首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Guinea-pig liver polynucleotide phosphorylase.   总被引:5,自引:3,他引:2       下载免费PDF全文
  相似文献   

3.
Liver glycogen degradation and phosphorylase activity were measured in normal and phosphorylase kinase-deficient (gsd/gsd) rats. During perfusion or ischaemia, gsd/gsd-rat livers showed a brisk glycogenolysis. There was also a small (1.9-fold) but significant transient increase in their phosphorylase alpha activity during ischaemia, despite their phosphorylase b kinase deficiency; it seems unlikely, however, that this was the main determinant of the glycogenolysis.  相似文献   

4.
A procedure for the purification of rabbit liver phosphorylase phosphatase is described. The specific activity of the preparation is 2,100 units/mg of protein, representing a 25,000-fold purification. During the initial steps of the purification a large activation of enzyme activity was observed. The molecular weight of the purified enzyme was estimated by Sephadex G-75 chromatography to be 35,000, and by sucrose density ultracentrifugation to be 34,000 (2.9 S). On Na dodecyl-SO4 polyacrylamide disc gel electrophoresis a single component with a molecular weight of 34,000 was observed. The pH optimum is 6.9 to 7.4, and the Km for rabbit muscle phosphorylase alpha is 2 muM. The same procedure is also applicable to the extensive purification of phosphorylase phosphatase from rabbit muscle.  相似文献   

5.
When crude rat liver preparations were incubated at 30degrees C, a gradual loss of phosphorylase kinase (ATP:phosphorylase b phosphotransferase, EC 2.7.1.38) activity was observed. This inactivation was Mg2+ dependent and was partially inhibited by sodium fluoride. Addition of Mg2+ ATP to the liver preparations, at any time throughout the incubation, caused a reactivation of the phosphorylase kinase and this was accelerated by micromolar concentrations of cyclic AMP. The reactivation process could be completely abolished by the addition of a heat stable protein kinase inhibitor, implicating cyclic AMP dependent protein kinase in the activation reaction. Both the low and the high activity forms of the enzyme required micromolar quantities of Ca2+ for full activity (KA = 0.6 micronM). The two forms exhibit quite different pH dependencies and at the physiological pH of liver (pH 7.4) their activities differed by a factor of 5-10. Conversion of the lower activity form into the higher seems to affect only the V - Km for muscle phosphorylase b (EC 2.4.1.1) was about 1 mg/ml for both enzyme forms.  相似文献   

6.
Two Dutch patients with liver phosphorylase kinase (PhK) deficiency were studied for abnormalities in the PhK liver alpha (alpha L) subunit mRNA by reversed-transcribed-PCR (RT-PCR) and RNase protection assays. One patient, belonging to a large Dutch family that expresses X-linked liver PhK deficiency, had a C3614T mutation in the PhK alpha L coding sequence. The C3614T mutation leads to replacement of proline 1205 with leucine, which changes the composition of an amino acid region, containing amino acids 1195-1214 of the PhK alpha L subunit, that is highly conserved in different species. The patient showed normal levels of PhK alpha L mRNA. The second patient, from an unrelated family, was found to have a TCT (bp 419-421) deletion in the PhK alpha L coding sequence, resulting in a phenylalanine 141 deletion. The same deletion was found in the PhK alpha L coding sequence from lymphocytes of the patient's mother, together with a normal PhK alpha L coding sequence. The phenylalanine that is absent in the PhK alpha L coding sequence of the second patient is a highly conserved amino acid between species. Both the C3614T mutation and the TCT (bp 419-421) deletion were not found in a panel of 80 control X chromosomes. On the basis of these results, it is postulated that the mutations found are responsible for liver PhK deficiency in the two patients investigated.  相似文献   

7.
1. Purine nucleoside phosphorylase (purine nucleoside:orthophosphate ribosyltransferase, E.C. 2.4.2.1) from liver of cattle, Bos taurus, was purified to homogeneity. Some properties of the enzymes from three different bovine tissues were compared and discussed. 2. The enzyme has a molecular weight of 83,000, a sedimentation coefficient of 5.3 S, a Stokes' radius of 3.71 nm, a frictional ratio of 1.30 and a subunit molecular weight of 30,000. 3. Optimal pH for xanthosine degradation is around 5.5, whereas a broad pH activity profile for inosine degradation was observed between 5.0 and 7.5. Lineweaver-Burk plots curved downward at high concentrations of substrates, inosine, phosphate and arsenate.  相似文献   

8.
9.
Using substrates purified from liver, the apparent Km values of synthase phosphatase ([UDPglucose--glycogen glucosyltransferase-D]phosphohydrolase, EC 3.1.3.42) and phosphorylase phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17) were found to be 0.7 and 60 units/ml respectively. The maximal velocity of phosphorylase phosphatase was more than a 100 times that of synthase phosphatase. In adrenalectomized, fasted animals there was a complete loss of synthase phosphatase but only a slight decrease in phosphorylase phosphatase when activity was measured using endogenous substrates in a concentrated liver extract. When assayed under optimal conditions with purified substrates, both activities were present but had decreased to very low levels. Mixing experiments indicated that synthase D present in the extract of adrenalectomized fasted animals was altered such that it was no longer a substrate for synthase phosphatase from normal rats. Phosphorylase a substrate on the other hand was unaltered and readily converted. When glucose was given in vivo, no change in percent of synthase in the I form was seen in adrenalectomized rats but the percent of phosphorylase in the a form was reduced. Precipitation of protein from an extract of normal fed rats with ethanol produced a large activation of phosphorylase phosphatase activity with no corresponding increase in synthase phosphatase activity. Despite the low phosphorylase phosphatase present in extracts of adrenalectomized fasted animals, ethanol precipitation increased activity to the same high level as obtained in the normal fed rats. Synthase phosphatase and phosphorylase phosphatase activities were also decreased in normal fasted, diabetic fed and fasted, and adrenalectomized fed rats. Both enzymes recovered in the same manner temporally after oral glucose administration to adrenalectomized, fasted rats. These results suggest an integrated regulatory mechanism for the two phosphatase.  相似文献   

10.
11.
The directly measurable (native) phosphorylase phosphatase present in a fresh mouse liver extract is bound to particulate glycogen and is not inhibited by heat-stable inhibitors. Treatment of the extract with trypsin or ethanol at room temperature caused a more than 10-fold increase in phosphorylase phosphatase activity. This increased activity stems from the activation of completely inactive (latent) enzyme, the major part of which is present in the high-speed supernatant. The trypsin-revealed activity can be completely blocked by heat-stable inhibitors. Treatment of the animal with glucocorticoids increases, and fasting decreases the activity of the native phosphorylase phosphatase. The level of latent enzyme, however, is unaffected by these treatments. The major portion of synthase phosphatase in the fresh liver extract is bound to glycogen. This enzyme is inhibited by the heat-stable inhibitor-2 and inactivated by trypsin or ethanol as well as by several treatments that have little effect on phosphorylase phosphatase. Upon DEAE-cellulose chromatography at 0 degrees C of a fresh liver extract, phosphorylase phosphatase and synthase phosphatase were resolved as separate, single peaks. If the preparation was not kept at 0 degrees C during the entire procedure, two peaks of each enzyme were observed. Under these conditions the first peak of phosphorylase phosphatase and of synthase phosphatase coincided. From these findings it is concluded that synthase phosphatase and phosphorylase phosphatase, in their native form, are distinct enzymes.  相似文献   

12.
13.
Extracts of rabbit liver contain a heat-stable, non-dialysable inhibitor of phosphorylase phosphatase. The inhibitory activity is destroyed by trypsin treatment or by ethanol precipitation. The kinetics of the inhibition are non-competitive with respect to phosphorylase a. The inhibitory activity is polydisperse on gel permeation chromatography. The mechanism of the inhibition is due to a direct interaction of the protein inhibitor with the enzyme.  相似文献   

14.
1.The two forms of glycogen phosphorylase were purified from human liver, and some kinetic properties were examined in the direction of glycogen synthesis. The b form has a limited catalytic capacity, resembling that of the rabbit liver enzyme. It is characterized by a low affinity for glucose 1-phosphate, which is unaffected by AMP, and a low V, which becomes equal to that of the a form in the presence of the nucleotide. Lyotropic anions stimulate phosphorylase b and inhibit phosphorylase a by modifying the affinity for glucose 1-phosphate. Both enzyme forms are easily saturated with glycogen. 2. These kinetic properties have allowed us to design a simple assay method for total (a + b) phosphorylase in human liver. It requires only 0.5 mg of tissue, and its average efficiency is 90% when the enzyme is predominantly in the b form. 3. The assay of total phosphorylase allows the unequivocal diagnosis of hepatic glycogen-storage disease caused by phosphorylase deficiency. One patient with a complete deficiency is reported. 4. The assay of human liver phosphorylase a is based on the preferential inhibition of the b form by caffeine. The a form displays the same activity when measured by either of the two assays.  相似文献   

15.
Kinetics of purified liver phosphorylase   总被引:8,自引:0,他引:8  
  相似文献   

16.
Initial velocity studies and product inhibition patterns for purine nucleoside phosphorylase from rabbit liver were examined in order to determine the predominant catalytic mechanism for the synthetic (forward) and phosphorolytic (reverse) reactions of the enzyme. Initial velocity studies in the absence of products gave intersecting or converging linear double reciprocal plots of the kinetic data for both the synthetic and phosphorolytic reactions of the enzyme. The observed kinetic pattern was consistent with a sequential mechanism, requiring that both substrates add to the enzyme before products may be released. The product inhibition patterns showed mutual competitive inhibition between guanine and guanosine as variable substrates and inhibitors. Ribose 1-phosphate and inorganic orthophosphate were also mutually competitive toward each other. Other combinations of substrates and products gave noncompetitive inhibition. Apparent inhibition constants calculated for guanine as competitive inhibitor and for ribose 1-phosphate as noncompetitive inhibitor of the enzyme, with guanosine as variable substrate, did not vary significantly with increasing concentrations of inorganic orthophosphate as fixed substrate. These results suggest that the mechanism was order and that substrates add to the enzyme in an obligatory order. Dead end inhibition studies carried out in the presence of the products guanine and ribose 1-phosphate, respectively, showed that the kinetically significant abortive ternary complexes of enzyme-guanine-inorganic orthophosphate (EQB) and enzyme-guanose-ribose 1-phosphate (EAP) are formed. The results of dead end inhibition studies are consistent with an obligatory order of substrate addition to the enzyme. The nucleoside or purine is probably the first substrate to form a binary complex with the enzyme, and with which inorganic orthophosphate or ribose 1-phosphate may interact as secondary substrates. The evidences presented in this investigation support an Ordered Theorell-Chance mechanism for the enzyme.  相似文献   

17.
Rabbit liver purine nucleoside phosphorylase (purine nucleoside: orthophosphate ribosyltransferase EC 2.4.2.1.) was purified to homogeneity by column chromatography and ammonium sulfate fractionation. Homogeneity was established by disc gel electrophoresis in presence and absence of sodium dodecyl sulfate, and isoelectric focusing. Molecular weights of 46,000 and 39,000 were determined, respectively, by gel filtration and by sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. Product inhibition was observed with guanine and hypoxanthine as strong competitive inhibitors for the enzymatic phosphorolysis of guanosine. Respective Kis calculated were 1.25 x 10(-5) M for guanine and 2.5 x 10(-5) M for hypoxanthine. Ribose 1-phosphate, another product of the reaction, gave noncompetitive inhibition with guanosine as variable substrate, and an inhibition constant of 3.61 x 10(-4) M was calculated. The protection of essential --SH groups on the enzyme, by 2-mercaptoethanol or dithiothreitol, was necessary for the maintenance of enzyme activity. Noncompetitive inhibition was observed for p-chloromercuribenzoate with an inhibition constant of 5.68 x 10(-6)M. Complete reversal of this inhibition by an excess of 2-mercaptoethanol or dithiothreitol was demonstrated. In the presence of methylene blue, the enzyme showed a high sensitivity to photooxidation and a dependence of photoinactivation on pH, strongly implicating histidine as the susceptible group at the active site of the enzyme. The pKa values determined for ionizable groups of the active site of the enzyme were near pH 5.5 and pH 8.5 The chemical and kinetic evidences suggest that histidine and cysteine may be essential for catalysis. Inorganic orthophosphate (Km 1.54 x 10(-2) M) was an obligatory anion requirement, and arsenate substituted for phosphate with comparable results. Guanosine (Km 5.00 x 10(-5) M), deoxyguanosine (Km 1.00 x 10(-4)M) and inosine (Km 1.33 x 10(-4)M), were substrates for enzymatic phosphorolysis. Xanthosine was an extremely poor substrate, and adenosine was not phosphorylyzed at 20-fold excess of the homogeneous enzyme. Guanine (Km 1.82 x 10(-5)M),ribose 1-phosphate (Km 1.34 x 10(-4) M) and hypoxanthine were substrates for the reverse reaction, namely, the enzymatic synthesis of nucleosides. The initial velocity studies of the saturation of the enzyme with guanosine, at various fixed concentrations of inorganic orthophosphate, suggest a sequential bireactant catalytic mechanism for the enzyme.  相似文献   

18.
We have purified and crystallized bovine liver phosphorylase a. Starting from 2.5 kg of liver, we obtain 250 mg of phosphorylase a, with a specific activity of 90 units/mg, representing 15% recovery. SDS polyacrylamide gels show three bands, a 95 kDa band with the same mobility as muscle phosphorylase, and two smaller bands of 55 kDa and 40 kDa, which are probably proteolytic fragments. These fragments remain associated and have native conformation and catalytic activity. Crystals which diffract to 2.8 A resolution, were prepared by the hanging drop method using polyethylene glycol PEG 4000 as precipitant. The crystals were prepared in the presence of activators maltotriose and phosphite and crack when placed in solutions containing the inhibitors glucose and caffeine. This suggests phosphorylase is present in an active conformation.  相似文献   

19.
Purification and properties of inactive liver phosphorylase   总被引:5,自引:0,他引:5  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号