BAMM, a Bayesian framework for modelling complex evolutionary dynamics on phylogenetic trees. We estimated marginal distributions of present-day speciation rates for each of 2571 species of birds. The present-day rate of speciation varies approximately 30-fold across NW birds, but there is no difference in the rate distributions for tropical and temperate taxa. Using macroevolutionary cohort analysis, we demonstrate that clades with high tropical membership do not produce species more rapidly than temperate clades. For nearly any value of present-day speciation rate, there are far more species in the tropics than the temperate zone. Any effects of latitude on speciation rate are marginal in comparison to the dramatic variation in rates among clades.  相似文献   

10.
Abstract Phylogenetic transitions from oviparity to viviparity in reptiles generally have occurred in cold climates, apparently driven by selective advantages accruing from maternal regulation of incubation temperature. But why, then, are viviparous reptiles so successful in tropical climates? Viviparity might enhance fitness in the tropics via the same pathway as in the temperate zone, if pregnant female reptiles in the tropics maintain more stable temperatures than are available in nests (Shin's maternal manipulation hypothesis). Alternatively, viviparity might succeed in the tropics for entirely different reasons than apply in the temperate zone. Our data support the maternal manipulation hypothesis. In a laboratory thermal gradient, pregnant death adders (Acanthophis praelongus) from tropical Australia maintained less variable body temperatures (but similar mean temperatures) than did nonpregnant females. Females kept at a diel range of 25–31d?C (as selected by pregnant females) gave birth earlier and produced larger offspring (greater body length and head size) than did females kept at 23–33d?C (as selected by nonpregnant snakes). Larger body size enhanced offspring recapture rates (presumably reflecting survival rates) in the field. Thus, even in the tropics, reproducing female reptiles manipulate the thermal regimes experienced by their developing embryos in ways that enhance the fitness of their offspring. This similarity across climatic zones suggests that a single general hypothesis‐maternal manipulation of thermal conditions for embryogenesis‐may explain the selective advantage of viviparity in tropical as well as cold‐climate reptiles.  相似文献   

11.
Nesting success of understory forest birds in central Panama   总被引:4,自引:0,他引:4  
Greater nest predation in tropical than temperate birds has been hypothesized to be a primary selective force generating latitudinal differences in avian life history traits. Few extensive data sets, however, have been available from tropical forests to compare with data from temperate forests. To increase the amount of empirical information available for addressing issues related to the evolution of life history traits of tropical birds, we measured the nesting success of understory birds in lowland forest of central Panama. We found and monitored the fates of 696 nests of 71 species over two breeding seasons. Daily nest predation rates for the ten species for which we obtained the largest samples ranged from 1.6 to 8.3%, equivalent to a loss of 43 to 92% of nests. These values overlapped extensively the range of daily predation rates experienced by ecologically similar species in North America. Proportion of nests fledging young, estimated with the Mayfield method, was significantly lower in tropical (range: 8 to 57%) than temperate (27 to 60%) species. Nesting success in Panama varied among years, however, being greater in 1996 than 1997. In 1996, nesting success was similar to that of species breeding in forest fragments of midwestern North America. When compared with success of nests in large, contiguous forest tracts of North America, however, tropical avian nesting success was consistently lower by approximately 23%. We conclude that nesting success in central Panama may be poor in most breeding seasons, but also may be punctuated by occasional years of relatively exceptional success, a possibility heretofore unappreciated because of a general paucity of data from the tropics. Furthermore, our results indicate substantial variation in levels of nesting success among species, and almost no variation in clutch size. Such large interspecific variation, as well as potentially large annual variation, in nesting success does not support the hypothesis that uniformly low levels of nesting success select for small tropical clutch sizes.  相似文献   

12.
Causes of interspecific variation in growth rates within and among geographic regions remain poorly understood. Passerine birds represent an intriguing case because differing theories yield the possibility of an antagonistic interaction between nest predation risk and food delivery rates on evolution of growth rates. We test this possibility among 64 Passerine species studied on three continents, including tropical and north and south temperate latitudes. Growth rates increased strongly with nestling predation rates within, but not between, sites. The importance of nest predation was further emphasized by revealing hidden allometric scaling effects. Nestling predation risk also was associated with reduced total feeding rates and per-nestling feeding rates within each site. Consequently, faster growth rates were associated with decreased per-nestling food delivery rates across species, both within and among regions. These relationships suggest that Passerines can evolve growth strategies in response to predation risk whereby food resources are not the primary limit on growth rate differences among species. In contrast, reaction norms of growth rate relative to brood size suggest that food may limit growth rates within species in temperate, but not tropical, regions. Results here provide new insight into evolution of growth strategies relative to predation risk and food within and among species.  相似文献   

13.
Oomycetes have colonised both terrestrial and marine habitats, and leaf litter decomposing oomycetes have been found in coastal and estuarine environments, yet their ecological relevance remains unclear. In tropical and subtropical ecosystems, Halophytophthora species were reported from mangroves and salt marshes, and recently, the genus Salisapilia was described based on oomycetes recovered from leaf litter in subtropical Georgia, USA. In cool temperate regions, only Pythium and Phytophthora species have so far been reported from coastal environments. Here we report the presence of two species of Halophytophthora in the German Bight, north of Hamburg. The presence of a group of oomycetes, previously reported only from the subtropics and tropics, in the cool temperate German Bight raises the question of whether these were previously overlooked, introduced with ballast water or have migrated there as a result of climate change. Temperature preference of the strains hints at the first hypothesis.  相似文献   

14.
The latitudinal increase in extra‐pair paternity (EPP) rates in birds suggests broad selective benefits to low EPP rates in the tropics. However, we have few EPP data from tropical birds, particularly from species with close relatives at high latitudes. Here, we report EPP rates in two resident equatorial populations of rufous‐collared sparrow Zonotrichia capensis, a genus well‐represented at high latitudes. We found 64% and 60% of broods contained extra‐pair offspring, and 42% and 52% of all young were extra‐pair. EPP rates were similar in these populations, despite clear differences in elevation, temperature, rainfall, and breeding season length. These findings provide evidence that EPP rates in tropical birds can be as high as those observed in temperate birds, and suggest that the selective pressures acting on EPP rates vary markedly across tropical birds.  相似文献   

15.
Long embryonic periods are assumed to reflect slower intrinsic development that are thought to trade off to allow enhanced physiological systems, such as immune function. Yet, the relatively rare studies of this trade-off in avian offspring have not found the expected trade-off. Theory and tests have not taken into account the strong extrinsic effects of temperature on embryonic periods of birds. Here, we show that length of the embryonic period did not explain variation in two measures of immune function when temperature was ignored, based on studies of 34 Passerine species in tropical Venezuela (23 species) and north temperate Arizona (11 species). Variation in immune function was explained when embryonic periods were corrected for average embryonic temperature, in order to better estimate intrinsic rates of development. Immune function of offspring trades off with intrinsic rates of embryonic development once the extrinsic effects of embryonic temperatures are taken into account.  相似文献   

16.
ABSTRACT The main cause of nest mortality for most bird species is predation and nest survival rates often vary in relation to time‐specific variables. Few investigators have examined time‐specific patterns of nest survival in Neotropical birds, and most such studies have focused on tropical and subtropical species. To better understand age‐related patterns of nest survival, we studied nest survival of Red‐crested Cardinals (Paroaria coronata, Thraupidae) in a south‐temperate forest in Argentina. We modeled daily nest survival rates (DSR) using program MARK. We examined the relationship between nest age and nest survival rate, controlling for the effects of physical characteristics of nest sites and progression of the breeding season. We monitored 367 nests for a total of 4018 exposure days. We found that DSR increased with nest age and was higher in small isolated patches than in large continuous patches of forests. The increase of DSR with nest age could be a consequence of more vulnerable nests being predated early in the nesting cycle or a result of parents defending nests more vigorously as nestlings age because of their increasing reproductive value. Open areas of grassland that surrounded the small isolated patches of forests in our study may have been a barrier to predator movements, possibly explaining the lower predation rates. Nest survival rates in our study were lower than those reported for tropical or Nearctic temperate birds, but similar to those reported in other studies of Neotropical temperate birds. Reasons for the low nest survival rates of Neotropical temperate birds remain unclear, and additional studies of predator communities are needed to help elucidate this topic.  相似文献   

17.
Life history theory predicts an inverse relationship between annual adult survival and fecundity. Globally, clutch size shows a latitudinal gradient among birds, with south temperate species laying smaller clutches than north temperate species, but larger clutches than tropical species. Tropical birds often have higher adult survival than north temperate birds associated with their smaller clutches. However, the prediction that tropical birds should also have higher adult survival than south temperate birds because of smaller clutch sizes remains largely untested. We measured clutch size and apparent annual breeding adult survival for 17 south temperate African species to test two main predictions. First, we found strong support for a predicted inverse relationship between adult survival and clutch size among the south temperate species, consistent with life‐history theory. Second, we compared our clutch size and survival estimates with published estimates for congeneric tropical African species to test the prediction of larger clutch size and lower adult survival among south temperate than related tropical species. We found that south‐temperate species laid larger clutches, as predicted, but had higher, rather than lower, apparent adult survival than related tropical species. The latter result may be an artefact of different approaches to measuring survival, but the results suggest that adult survival is generally high in the south temperate region and raises questions about the importance of the cost of reproduction to adult survival.  相似文献   

18.
GROWTH RATES OF BIRDS IN THE HUMID NEW WORLD TROPICS   总被引:2,自引:0,他引:2  
Robert E.  Ricklefs 《Ibis》1976,118(2):179-207
The growth curves of 40 species of lowland neotropical birds were fitted by logistic equation. The birds were mostly from Panama, Trinidad and Surinam. The growth constants of the fitted equations (asymptote A and growth rate K) were compared within and among species, and with previously published data on temperate species. Growth parameters of tropical passerines are about as variable within species as they are within temperate species. In both cases, variation in A and K between broods is greater than it is within broods. Panamanian birds breed during the dry-wet transition and conditions for growth apparently improve as rainfall increases. Asymptotes of growth curves are higher, and mortality within broods lower, as the breeding season progresses. Asynchronous hatching and the reduction of brood-size by selective starvation of young is a prominent phenomenon during the early part of the breeding season. Several instances are reported, however, of young persisting in nests with inadequate feeding and greatly subnormal weights. Slowed development under conditions of poor nutrition may be adaptive in the tropics if periods of low food availability are short and allow the possibility of recovery from undernourishment. As a group, neotropical lowland passerines (30 species) grow 23% more slowly than a sample of 51 temperate passerines. Variation of growth rates among these tropical species is similar to variation among temperate species, and it is related to adult body-size the length of the nestling period. Young of tropical and temperate species attain similar asymptotes, relative to adult body-weight, by the end of the nestling period. Hypotheses are advanced which might explain the slower growth rate of tropical species, and tested to the extent available data permits. (1) Because brood-size can be changed only by adding or removing whole young, changes in growth rate could provide finer adjustment of the energy requirements of the young to the feeding capacity of the parents. This model predicts different means and variances for growth rate within groups of species with different clutch-sizes, predictions not supported by available data. (2) Growth rate is shown to increase the maximum energy requirement of a nestling only if K exceeds some value determined by the energy requirement of the young, growth rate should vary in proportion to the level of basal maintenance metabolism. In a small sample of tropical species, rates of basal metabolism were 25% lower than in a comparable sample of temperate species. These data therefore support the hypothesis, although the cause of the lower metabolic rate of the tropical nestlings is not known. (3) Daily periods of hypothermia could reduce the energy requirement of the young and at the same time reduce their growth rate; but observations of body temperatures of tropical nestlings are contrary to this hypothesis. (4) The short day-length of tropical climates reduces the time during which young can assimilate energy relative to their energy expenditures. This model predicts that tropical nestlings would have less productive energy available, (consistent with their reduced growth rates), but it also predicts that arctic birds should grow faster than temperate species, which is not confirmed by available data. (5) The low nitrogen content of fruits may cause the slow growth of a few strictly frugivorous species (Oilbird and Bearded Bellbird), but among other tropical species growth rate is not correlated with the estimated proportion of fruit in the diet.  相似文献   

19.
Summary Previous studies have suggested that tropical and temperate-zone lizards may differ fundamentally in life histories. We tested the applicability of this idea to Australian species by comparing temperate-zone species of agamid and scincid lizards with their congeners from the seasonal tropics. Data were derived from dissection of 1,941 specimens and from published information. Clutch size and egg size were positively correlated with mean maternal body size in most lizard species from both climatic zones. Mean body size of the lizards studies did not differ between the tropics and the temperate zone, nor did egg or hatchling size. However, tropical skinks showed considerably (approximately 20%) lower clutch size and relative clutch mass than did temperate-zone skinks. This difference was partly due to the higher incidence of species with low, invariant clutch size in the tropical lizard fauna (as seen in other continents as well), but primarily due to a trend for lineages (especially genera) with relatively high fecundity to be more common in the temperate zone than in the tropics. In contrast to studies on African lizards, our data suggested that modification of clutch size between areas has not occurred within genera: congeneric species from the tropics and temperate zone did not differ in clutch size. Production of more than one clutch per annum by individual females was common in both climatic zones. Tropical lizards may differ from temperate-zone species in showing higher reproductive frequencies, more rapid growth and earlier maturation. However, most of these effects may be due to phenotypic responses to environmental conditions (especially longer annual activity season), rather than to genetically based lifehistory adaptations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号