首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Li B  Sun M  He B  Yu J  Zhang YD  Zhang YL 《Cell research》2002,12(1):39-45
INTRODUCTIONUterine leiomyomas (ULs) have been consideredto be of uniceIIular origin[l1. It is one of the mostcommon benign tumors, occurring in 20% to 30% ofwomen[2], accounting for significant morbidity andusually need major surgery[3] which might causesome side effects afterwards[4]. Therefore, to de-velop certain drug treatments instead has been thehope of these patients for a long time. Using alter-native approaches fOr studying patients sufferingfrom leiomyoma in various ethnic gr…  相似文献   

2.
More than 80% of tumors that occur in the brain are malignant gliomas. The prognosis of glioma patients is still poor, which makes glioma an urgent subject of cancer research. Previous evidence and our present data show that PCBP2 is over-expressed in human glioma tissues and predicts poor outcome. However, the mechanism by which PCBP2 is regulated in glioma remains elusive. We find that SIRT6, one of the NAD+-dependent class III deacetylase SIRTUINs, is down-regulated in human glioma tissues and that the level of SIRT6 is negatively correlated with PCBP2 level while H3K9ac enrichment on the promoter of PCBP2 is positively correlated with PCBP2 expression. Furthermore, we identify PCBP2 as a target of SIRT6. We demonstrate that PCBP2 expression is inhibited by SIRT6, which depends upon deacetylating H3K9ac. Finally, our results reveal that SIRT6 inhibits glioma cell proliferation and colony formation in vitro and glioma cell growth in vivo in a PCBP2 dependent manner. In summary, our findings implicate that SIRT6 inhibits PCBP2 expression through deacetylating H3K9ac and SIRT6 acts as a tumor suppressor in human glioma.  相似文献   

3.
Microarrays can be used to monitor the expression of thousands of genes simultaneously. This technique requires high-quality RNA which can be extracted from a variety of tissues and cells including post-mortem human brain. Given the vast amount of information obtained from microarray studies, it is critical to establish valid analysis techniques to identify differentially expressed genes. This technical report describes the basic methodology and analyses used to identify such genes in human post-mortem brain tissue.  相似文献   

4.
Sirtuin proteins are a highly conserved class of nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacylases. The pleiotropic human isoform 2 of Sirtuins (SIRT2) has been engaged in the pathogenesis of cancer in a plethora of reports around the globe. Thus, SIRT2 modulation is deemed as a promising approach for pharmaceutical intervention. Previously, we reported S-Trityl-l-Cysteine (STLC)-ornamented dimethylaminopyridine chemical entity named STC4 with a significant SIRT2 inhibitory capacity; this was separate from the conventional application of STLC scaffold as a kinesin-5 inhibitor. An interactive molecular docking study of SIRT2 and STC4 showed interaction between Asn168 of SIRT2 and the methyl ester of STC4, that appears to hinder STC4 to reach the selective pocket of the protein unlike strong SIRT2 inhibitor SirReal2. To improve its activity, herein, we utilized S-trityl cysteamine pharmacophore lacking the methyl ester. Nine compounds were synthesized and assayed affording three biopertinent SIRT2 inhibitors, and two of them, STCY1 and STCY6 showed higher inhibitory activity than STC4. These compounds have pronounced anti-proliferative activities against different cancer cell lines. A molecular docking study was executed to shed light on the supposed binding mode of the lead compound, STCY1, into the selective pocket of SIRT2 by interaction of the nitrogen of pyridine ring of the compound and Ala135 of the protein. The outcome of the study exposes that the active compounds are effective intermediates to construct more potent biological agents.  相似文献   

5.
A novel series of indazole tethered oxadiazoles (OTDs) derivatives were synthesized, characterized and screened for their anti-proliferative activity against hepatocellular carcinoma (HCC) cells. OTDs structure was further confirmed by Single-crystal X-ray diffraction studies. Among the tested OTDs, compound 2-(4-methoxyphenyl)-5-(1-methyl-1H-indazol-3-yl)-1,3,4-oxadiazole was found to inhibit the catalytical activity of SIRT2 and brings about apoptosis as shown by western blot analysis and flow cytometry data. Also, the tested OTDs were found to interact with the active site of human SIRT2 in silico but not with the cavity of co-crystal ligand 5-(3- hydroxypropyl)-3-(4-chlorophenyl)-1,2,4-oxadiazole, which indicate that these OTDs has potential in the development of SIRT2 inhibitors in liver cancer models.  相似文献   

6.
Melanoma is cancer of melanin-containing melanocyte cells. This neoplasm is one of the most deadly forms of skin cancer, and currently available therapeutic options are insufficient in significantly improve outcomes for many patients. Therefore, novel targets are required to effectively manage this neoplasm. Several sirtuins have previously been found to be upregulated in melanoma, so in this study, the expression profile of SIRT2 was determined. Employing a tissue microarray containing benign nevi, primary melanomas, and lymph node metastases, we have found that the tissue from lymph node metastases appears to have a significant upregulation of SIRT2 relative to primary tumors across the nuclear, cytoplasmic, and whole cell data. Additionally, SIRT2 staining was found to be higher in the nucleus of metastatic melanomas compared to cytoplasmic staining. As SIRT2 is considered to be a predominantly cytoplasmic protein, this is a novel and very interesting finding. This, combined with previous studies that show other sirtuins are increased in melanoma and involved in cellular proliferation and survival, leads to the suggestion that exploring pan-sirtuin inhibitors may be the best target for the next iteration of melanoma chemotherapeutics.  相似文献   

7.
Xing X  Lai M  Gartner W  Xu E  Huang Q  Li H  Chen G 《Proteomics》2006,6(9):2916-2923
To identify proteins with colorectal cancer-specific regulation, comparative 2-DE of individual-matched normal and neoplastic colorectal tissue specimens was performed. We found 15 protein spots with concordantly increased and 20 protein spots with concordantly decreased intensity in tumor tissue (expression regulation more than fivefold). Nine of these proteins were identified by MS/MS. Interestingly, one of the proteins, which exhibited a marked down-regulation in colorectal cancer tissues, was the recently identified endocrine cell-expressed protein secretagogin. The reduction of the secretagogin content in colorectal cancer tissues was confirmed by comparative immunoblotting (n = 17) and RT-PCR (n = 22) as well as by immunohistochemistry (n = 45) of individual-matched neoplastic and normal colorectal tissue specimens. Immunohistochemistry revealed absence of secretagogin-expressing cells in most of the colorectal cancer tissue specimens. However, some colorectal cancers were characterized by secretagogin-expressing cells. In normal mucosa, positively stained cells exhibited a neuroendocrine cell-characteristic morphology and mucosal location. In colorectal cancer tissues, secretagogin-expressing cells were characterized by a malignant morphology. Our findings might represent the basis for the clinical application of secretagogin as a biomarker for a distinct subgroup of colorectal cancers.  相似文献   

8.
To identify biomarkers for predicting sensitivity to phosphatidylinositol 3-kinase (PI3K) inhibitors, we have developed a proteomics-based approach. Using surface-enhanced laser desorption-ionization time-of-flight mass spectrometry (SELDI-TOF MS), we measured the expression of 393 proteins in 39 human cancer cell lines (JFCR-39), and combined it with our previously established chemosensitivity database to select for proteins whose expressions show significant correlations to drug sensitivities. This integrated approach allowed us to identify peaks from two proteins, 11.6 and 11.8 kDa, that showed significant correlations with the sensitivity to a PI3K inhibitor, LY294002. We found that the 11.8 kDa protein was a phosphorylated form of the 11.6 kDa protein. While the 11.8 kDa protein showed a positive correlation with the sensitivity to LY294002, the 11.6 kDa protein showed a negative correlation with that of the LY294002. The 11.6 kDa protein was purified chromatographically, and was identified by SELDI-TOF MS as the ribosomal P2 protein, which possesses two prospective phosphorylation sites. These results suggested that the phosphorylation status of the ribosomal P2 was responsible for determining the sensitivity to LY294002, and that the ribosomal P2 could be a potential biomarker for predicting chemosensitivity.  相似文献   

9.
10.
11.

Background  

Differentially expressed genes are typically identified by analyzing the variation between replicate measurements. These procedures implicitly assume that there are no systematic errors in the data even though several sources of systematic error are known.  相似文献   

12.
Sirt基因家族及其对细胞寿命的调节   总被引:1,自引:0,他引:1  
在酵母、线虫和果蝇中,Sir2基因家族是寿命调节的关键因子。哺乳动物的Sirt基因家族在进化上与Sir2基因高度同源,共有7个成员。Sir2基因调节酵母寿命的机理已比较清楚。而哺乳动物Sirt基因,特别是Sirt1基因与细胞衰老的关系正在成为新的研究热点。最近的研究表明,在热量限制或氧化逆境条件下,SIRT1蛋白主要是通过以下3个途径影响细胞寿命:一是SIRT1蛋白抑制PPAR-γ减少细胞的脂质过氧化的损伤;二是SIRT1蛋白通过调控p53的活性影响细胞寿命;三是SIRT1蛋白通过调控FOXO的信号通路,启动细胞的抗氧化途径。进一步研究Sirt基因家族对揭示哺乳动物寿命之谜具有重要的科学意义。  相似文献   

13.
14.
《Cell reports》2023,42(8):112939
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
Pan TL  Wang PW  Huang CC  Yeh CT  Hu TH  Yu JS 《Journal of Proteomics》2012,75(15):4676-4692
Poor prognoses have long been associated with the high relapse and metastasis of human hepatocellular carcinoma (HCC). To achieve long-term survival, it is necessary to identify new HCC biomarkers and investigate their roles in cell mobility and invasiveness. Of note, overexpression of vimentin (Vim) was significantly correlated with tumor nuclear grade (p=0.01) and the invasive potential, indicating that Vim may be a promising candidate in regulating HCC metastasis. RNA interference-mediated silencing of Vim (siVim) suppressed the invasive and migratory propensity, and matrix metalloproteinase (MMP)-9 activity, and elicited morphological changes in poorly differentiated SK-Hep-1 cells. Moreover, we performed a comprehensive proteomic analysis to survey global protein changes mediated by siVim in SK-Hep-1 cells. Significant changes in cytoskeleton protein but not messenger RNA levels encoding these targeted proteins were observed. All of the data in the current study and a network analysis implied that abolition of Vim may disturb the expression and stability of various cytoskeletal proteins through promoting the ubiquitin system, resulting in impaired cell adhesion and motility. Collectively, an integrated approach represents a modality to explore novel relationships in a proteome complex and highlights the functional roles of Vim in HCC metastasis. This article is part of a Special Issue entitled: Translational Proteomics.  相似文献   

17.
18.
At present, cardiovascular disease is one of the important factors of human death, and there are many kinds of proteins involved. Sirtuins family proteins are involved in various physiological and pathological activities of the human body. Among them, there are more and more studies on the relationship between sirtuin2 (SIRT2) protein and cardiovascular diseases. SIRT2 can effectively inhibit pathological cardiac hypertrophy. The effect of SIRT2 on ischaemia-reperfusion injury has different effects under different conditions. SIRT2 can reduce the level of reactive oxygen species (ROS), which may help to reduce the severity of diabetic cardiomyopathy. SIRT2 can affect a variety of cardiovascular diseases, energy metabolism and the ageing of cardiomyocytes, thereby affecting heart failure. SIRT2 also plays an important role in vascular disease. For endothelial cell damage used by oxidative stress, the role of SIRT2 is bidirectional, which is related to the degree of oxidative stress stimulation. When the degree of stimulation is small, SIRT2 plays a protective role, and when the degree of stimulation increases to a certain level, SIRT2 plays a negative role. In addition, SIRT2 is also involved in the remodelling of blood vessels and the repair of skin damage.  相似文献   

19.
Recently, we showed that transfection of GD3 synthase cDNA into Neuro2a cells, a mouse neuroblastoma cell line, causes cell differentiation with neurite sprouting. In a search for the genes involved in this ganglioside-induced Neuro2a differentiation, we used a tetracycline-regulated GD3 synthase cDNA expression system combined with differential display PCRs to identify mRNAs that were differentially expressed at four representative time points during the process. We report here the identification of 10 mRNAs that are expressed highly at the Neuro2a differentiated stage. These cDNAs were named GDAP1-GDAP10 for (ganglioside-induced differentiation-associated protein) cDNAs. It is interesting that in retinoic acid-induced neural differentiated mouse embryonic carcinoma P19 cells, GDAP mRNA expression levels were also up-regulated (except that of GDAP3), ranging from three to >10 times compared with nondifferentiated P19 cells. All the GDAP genes (except that of GDAP3) were developmentally regulated. The GDAP1, 2, 6, 8, and 10 mRNAs were expressed highly in the adult mouse brain, whereas all the other GDAP mRNAs were expressed in most tissues. Our results suggested that these GDAP genes might be involved in the signal transduction pathway that is triggered through the expression of a single sialyltransferase gene to induce neurite-like differentiation of Neuro2a cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号