首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of polyglutamine-induced protein aggregation could provide treatment options for polyglutamine diseases such as Huntington disease. Here we showed through in vitro screening studies that various disaccharides can inhibit polyglutamine-mediated protein aggregation. We also found that various disaccharides reduced polyglutamine aggregates and increased survival in a cellular model of Huntington disease. Oral administration of trehalose, the most effective of these disaccharides, decreased polyglutamine aggregates in cerebrum and liver, improved motor dysfunction and extended lifespan in a transgenic mouse model of Huntington disease. We suggest that these beneficial effects are the result of trehalose binding to expanded polyglutamines and stabilizing the partially unfolded polyglutamine-containing protein. Lack of toxicity and high solubility, coupled with efficacy upon oral administration, make trehalose promising as a therapeutic drug or lead compound for the treatment of polyglutamine diseases. The saccharide-polyglutamine interaction identified here thus provides a new therapeutic strategy for polyglutamine diseases.  相似文献   

2.
Polyglutamine disease is now recognized as one of the conformational, amyloid-related diseases. In this disease, polyglutamine expansion in proteins has toxic effects on cells and also results in the formation of aggregates. Polyglutamine aggregate formation is accompanied by conversion of the polyglutamine from a soluble to an insoluble form. In yeast, the efficiency of the aggregate formation is determined by the balance of various parameters, including the length of the polyglutamine tract, the function of Hsp104, and the level of polyglutamine expression. In this study, we found that the co-expression of a long polyglutamine tract, which formed aggregates independently of the function of Hsp104, enhanced the formation of aggregates of a short polyglutamine tract in wild-type cells as well as in Deltahsp104 mutant cells. Thus, the expression of a long polyglutamine tract would be an additional parameter determining the efficiency of aggregate formation of a short polyglutamine tract. The co-localization of aggregates of long and short polyglutamine tracts suggests the possibility that the enhancement occurs due to the seeding of aggregates of the long polyglutamine tracts.  相似文献   

3.
The accumulation of intracellular protein deposits as inclusion bodies is the common pathological hallmark of most age-related neurodegenerative disorders including polyglutamine diseases. Appearance of aggregates of the misfolded mutant disease proteins suggest that cells are unable to efficiently degrade them, and failure of clearance leads to the severe disturbances of the cellular quality control system. Recently, the quality control ubiquitin ligase CHIP has been shown to suppress the polyglutamine protein aggregation and toxicity. Here we have identified another ubiquitin ligase, called E6-AP, which is able to promote the proteasomal degradation of misfolded polyglutamine proteins and suppress the polyglutamine protein aggregation and polyglutamine protein-induced cell death. E6-AP interacts with the soluble misfolded polyglutamine protein and associates with their aggregates in both cellular and transgenic mouse models. Partial knockdown of E6-AP enhances the rate of aggregate formation and cell death mediated by the polyglutamine protein. Finally, we have demonstrated the up-regulation of E6-AP in the expanded polyglutamine protein-expressing cells as well as cells exposed to proteasomal stress. These findings suggest that E6-AP is a critical mediator of the neuronal response to misfolded polyglutamine proteins and represents a potential therapeutic target in the polyglutamine diseases.  相似文献   

4.
Proteins with expanded polyglutamine domains cause eight inherited neurodegenerative diseases, including Huntington's, but the molecular mechanism(s) responsible for neuronal degeneration are not yet established. Expanded polyglutamine domain proteins possess properties that distinguish them from the same proteins with shorter glutamine repeats. Unlike proteins with short polyglutamine domains, proteins with expanded polyglutamine domains display unique protein interactions, form intracellular aggregates, and adopt a novel conformation that can be recognized by monoclonal antibodies. Any of these polyglutamine length-dependent properties could be responsible for the pathogenic effects of expanded polyglutamine proteins. To identify peptides that interfere with pathogenic polyglutamine interactions, we screened a combinatorial peptide library expressed on M13 phage pIII protein to identify peptides that preferentially bind pathologic-length polyglutamine domains. We identified six tryptophan-rich peptides that preferentially bind pathologic-length polyglutamine domain proteins. Polyglutamine-binding peptide 1 (QBP1) potently inhibits polyglutamine protein aggregation in an in vitro assay, while a scrambled sequence has no effect on aggregation. QBP1 and a tandem repeat of QBP1 also inhibit aggregation of polyglutamine-yellow fluorescent fusion protein in transfected COS-7 cells. Expression of QBP1 potently inhibits polyglutamine-induced cell death. Selective inhibition of pathologic interactions of expanded polyglutamine domains with themselves or other proteins may be a useful strategy for preventing disease onset or for slowing progression of the polyglutamine repeat diseases.  相似文献   

5.
Truant R  Atwal RS  Desmond C  Munsie L  Tran T 《The FEBS journal》2008,275(17):4252-4262
After the successful cloning of the first gene for a polyglutamine disease in 1991, the expanded polyglutamine tract in the nine polyglutamine disease proteins became an obvious therapeutic target. Early hypotheses were that misfolded, precipitated protein could be a universal pathogenic mechanism. However, new data are accumulating on Huntington's disease and other polyglutamine diseases that appear to contradict the toxic aggregate hypothesis. Recent data suggest that the toxic species of protein in these diseases may be soluble mutant conformers, and that the protein context of expanded polyglutamine is critical to understanding disease specificity. Here we discuss recent publications that define other important therapeutic targets for polyglutamine-mediated neurodegeneration related to the context of the expanded polyglutamine tract in the disease protein.  相似文献   

6.
The relation between activation of caspase-8 and polyglutamine aggregates has been focused. We prepared an antiserum (anti-m8D387) that recognizes the active form but not the proform of mouse caspase-8. We used immunostaining with anti-m8D387 antiserum to compare the localizations of activated mcaspase-8 in L929 (clone 1422) cells induced by TNF and polyglutamine aggregates. Anti-m8D387 was positive throughout cytoplasm of the TUNEL-positive cells induced by TNF treatment, whereas the anti-m8D387 reactivity was not positive throughout cytoplasm of the cells expressing polyglutamine but was restricted to polyglutamine aggregates. In contrast with TNF-treated cells, cells expressing anti-m8D387-positive cytoplasmic polyglutamine aggregates did not undergo TUNEL-positive apoptosis. Thus activated caspase-8 associated with polyglutamine aggregates alone was not sufficient to induce TUNEL-positive apoptosis of L929 (clone 1422) cells. The distribution of activated caspase-8 associated with polyglutamine aggregates may be essential for the polyglutamine-mediated cell death or downstream of caspase-8 may be different in the TNF-treated cells and cells expressing polyglutamine.  相似文献   

7.
8.
Accumulation of mutant proteins into misfolded species and aggregates is characteristic for diverse neurodegenerative diseases including the polyglutamine diseases. While several studies have suggested that polyglutamine protein aggregates impair the ubiquitin-proteasome system, the molecular mechanisms underlying the interaction between polyglutamine proteins and the proteasome have remained elusive. In this study, we use fluorescence live-cell imaging to demonstrate that the proteasome is sequestered irreversibly within aggregates of overexpressed N-terminal mutant Huntingtin fragment or simple polyglutamine expansion proteins. Moreover, by direct targeting of polyglutamine proteins for proteasomal degradation, we observe incomplete degradation of these substrates both in vitro and in vivo. Thus, our data reveal that intrinsic properties of the polyglutamine proteins prevent their efficient degradation and clearance. Additionally, fluorescence resonance energy transfer is detected between the proteasome and aggregated polyglutamine proteins indicative of a close and stable interaction. We propose that polyglutamine-containing proteins are kinetically trapped within proteasomes, which could explain their deleterious effects on cellular function over time.  相似文献   

9.
10.
Nine neurodegenerative diseases, including Huntington's disease, are associated with the aggregation of proteins containing expanded polyglutamine sequences. The end result of polyglutamine aggregation is a beta-sheet-rich deposit. There exists evidence that an important intermediate in the aggregation process involves intramolecular beta-hairpin structures. However, little is known about the starting state, monomeric polyglutamine. Most experimental studies of monomeric polyglutamine have concluded that the backbone is completely disordered. However, such studies are hampered by the inherent tendency for polyglutamine to aggregate. A recent computational study suggested that the glutamine residues in polyglutamine tracts have a significant propensity to adopt the left-handed polyproline II (P(II)) helical conformation. In this work, we use NMR spectroscopy to demonstrate that glutamine residues possess a high propensity to adopt the P(II) conformation. We present circular dichroism spectra that indicate the presence of significant amounts of P(II) helical structure in short glutamine tracts. These data demonstrate that the propensity to adopt the P(II) structure is retained for glutamine repeats of up to at least 15 residues. Although other structures, such as alpha-helices and beta-sheets, become possible at greater lengths, our data indicate that glutamine residues in monomeric polyglutamine have a significant propensity to adopt the P(II) structure, although not necessarily in long contiguous helical stretches. We note that we have no evidence to suggest that the observed P(II) helical structure is a precursor to polyglutamine aggregation. Nonetheless, increased understanding of monomeric polyglutamine structures will aid our understanding of the aggregation process.  相似文献   

11.
12.
Proteins with expanded polyglutamine domains cause eight inherited neurodegenerative diseases including Huntington's disease. In a previous paper, we identified peptides that inhibit polyglutamine protein aggregation and cell death and now describe the amino acid sequence requirements necessary for these activities. The original 11 amino acid polyglutamine (Q) Binding Peptide 1(QBP1; SNWKWWPGIFD) can be shortened to 8 amino acids (WKWWPGIF) without loss of ability to inhibit polyglutamine aggregation. Three determinants are responsible for inhibition: a tryptophan-rich motif (WKWW), a spacer amino acid and the tripeptide GIF. GIF can be replaced by a repeat of the tryptophan-rich motif, but the spacer remains necessary. We also demonstrate concordance between peptide activity in the in vitro assay and a cellular assay of polyglutamine aggregation and cell death. Polyglutamine binding peptides targeted for intracellular delivery by fusion to TAT retain the ability to inhibit polyglutamine aggregation and cell death in transfected COS 7 cells.  相似文献   

13.
Polyglutamine expansions within different proteins are associated with nine different neurodegenerative diseases. There is growing interest in understanding the roles of flanking sequences from disease-relevant proteins in the intrinsic conformational and aggregation properties of polyglutamine. We report results from atomistic simulations and circular dichroism experiments that quantify the effect of the N-terminal 17-residue (Nt17) segment of the huntingtin protein on polyglutamine conformations and intermolecular interactions. We show that the Nt17 segment and polyglutamine domains become increasingly disordered as polyglutamine length (N) increases in Nt17-QN constructs. Hydrophobic groups within Nt17 become sequestered in intramolecular interdomain interfaces. We also show that the Nt17 segment suppresses the intrinsic propensity of polyglutamine aggregation. This inhibition arises from the incipient micellar structures adopted by monomeric forms of the peptides with Nt17 segments. The degree of intermolecular association increases with increasing polyglutamine length and is governed mainly by associations between polyglutamine domains. Comparative analysis of intermolecular associations for different polyglutamine-containing constructs leads to clearer interpretations of recently published experimental data. Our results suggest a framework for fibril formation and identify roles for flanking sequences in the modulation of polyglutamine aggregation.  相似文献   

14.
Studies of synthetic polyglutamine peptides in vitro have established that polyglutamine peptides aggregate via a classic nucleation and growth mechanism. Chen and colleagues [Proc Natl Acad Sci U S A 2002;99:11884-11889] have found that monomeric polyglutamine, which is a disordered statistical coil in solution, is the critical nucleus for aggregation. Therefore, nucleation of beta-sheet-rich aggregates requires an initial disorder to order transition, which is a highly unfavorable thermodynamic reaction. The questions of interest to us are as follows: What are the statistical fluctuations that drive beta-sheet formation in monomeric polyglutamine? How do these fluctuations vary with chain length? And why is this process thermodynamically unfavorable, that is, why is monomeric polyglutamine disordered? To answer these questions we use multiple molecular dynamics simulations to provide quantitative characterization of conformational ensembles for two short polyglutamine peptides. We find that the ensemble for polyglutamine is indeed disordered. However, the disorder is inherently different from that of denatured proteins and the average compactness and magnitude of conformational fluctuations increase with chain length. Most importantly, the effective concentration of sidechain primary amides around backbone units is inherently high and peptide units are solvated either by hydrogen bonds to sidechains or surrounding water molecules. Due to the multiplicity of backbone solvation modes the probability associated with any specific backbone conformation is small, resulting in a conformational entropy bottleneck which makes beta-sheet formation in monomeric polyglutamine thermodynamically unfavorable.  相似文献   

15.
Polyglutamine diseases are a class of inherited neurodegenerative disorders caused by the expansion of a polyglutamine tract within the respective proteins. Clinical studies have revealed that the forming of neuronal intranuclear inclusions by the disease protein is a common pathological feature of polyglutamine diseases. Although there has been considerable progress in understanding polyglutamine diseases, many questions regarding their mechanism are still unanswered. The finding that molecular chaperones are associated with ubiquitinated intranuclear inclusions clearly indicates a crucial role of molecular chaperones in the generation of these fatal diseases. Molecular and chemical chaperones have been found to be a good agent for suppressing many polyglutamine diseases in several animal models. In this review, I discuss the roles of the ubiquitin-proteasome pathway and molecular chaperones in the development of polyglutamine diseases and probable approach for the prevention of many of these fatal disorders using molecular chaperones as a therapeutic agent. Newly found chemical chaperones have been demonstrated to be potentially useful and could be used as a therapeutic strategy in preventing many versions of polyglutamine diseases.  相似文献   

16.
Ataxin-3 is a member of the polyglutamine family of proteins, which are associated with at least nine different neurodegenerative diseases. In the disease state, expansion of the polyglutamine tract leads to dysfunction and death of neurons, as well as formation of proteinaceous aggregates known as nuclear inclusions. Intriguingly, both expanded and non-expanded forms of ataxin-3 are observed within these nuclear inclusions. Ataxin-3 is the smallest of the polyglutamine disease proteins and in its expanded form causes the neurodegenerative disorder Machado-Joseph disease. Using a non-pathological variant containing 28 residues in its polyglutamine tract, we have probed the folding and misfolding pathways of ataxin-3. We describe here the first equilibrium folding pathway delineated for any polyglutamine protein and show that ataxin-3 folds reversibly via a single intermediate species. We have also explored further the misfolding potential of the protein and found that partial destabilization of ataxin-3 by chemical denaturation leads to the formation of fibrillar aggregates by the non-pathological variant. These results provide an insight into the possible mechanisms by which polyglutamine expansion may affect the stability and conformation of the protein. The implications of this are considered in the wider context of the development and pathogenesis of polyglutamine diseases.  相似文献   

17.
A growing number of inherited neurodegenerative disorders, including Huntington's disease, have been shown to be caused by the expansion of CAG/polyglutamine repeats. The molecular mechanism underlying these disorders, however, has yet to be clarified. We and others previously demonstrated that caspase-8 was activated by proteolysis in association with the expression of extended polyglutamine. Here, we further analyzed the selectivity of caspases in the process mediated by extended polyglutamine. Among upstream caspases, caspase-10, a close homolog of caspase-8, was also proteolytically activated, but caspase-9 was not. Caspase-8 and -10 were recruited into nuclear aggregates of extended polyglutamine, where at least a fraction of these caspases was converted to the activated forms. Caspase-8 and -10 were co-immunoprecipitated with polyglutamine only when the polyglutamine was pathologically extended, whereas caspase-2, -3, -6, -7 and -9 were not co-immunoprecipitated with polyglutamine regardless of its size. A dominant-negative form of caspase-8 with a mutation at the catalytic cysteine residue inhibited polyglutamine-mediated nuclear apoptotic phenotype. These results suggest that caspase-8 and -10 are autoactivated as a result of close proximity of the proforms of these molecules that occurs due to aggregate formation, which reveals a novel toxic gain-of-function mechanism for the pathogenesis of CAG-repeat disorders.  相似文献   

18.
Modeling the structure of natively disordered peptides has proved difficult due to the lack of structural information on these peptides. In this work, we use a novel application of the host-guest method, combining folding theory with experiments, to model the structure of natively disordered polyglutamine peptides. Initially, a minimalist molecular model (C(alpha)C(beta)) of CI2 is developed with a structurally based potential and captures many of the folding properties of CI2 determined from experiments. Next, polyglutamine "guest" inserts of increasing length are introduced into the CI2 "host" model and the polyglutamine is modeled to match the resultant change in CI2 thermodynamic stability between simulations and experiments. The polyglutamine model that best mimics the experimental changes in CI2 thermodynamic stability has 1), a beta-strand dihedral preference and 2), an attractive energy between polyglutamine atoms 0.75-times the attractive energy between the CI2 host Go-contacts. When free-energy differences in the CI2 host-guest system are correctly modeled at varying lengths of polyglutamine guest inserts, the kinetic folding rates and structural perturbation of these CI2 insert mutants are also correctly captured in simulations without any additional parameter adjustment. In agreement with experiments, the residues showing structural perturbation are located in the immediate vicinity of the loop insert. The simulated polyglutamine loop insert predominantly adopts extended random coil conformations, a structural model consistent with low resolution experimental methods. The agreement between simulation and experimental CI2 folding rates, CI2 structural perturbation, and polyglutamine insert structure show that this host-guest method can select a physically realistic model for inserted polyglutamine. If other amyloid peptides can be inserted into stable protein hosts and the stabilities of these host-guest mutants determined, this novel host-guest method may prove useful to determine structural preferences of these intractable but biologically relevant protein fragments.  相似文献   

19.
Aggregation and deposition of expanded polyglutamine proteins in the brain cause neurodegenerative diseases including Huntington disease. This pathogenic process is suppressed and delayed in the presence of polyglutamine binding peptide 1 (QBP1), which we previously identified as an undecapeptide binding to pathogenic polyglutamine proteins from phage display peptide libraries. In this paper, a structure–activity relationship study on QBP1 was conducted to determine the pharmacophores for inhibition of polyglutamine aggregation. Furthermore, a truncation study identified an octapeptide as the minimum structure for suppressing aggregation of polyglutamine proteins, which is equipotent to the parent undecapeptide QBP1.  相似文献   

20.
Polyglutamines placed into context   总被引:11,自引:0,他引:11  
La Spada AR  Taylor JP 《Neuron》2003,38(5):681-684
Nine inherited neurodegenerative disorders result from polyglutamine expansions. Two recently published papers on spinocerebellar ataxia type 1, together with studies on spinobulbar muscular atrophy last year, indicate that host protein context is the key arbiter of polyglutamine disease protein toxicity. This insight may represent the most important development in the field since the recognition of nuclear inclusions or the propensity of polyglutamine to aggregate. Indeed, an intimate and inextricable relationship may exist between polyglutamine neurotoxicity and the normal interactions, domains, modifications, and functions of the respective disease proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号