首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principal contributors of biologically fixed N in natural grassland ecosystems appear to be asymbiotic bacteria and heterocystous cyanobacteria. The environmental factors of light, moisture, and temperature play important roles in the magnitude of the N2-fixation activity. Biological N2-fixation was measured in the Elizabeth's Prairie section of the Lynx Prairie Preserve, Adams County, Ohio, during 15 site visits beginning 29 March through 8 November 1980. In situ N2-fixation activity was measured using the acetylene-reduction technique. The percentage cover of cyanobacterial colonies (Nostoc sp.) was determined using Point-Frame Analysis. Soil and air temperatures and soil water potentials also were measured. Intact soil cores with a surface cover of Nostoc were collected and returned to the laboratory to quantify the effect of decreasing water potential on the N2(C2H2)ase activity of Nostoc. The N2(C2H2)ase activity of Nostoc on the intact soil cores displayed a linear response of approximately 10% decrease in N2(C2H2)ase activity per one bar decrease in soil water potential. The cyanobacteria contributed almost all of the biologically fixed N at the site until late June. From late June through to mid September, heterotrophic diazotrophs played the major role in the N2-fixation activity. These changes are attributed to fluctuations in Nostoc sp. colony cover, temperature, and soil water potentials. Extrapolation of the measured rates, and assuming an average of 10 hr per day of activity, Nostoc sp. is shown to have contributed 4.60 ± 1.17 kg N ha−1 yr−1. Heterotrophic diazotrophs contributed an estimated 3.19 ± 1.18 kg N ha−1 yr−1. The total biological N2-fixation for the site was calculated at 8.2 ± 2.55 kg N ha−1 yr−1, from additional measurements which estimated total diazotrophic activity of the site. These rates of N2-fixation are among the highest reported for temperate grassland habitats.  相似文献   

2.
The CO2-exchange rate required to make full use of available N2-fixation capacity, measured as acetylene reduction, was determined in soybean and alfalfa. Carbohydrates of root systems were depleted during a 40-hour dark treatment; then plants were exposed to a 24-hour light period during which different CO2-exchange rates were maintained with various CO2 concentrations. In three- and four-week-old soybeans and four-week-old alfalfa plants, acetylene-reduction capacity was used fully with CO2-exchange rates as low as 10 milligrams CO2 per plant per hour. In six-week-old alfalfa plants, however, acetylene reduction rates increased linearly, and apparent N2-fixation capacity was not used fully when CO2-exchange rates were higher than 40 milligrams CO2 per plant per hour. Under the conditions established, the energy cost of N2 fixation, measured as Δ(respiration of roots + nodules)/Δacetylene reduction over dark-treatment values, was 0.453 milligrams CO2 per micromole C2H4 for all rates of acetylene reduction and for both ages of soybean and alfalfa plants. Thus, root-plus-nodule respiration was not promoted by higher rates of apparent photosynthesis after C2H2-reduction capacity became saturated, and all available capacity for apparent N2 fixation had the same energy requirement.  相似文献   

3.
Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N2, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N2-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N2-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N2-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N2 fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems.  相似文献   

4.
We performed surveys of nitrogen (N2)-fixation in three oligotrophic lake-stream systems in the Sawtooth Mountains of central Idaho to address two questions: (1) Which habitat types within linked lake-stream systems (lake pelagic, lake benthic, and stream) exhibit the highest rates of N2 fixation?, and (2) How does N2 fixation compare to the hydrologic flux of nitrogen? A seasonal survey showed that N2 fixation in a single lake and its outlet stream peaked in late summer, when hydrologic N fluxes were lowest. Benthic lake N2-fixation rates by epiphytes were highest at mid-lake depths, where their percent cover was highest, while rates by epipelon were greatest at shallow lake depths. Pelagic N2 fixation was below detection. Stream N2-fixation rates were greatest on rock substrates and in the lake outlet stream. These patterns were supported by a baseflow survey (late July) in three lake-stream ecosystems which confirmed that N2-fixation rates peaked in the lake benthos at shallow depths and on rock substrates in outlet streams. Scaling N2-fixation rates to whole lake and stream areas revealed that N2 fixation could exceed the nitrate, and sometimes the total dissolved nitrogen flux during baseflow in lakes and outlet streams. Despite low rates, total N2-fixation contributions (kg/day) from lakes were greater because they had far larger surface areas than the stream environments. Fixed nitrogen contributions from stream outlets were also relatively high because of high N2-fixation rates and despite low surface areas. This study suggests that N2 fixation could be a seasonally important nitrogen source to nutrient deficient subalpine lake-stream ecosystems. In addition, the frequency and location of lakes could control N2-fixation contributions to watersheds by providing a large area for within-lake N2 fixation, and creating conditions favorable for N2 fixation in outlet streams.  相似文献   

5.
Dominant canopy tree species have strong effects on the composition and function of understory species, particularly bryophytes. In boreal forests, bryophytes and their associated microbes are a primary source of ecosystem nitrogen (N) inputs, and an important process regulating ecosystem productivity. We investigated how feather moss-associated N2-fixation rates and contribution to N budgets vary in time and space among coniferous and broadleaf deciduous forests. We measured N2-fixation rates using stable isotope (15N2) labeling in two moss species (Pleurozium schreberi and Hylocomium splendens) in broadleaf deciduous (Alaska paper birch—Betula neoalaskana) and coniferous (black spruce—Picea mariana) stands near Fairbanks, interior Alaska, from 2013 to 2015. N2-fixation rates showed substantial inter-annual variation among the 3 years. High N2-fixation was more strongly associated with high precipitation than air temperature or light availability. Overall, contribution of N2-fixation to N budgets was greater in spruce than in birch stands. Our results enhance the knowledge of the processes that drive N2-fixation in boreal forests, which is important for predicting ecosystem consequences of changing forest composition.  相似文献   

6.
Summary Differences in N2-fixation byPhaseolus vulgaris bean cultivars were successfully evaluated in the field using15N isotope dilution technique with a non-fixing test crop of a different species (wheat). The Phaseolus cultivars could have been similarly ranked for N2-fixation capacity from either seed yield or total nitrogen yield, but the isotope method provided a direct measure of N2-fixation and made it possible to estimate the proportion of fixed to total nitrogen in the crop and in plant parts. Amounts of nitrogen fixed varied between 24.59 kg N/ha for the 60-day cultivar Goiano precoce to 64.91 kg N/ha for the 90-day cultivar Carioca. The per cent of plant nitrogen due to fixation was 57–68% for the 90-day cultivars and 37% for Goiano precoce (60-day cultivar). Fertilizer utilization was 17–30% of a 20 kg N/ha fertilizer application. 100 kg N/ha fertilizer application decreased N2-fixation without suppressing it totally. Differences in yield between the highest yielding (Carioca) and the lowest (Moruna) 90-day cultivars were also due apparently to varietal differences in efficiency of conversion of nitrogen to economic matteri.e. seed, as well as to differences in capacity of genotypes for N2-fixation. The work described here was in part supported by IAEA Research Contract No. RC/2084 UNDP/IAEA Project BRA/78/006  相似文献   

7.
Pesticidal effect on soybean-rhizobia symbiosis   总被引:2,自引:0,他引:2  
Summary Relative compatibility of selected pesticides at two levels of application (recommended rate and 5× or 10 ×) with soybean-rhizobia symbiosis was tested in pot culture experiments using a prepared peat inoculant.PCNB, carboxin and carboxin+captan at recommended level were innocuous to growth, nodulation, N2-fixation and total N content of shoot. Carboxin and carboxin+captan but not PCNB at 10 times recommended level proved detrimental to nodulation and N2-fixation. Carbaryl and malathion at recommended level had no adverse effect but at 10 times recommended level severely reduced N2-fixation but not other parameters. Acephate, diazinon and toxaphene at both levels reduced N2-fixation and total N content but not growth and nodulation. All five herbicides used at recommended and 5 times recommended level adversely affected nodulation and N2-fixation. Glyphosate proved least toxic to all parameters. 2,4-DB at recommended level was less harmful to nodulation and N2-fixation than trifluralin, alachlor and metribuzin.  相似文献   

8.
Summary White clover (Trifolium repens L.) plants grown in pots and supplied with the same concentration x days of15N labelled nitrate, but in contrasting patterns and doses had similar N concentrations but differed in the proportions devived from N2 fixation and nitrate. N2-fixation and nodule dry weight responded rapidly (2–3 days) to changes in nitrate availability. Plants exposed frequently to small doses of nitrate took up more nitrate (and hence relied less on N2-fixation) and had greater dry weights and shoot: root ratios than those exposed to larger doses less often. In mixed ryegrass (Lolium perenne L.)/clover communities clover's ability to either successfully compete for nitrate or fix N2 gave it consistently higher N concentrations than grass whether they were given high or low nitrate nutrient. This higher N concentration was accompanied by greater dry weights than grass in the low nitrate swards but not where high levels of nitrate were applied.  相似文献   

9.
10.
Fires may greatly alter the N budget of a plant community. During fire nitrogen is lost to the atmosphere. Although high light availability after fire promotes N2-fixation, the presumably high soil N availability could limit N2-fixation activity. The latter limitation might be particularly acute in legume seedlings compared with resprouts, which have immediate access to belowground stored carbon. We wished to learn whether early post-fire conditions were conducive to N2-fixation in leguminous seedlings and resprouts in two types of grassland and in a shrubland and whether seedlings and resprouts incurred different amounts of N2-fixation after fire. We set 18 experimental fires in early autumn on 6 plots, subsequently labelling 6 subplots (2 × 2 m2) in each community with 15NH4+-N (99 atom % excess). For 9 post-fire months we measured net N mineralisation in the top 5 cm of soil and we calculated the fraction of legume N derived from the atmosphere (%Ndfa) in seedlings and resprouts. We used two independent estimates of the amounts of N derived from non-atmospheric sources in potentially N2-fixing plants: mean soil pool abundance and the 15N-enrichment of non-legumes. Despite substantial soil net N mineralisation in all burned community types (about 2.6 g Nm−2 during the first nine months after fire), the %Ndfa of various legume species was 52–99%. Legumes from both grasslands showed slightly higher N2-fixation values than shrubland legumes. As grassland legumes grew in more belowground dense communities than shrubland legumes, we suggest that higher competition for soil resources in well established grass-resprouting communities may enhance the rate of N2-fixation after fire. In contrast to our hypothesis, legume seedlings and resprouts from the three plant communities studied, had similar %Ndfa and apparently acquired most of their N from the atmosphere rather than from the soil.  相似文献   

11.
Perennial legume such as alfalfa have the capacity to sustain shoot regrowth and some nodule N2-fixation after removal (cutting) of shoots which contain practically all of the plant's photosynthetic capacity. The role of the roots in supporting these processes has not been fully described. Measurements were made of the nodules' responses to removal of shoots from 8-week-old seedlings in terms of N2-fixation, as nitrogenase activity (NA) measured as acetylene reduction, dark CO2 fixation, measured as in vitro phosphoenolpyruvate carboxylase (PEPC) activity, and total non-structural carbohydrate (NSC) content. These properties decreased and recovered in that sequence, which suggests that nodule NSC supported the substrate requirements of NA and PEPC immediately after cutting. The utilization and redistribution or root carbon and nitrogen, prelabeled with 14C and 15N, were also followed after cutting 8-week-old alfalfa seedlings. In the first 2 weeks of regrowth 12% of root C and 25% of root N were transferred for incorporation into new shoots. Up to 40% of the root C was used for plant respiration to support 28 days of shoot regrowth and N2-fixation. The decline of N2-fixation was slower after cutting and its minimum activity rose up 45% of pre-cut activity as root reserves were built up with plant age. Therefore, the stored reserves of nodulated roots play an important role in support of N2-fixation after cutting.Contribution No. 1265 from Plant Research Center.Contribution No. 1265 from Plant Research Center.  相似文献   

12.
Summary Nitrogen balance studies were made on rice (Oryza sativa) grown in flooded soil in pots. A low rate of fertilizer (5.64 mg N. kg−1 soil) did not depress the N gain, but a high rate (99.72 mg N. kg−1 soil) elminated the N gain. Soil N loss was negligible since15N applied as ammonium sulfate and thoroughly mixed with the soil was recovered from the soil-plant system after 3 crops. The observed N gain, therefore, was caused by N2-fixation, not by a reduction of soil N loss. Straw enhanced N gain at the rate of 2–4 mg per g straw. However, this gain was not observed when soil N availability was high. Dry fallow between rice crops decreased the N gain.  相似文献   

13.
Grain legumes such as field pea are known to have high variability of yield and dinitrogen (N2) fixation between seasons, but less is known about the yearly spatial variability within a field. The objective of this study was to improve the understanding of spatial field scale variability of field pea dry matter (DM) yield and nitrogen (N) acquisition from fixation and soil within a 10 ha farmer’s field. A 42 m systematic random grid providing 56 plant sampling locations across 10 ha supplemented by soil data provided from an existing database were used to determine whether the observed spatial variability could be explained by the variability in selected abiotic soil properties. All measured soil variables showed substantial variability across the field and the pea dry matter production ranged between 4.9 and 13.8 Mg ha?1 at maturity. The percent of total N derived from the atmosphere (%Ndfa) at flowering, estimated using the 15N natural abundance method, ranged from 65% to 92% with quantitative N2-fixation estimates from 93 kg to 202 kg N ha?1. At maturity %Ndfa ranged from 26% to 81% with quantitative N2-fixation estimates from 48 kg to 167 kg N ha?1. Significant correlations were found between pea dry matter production and humus content, potassium content (collinear with humus) and total N in the 0–25 cm topsoil. No correlation was found between any individual soil property and %Ndfa or kg N fixed ha?1. It was not possible to create a satisfactory global multi-regression model for the field dry matter production and N2-fixation. A number of other models were tested, but the best was only able to explain less than 40% of the variance in %Ndfa using seven soil properties. Together with the use of interpolated soil data, high spatial variation of soil 15N natural abundance, a mean increase in pea 15N natural abundance of 1 δ unit between flowering and maturity and a reference crop decline of 1.3 δ15N unit over the same period increased noise of derived variables, making modeling of N2-fixation difficult. Furthermore, complex interactions with other soil variables and biotic stresses not measured in this study may have contributed significantly to the variability of fixation and yield of pea within the field. Pea N2-fixation obtained from two additional 10 ha farmer fields was in agreement with the other findings highlighting that N2-fixation takes place under a range of physical and chemical soil properties and is controlled by local site specific conditions. In future studies addressing field scale variability we recommend that soil variables wherever possible should be measured in the same plots as the sampled crop. Sampling designs that optimize the use of a priori information about the field soil and landscape properties for positioning plots and that facilitate estimates of local variances should be considered.  相似文献   

14.
We examined the combined effects of light and pCO2 on growth, CO2-fixation and N2-fixation rates by strains of the unicellular marine N2-fixing cyanobacterium Crocosphaera watsonii with small (WH0401) and large (WH0402) cells that were isolated from the western tropical Atlantic Ocean. In low-pCO2-acclimated cultures (190 ppm) of WH0401, growth, CO2-fixation and N2-fixation rates were significantly lower than those in cultures acclimated to higher (present-day ~385 ppm, or future ~750 ppm) pCO2 treatments. Growth rates were not significantly different, however, in low-pCO2-acclimated cultures of WH0402 in comparison with higher pCO2 treatments. Unlike previous reports for C. watsonii (strain WH8501), N2-fixation rates did not increase further in cultures of WH0401 or WH0402 when acclimated to 750 ppm relative to those maintained at present-day pCO2. Both light and pCO2 had a significant negative effect on gross : net N2-fixation rates in WH0402 and trends were similar in WH0401, implying that retention of fixed N was enhanced under elevated light and pCO2. These data, along with previously reported results, suggest that C. watsonii may have wide-ranging, strain-specific responses to changing light and pCO2, emphasizing the need for examining the effects of global change on a range of isolates within this biogeochemically important genus. In general, however, our data suggest that cellular N retention and CO2-fixation rates of C. watsonii may be positively affected by elevated light and pCO2 within the next 100 years, potentially increasing trophic transfer efficiency of C and N and thereby facilitating uptake of atmospheric carbon by the marine biota.  相似文献   

15.
16.
Acacia mearnsii is an introduced Australian acacia in South Africa and has invaded more than 2.5 million ha, primarily establishing in rangeland and riparian areas. Because acacias have the capability to fix N, A. mearnsii invasions may fundamentally change N dynamics in invaded systems. This study compares biological N2-fixation in the alien invasive A. mearnsii and the native A. caffra growing in a grassland riparian zone in the Komati Gorge Reserve, Mpumalanga, South Africa. A 15N natural abundance field survey suggested that both mature alien and native acacias fix N under current conditions in the riparian zone. Significantly depleted δ15N was observed in both acacias relative to reference species, although variation in δ15N was not correlated with N concentrations. Calculated contributions of N2-fixation (%Ndfa) suggest that alien acacias fix significantly more of their N than native acacias (~75 ± 5% SE and 53 ± 9% SE, respectively). There was a larger variation in δ15N and %Ndfa in the native acacia, suggesting relatively high plasticity in its N2-fixation contributions. This plasticity was interpreted as a facultative N2-fixation strategy for the native acacia, while the N2-fixation strategy of the alien acacia remained unclear. Our results emphasize the importance of potentially elevated N inputs through N2-fixation by invasive legumes in invaded landscapes. Furthermore, they suggest that N2-fixation by invasive acacias may not respond to fine-scale patchiness in soil N in the same manner as native acacias, making them potential contributors to N excess in Southern Africa.  相似文献   

17.
Nodulation, acetylene reduction activity, dry matter accumulation, and total nitrogen accumulation by nodulated plants growing in a nitrogen-free culture system were used to compare the symbiotic effectiveness of the fast-growing Rhizobium fredii USDA 191 with that of the slow-growing Bradyrhizobium japonicum USDA 110 in symbiosis with five soybean (Glycine max (L.) Merr.) cultivars. Measurement of the amount of nitrogen accumulated during a 20-day period of vegetative growth (28 to 48 days after transplanting) showed that USDA 110 fixed 3.7, 39.1, 4.6, and 57.3 times more N2 than did USDA 191 with cultivars Pickett 71, Harosoy 63, Lee, and Ransom as host plants, respectively. With the unimproved Peking cultivar as the host plant, USDA 191 fixed 3.3 times more N2 than did the USDA 110 during the 20-day period. The superior N2 fixation capability of USDA 110 with the four North American cultivars as hosts resulted primarily from higher nitrogenase activity per unit nodule mass (specific acetylene reduction activity) and higher nodule mass per plant. The higher N2-fixation capability of USDA 191 with the Peking cultivar as host resulted primarily from higher nodule mass per plant, which was associated with higher nodule numbers. There was significant variation in the N2-fixation capabilities of the four North American cultivar-USDA 191 symbioses. Pickett 71 and Lee cultivars fixed significantly more N2 in symbiosis with USDA 191 than did the Harosoy 63 and Ransom cultivars. This quantitative variation in N2-fixation capability suggests that the total incompatibility (effectiveness of nodulation and efficiency of N2 fixation) of host soybean plants and R. fredii strains is regulated by more than one host plant gene. These results indicate that it would not be prudent to introduce R. fredii strains into North American agricultural systems until more efficient N2-fixing symbioses between North American cultivars and these fast-growing strains can be developed. When inoculum containing equal numbers of USDA 191 and of strain USDA 110 was applied to the unimproved Peking cultivar in Perlite pot culture, 85% of the 160 nodules tested were occupied by USDA 191. With Lee and Ransom cultivars, 99 and 85% of 140 and 96 nodules tested, respectively, were occupied by USDA 110.  相似文献   

18.
Summary Two experiments were carried out with two nodulating and non-nodulating soybean isolines, with three different levels of N as (15NH4)2SO4 at the equivalent of 0, 25 and 50 kg N/ha. In the first experiment three seeds were sown in each pot and the plants harvested at 35, 55 and 75 days. In the second experiment only one seed was sown per pot and harvested at 75 days.Isotope dilution technique and in certain cases natural isotope variation (15N) was used to determine directly the origin of nitrogen in the plant, whether from soil, fertilizer or biological N2-fixation. The use of nodulating and non-nodulating isolines enabled comparison with the classical method of estimating N2-fixation by difference from total plant N. Results at the 75 day harvest were similar for either method, but at the earlier harvests, particularly at 35 days, the total-N method was inadequate. The isotope method appeared more sensitive while the total-N method suffered from greater variability with correspondingly high standard errors and significant differences.It was found that by the 35 and 55 day harvests hardly any N2-fixation had taken place, plant nitrogen being almost entirely derived from soil or fertilizer N. Plants in competition used up soil fertilizer N more rapidly, thus stimulating symbiotic nitrogen fixation. When only one plant was grown in each pot it had a greater proportion of N derived from soil or fertilizer, and less N derived from fixation. In general the15N data showed that only about 25% of the applied fertilizer N was absorbed by the plant.The nodulating isoline absorbed more N than the non-nodulating plants. This suggests a possible synergistic effect of N2-fixation on N derived from other sources, giving an increase in total-N content of nudulated plants. The N derived from N2-fixation was scarcely detectable in the roots but appeared to be translocated almost entirely to shoots and pods.With 25 kg N/ha the greater proportion of the nitrogen in the pods was derived from N2-fixation. Even with 50 kg N/ha the nitrogen in the pods derived from fixation remained high, that being derived from fertilizer being less than 15%. About 80% of the nitrogen in the nodules was due to fixation.In the present experiment the application of 25 kg N/ha appeared sufficient to give maximum N absorption by both isolines. At this level symbiotic fixation by Rhizobium remained high in nodulating plants, while the proportion of total N due to fixation was reduced with 50 kg N/ha.UNDP/IAEA Project BRA 78/006.  相似文献   

19.
In areas with a short growing season the poor adaptability of soybean [Glycine max Meer. (L.)] to cool soil conditions is considered the primary yield limiting factor. Soybean requires temperatures in the 25 to 30°C range for optimum N2-fixation and yield. Field studies were conducted in 1990 and 1991 at Montreal, Quebec to determine whether adaptability to cool soil conditions, with respect to earlier symbiosis establishment and function, existed among either Bradyrhizobium strains or soybean genotypes. An early maturing isoline of the soybean cultivar Evans and the cultivar Maple Arrow were inoculated with one of four strains isolated from the cold soils of Hakkaido, northern Japan, or the commercially used strains 532C or USDA110, at two planting dates. Plot biomass and nodulation were assessed at seedling (V2), and flowering(R2) growth stages and harvest maturity. Soybean genotypes did not differ for pre-flowering nodulation or N2-fixation in the cool spring conditions of the first year. Seasonal N2-fixation rates were also determined at the final harvest by the N-balance and 15N-isotope dilution methods. Significantly higher symbiotic activity was found for two of the four Hakkaido strains and was reflected in higher final soybean seed yield and total N2-fixation for the growing season, as compared to the two commercial strains. Planting 14 days earlier resulted in greater early vegetative and total seasonal N2 fixation and yield in the second year when soil temperatures were warmer, emphasizing the need for the development of soybean-Bradyrhizobium combinations superior in nodule development and function under cool soil conditions.  相似文献   

20.
The effect of short- and long-term changes in shoot carbon-exchange rate (CER) on soybean (Glycine max [L.] Merr.) root nodule activity was assessed to determine whether increases in photosynthate production produce a direct enhancement of symbiotic N2 fixation. Shoot CER, root + nodule respiration, and apparent N2 fixation (acetylene reduction) were measured on intact soybean plants grown at 700 microeinsteins per meter per second, with constant root temperature and a 14/10-hour light/dark cycle. There was no diurnal variation of root + nodule respiration or apparent N2 fixation in plants assayed weekly from 14 to 43 days after planting. However, if plants remained in darkness following their normal dark period, a significant decline in apparent N2 fixation was measured within 4 hours, and decreasing CO2 concentration from 320 to 90 microliters CO2 per liter produced diurnal changes in root nodule activity. Increasing shoot CER by 87, 84, and 76% in 2-, 3-, and 4-week-old plants, respectively, by raising the CO2 concentration around the shoot from 320 to 1,000 microliters CO2 per liter, had no effect on root + nodule respiration or acetylene-reduction rates during the first 10 hours of the increased CER treatment. When the CO2-enrichment treatment was extended in 3-week-old plants, the only measured parameter that differed significantly after 3 days was shoot CER. After 5 days of continuous CO2 enrichment, root + nodule respiration and acetylene reduction increased, but such changes reflected an increase in root nodule mass rather than greater specific root nodule activity. The results show that on a 24-hour basis the process of symbiotic N2 fixation in soybean plants grown under controlled environmental conditions functioned at maximum capacity and was not limited by shoot CER. Whether N2-fixation capacity was limited by photosynthate movement to root nodules or by saturation of metabolic processes in root nodules is not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号