首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EA McRobert  AN Young  LA Bach 《The FEBS journal》2012,279(17):3240-3250
Advanced glycation end-products (AGEs) are important mediators of diabetic complications via incompletely understood pathways. AGEs bind to intracellular ERM proteins (ezrin, radixin and moesin) that modulate cell shape, motility, adhesion and signal transduction. AGEs bind to the N-terminal domain of ezrin but not full-length ezrin. The AGE binding site may be made accessible either by proteolysis releasing an N-terminal fragment or ezrin activation by phosphorylation. Increased intracellular calcium is a primary event in cell activation by high glucose or AGEs. Calpain activity is increased concomitantly, and ezrin is a calpain substrate. The present study assessed whether glycated proteins affect ezrin cleavage and activation in renal tubule epithelial cells. After 7?days, AGE-BSA decreased ezrin levels in MDCK renal tubular cells to 66?±?4% of control. AGE-RNAse, ribosylated fetal bovine serum and methylglyoxal-BSA all had similar effects. The AGE-BSA-induced decrease in ezrin was abolished by calpastatin peptide, a specific calpain inhibitor, and 1,2-bis-aminophenoxyethane-tetraacetic acid acetoxymethyl ester (BAPTA-AM), a calcium chelator. Ezrin breakdown products were increased in AGE-BSA-treated cells, with a main fragment of ~?43?kDa. In?vitro, calpain?1 cleaved recombinant human ezrin, generating breakdown fragments including an N-terminal fragment of ~?43?kDa. Studies with ezrin mutants showed that non-phosphorylated ezrin was more susceptible to calpain cleavage. AGE-BSA decreased phosphorylated ERM levels to 31?±?12% in MDCK cells. Thus, AGE-BSA promotes calpain-mediated proteolysis of ezrin in MDCK cells by both increasing calpain activity and reducing phosphorylation. Therapies targeting both glycated proteins and calpain may provide protection against diabetic complications. Structured digital abstract ? Calpain-1?cleaves?Ezrin?by?protease assay?(View Interaction:?1,?2).  相似文献   

2.
A novel method to observe the autolytic activation of a mammalian cytoplasmic calcium protease, mu-calpain, was developed using a set of antipeptidic antibodies capable of distinguishing between the pre- and post-autolysis forms of the enzyme. Antibodies raised against synthetic peptides designed to match the N-terminal sequences of the pre- and post-autolysis forms of the mu-calpain large subunit reacted specifically with the corresponding form of calpain and not with the other. The antibodies were specific and sensitive enough to detect the antigens in crude cell lysates. The relevance of the immunochemical detection of calpain activation was confirmed by the observation that proteolysis of a substrate protein by purified mu-calpain paralleled autolysis at various pCa as probed by these antibodies and that autolysis preceded substrate proteolysis. We also observed calcium-dependent autolysis of calpain accompanying subsequent proteolysis of substrate in intact cells using the antibodies. The method will provide a novel approach to assess the physiological targets of the enzyme by determining the local intracellular sites of calpain activation.  相似文献   

3.
Although enhanced calpain activity is well documented after traumatic brain injury (TBI), the pathways targeting specific substrate proteolysis are less defined. Our past work demonstrated that calpain cleaves voltage gated sodium channel (NaCh) α-subunits in an in vitro TBI model. In this study, we investigated the pathways leading to NaCh cleavage utilizing our previously characterized in vitro TBI model, and determined the location of calpain activation within neuronal regions following stretch injury to micropatterned cultures. Calpain specific breakdown products of α-spectrin appeared within axonal, dendritic, and somatic regions 6 h after injury, concurrent with the appearance of NaCh α-subunit proteolysis in both whole cell or enriched axonal preparations. Direct pharmacological activation of either NMDA receptors (NMDArs) or NaChs resulted in NaCh proteolysis. Likewise, a chronic (6 h) dual inhibition of NMDArs/NaChs but not L-type voltage gated calcium channels significantly reduced NaCh proteolysis 6 h after mechanical injury. Interestingly, an early, transient (30 min) inhibition of NMDArs alone significantly reduced NaCh proteolysis. Although a chronic inhibition of calpain significantly reduced proteolysis, a transient inhibition of calpain immediately after injury failed to significantly attenuate NaCh proteolysis. These data suggest that both NMDArs and NaChs are key contributors to calpain activation after mechanical injury, and that a larger temporal window of sustained calpain activation needs consideration in developing effective treatments for TBI.  相似文献   

4.
Proteolytic cleavage of the Na(+)/Ca(2+) exchanger (NCX) by calpains impairs calcium homeostasis, leading to a delayed calcium overload and excitotoxic cell death. However, it is not known whether reversal of the exchanger contributes to activate calpains and trigger neuronal death. We investigated the role of the reversal of the NCX in Ca(2+) dynamics, calpain activation and cell viability, in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-stimulated hippocampal neurons. Selective overactivation of AMPA receptors caused the reversal of the NCX, which accounted for approximately 30% of the rise in intracellular free calcium concentration ([Ca(2+)](i)). The NCX reverse-mode inhibitor, 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea (KB-R7943), partially inhibited the initial increase in [Ca(2+)](i), and prevented a delayed increase in [Ca(2+)](i). In parallel, overactivation of AMPA receptors strongly activated calpains and led to the proteolysis of NCX3. KB-R7943 prevented calpain activation, cleavage of NCX3 and was neuroprotective. Silencing of NCX3 reduced Ca(2+) uptake, calpain activation and was neuroprotective. Our data show for the first time that NCX reversal is an early event following AMPA receptor stimulation and is linked to the activation of calpains. Since calpain activation subsequently inactivates NCX, causing a secondary Ca(2+) entry, NCX may be viewed as a new suicide substrate operating in a Ca(2+)-dependent loop that triggers cell death and as a target for neuroprotection.  相似文献   

5.
Abstract: Calcium influx into SH-SY5Y human neuroblastoma cells after ionophore treatment or transient permeabilization in calcium-containing medium increased ALZ-50 immunoreactivity markedly. This increase was prevented by inhibitors active against calpain or against protein kinase C (PKC), suggesting that both of these enzymes were required to mediate the effect of calcium influx on ALZ-50 immunoreactivity. Treatment with PKC activator TPA increased ALZ-50 immunoreactivity in the absence of calcium influx or after intracellular delivery of the specific calpain inhibitor calpastatin, indicating that the influence of PKC was downstream from that of calpain. Calcium influx also resulted in μ-calpain autolysis (one index of calpain activation) and the transient appearance of PKM (i.e., free PKC catalytic subunits, generated by calpain-mediated cleavage of the regulatory and catalytic PKC domains). Inhibition of calpain within intact cells resulted in a dramatic increase in steady-state levels of total τ (migrating at 46–52 kDa) but resulted in a relatively minor increase in 68-kDa ALZ-50-immunoreactive τ isoforms. Although calcium influx into intact cells resulted in accumulation of ALZ-50 immunoreactivity, total τ levels were, by contrast, rapidly depleted. Incubation of isolated fractions with calpain in the presence of calcium indicated that ALZ-50-immunoreactive τ isoforms were more resistant to calpain-mediated proteolysis than were non-ALZ-50 reactive τ isoforms. These data therefore indicate that calpain may regulate τ levels directly via proteolysis and indirectly through PKC activation. A consequence of the latter action is altered τ phosphorylation, perhaps involving one or more kinase cascades, and the preferential accumulation of ALZ-50-immunoreactive τ isoforms due to their relative resistance to degradation. These findings provide a basis for the possibility that disregulation of calcium homeostasis may contribute to the pathological levels of conversion of τ to A68 by hyperactivation of the calpain/PKC system.  相似文献   

6.
The Shumiya cataract rat (SCR) is a hereditary cataract model in which lens opacity appears spontaneously in the nuclear and perinuclear portions at 11-12 weeks of age. We found incidentally that the oral administration of aminoguanidine (AG), an inhibitor of inducible nitric oxide synthase (iNOS), strongly inhibits the development of lens opacification in SCR. Since our previous results strongly suggested that calpain-mediated proteolysis contributes to lens opacification during cataract formation in SCR, we examined the calpain-mediated proteolysis in AG-treated SCR lenses in detail. The results show that the calpain-mediated limited proteolysis of crystallins is also inhibited by AG-treatment. However, the administration of AG has no effect on the substrate susceptibility to calpain. On the other hand, the autolytic activation of calpain in AG-treated lenses is strongly inhibited, although AG itself does not inhibit calpain activity in vitro. Then, we analyzed the effect of AG-treatment on calcium concentrations in lens, and found that the elevation in calcium concentration that should occur prior to cataractogenesis in lenses is strongly suppressed by AG-treatment. These results strengthen our previous conclusion that calpain-mediated proteolysis plays a critical role in the development of lens opacification in SCR. Moreover, our results indicate that the inhibition of calpain-mediated proteolysis by AG-treatment is due to the suppression of calcium ion influx into the lens cells.  相似文献   

7.
Abstract: Tissue transglutaminase (tTG) is a calcium-dependent enzyme that catalyzes the transamidation of specific polypeptide-bound glutamine residues, a reaction that is inhibited by GTP. There is also preliminary evidence that, in situ, calpain and GTP may regulate tTG indirectly by modulating its turnover by the calcium-activated protease calpain. In the present study, the in vitro and in situ proteolysis of tTG by calpain, and modulation of this process by GTP, was examined. tTG is an excellent substrate for calpain and is rapidly degraded. Previously it has been demonstrated that GTP binding protects tTG from degradation by trypsin. In a similar manner, guanosine-5'- O -(3-thiotriphosphate) protects tTG against proteolysis by calpain. Treatment of SH-SY5Y cells with 1 n M maitotoxin, which increases intracellular calcium levels, resulted in a significant increase in in situ TG activity, with only a slight decrease in tTG protein levels. In contrast, when GTP levels were depleted by pretreating the cells with tiazofurin, maitotoxin treatment resulted in an ∼50% decrease in tTG protein levels, and a significant decrease in TG activity, compared with maitotoxin treatment alone. Addition of calpain inhibitors inhibited the degradation of tTG in response to the combined treatment of maitotoxin and tiazofurin and resulted in a significant increase in in situ TG activity. These studies indicate that tTG is an endogenous substrate of calpain and that GTP selectively inhibits the degradation of tTG by calpain.  相似文献   

8.
Our laboratory has established that local activation of calpain by a transient elevation of the free intracellular calcium concentration is crucial for the induction of growth cone (GC) formation in cultured Aplysia neurons. The mechanisms and stages in which calpain is involved in the formation of a GC are not known. We began to study these questions by determining the nature of calpain's action and the stages in which calpain activity affects the cascade of events that leads to the formation of the GC and its extension. We report that the calpain-dependent transformation of an axonal segment into a GC occurs within a narrow window of opportunity that lasts approximately 5 min. If calpain is inhibited during this window of opportunity, GC formation does not occur. Inhibition of calpain after the window of opportunity slows down the rate of lamellipodial extension but doesn't arrest it. The proteolysis of spectrin, a calpain substrate and a major component of the membrane skeleton, occurs within this window of opportunity, in agreement with the hypothesis that spectrin proteolysis is an early step in the formation of the GC. If the onset of proteolysis is deferred, spectrin remains unchanged and GC formation is compromised. We suggest that calpain participates in two different processes: it is critical for the triggering of GC formation and plays a modulatory role during the extension of the GC's lamellipodia.  相似文献   

9.
Although calpain (EC 3.4.22) protease activation was suggested to contribute to excitotoxic delayed calcium deregulation (DCD) via proteolysis of Na+/Ca2+ exchanger 3 (NCX3), cytoplasmic calpain activation in relation to DCD has never been visualized in real-time. We employed a calpain fluorescence resonance energy transfer substrate to simultaneously image calpain activation and calcium deregulation in live cortical neurons. A calpain inhibitor-sensitive decline in fluorescence resonance energy transfer was observed at 39 ± 5 min after the occurrence of DCD in neurons exposed to continuous glutamate (100 μM). Inhibition of calpain by calpeptin did not delay the onset of DCD, recovery from DCD-like reversible calcium elevations, or cell death despite inhibiting α-spectrin processing by > 90%. NCXs reversed during glutamate exposure, the NCX antagonist KB-R7943 prolonged the time to DCD, and significant NCX3 cleavage following 90 min of glutamate exposure was not observed. Our findings suggest that robust calpain activation associated with acute glutamate toxicity occurs only after a sustained loss in calcium homeostasis. Processing of NCX3 or other calpain substrates is unlikely to be the primary cause of acute excitotoxicity in cortical neurons. However, a role for calpain as a contributing factor or in response to milder glutamate insults is not excluded.  相似文献   

10.
All mammalian cells contain a calcium-dependent proteolytic system, composed by a proteinase, calpain, and an inhibitor, calpastatin. In some cell types an activator protein has also been identified. Moreover, two calpain isoforms, distinguishable on the basis of a different calcium requirement, can be present in a single cell. Both calpain forms are heterodimers composed of a heavy subunit (80 kDa) that contains the catalytic site and a smaller (regulatory?) subunit (30 kDa). Calpain I expresses full activity at 10-50 microM Ca2+, whereas calpain II requires calcium concentrations in the millimolar range. The removal by autoproteolysis of a fragment from the N-terminus of both calpain subunits generates a proteinase form that can express catalytic activity at concentrations of Ca2+ close to the physiological range. This process is significantly accelerated in the presence of cell membranes or phospholipid vesicles. Calpastatin, the specific inhibitor of calpain, prevents activation and the expression of catalytic activity of calpain. It is in itself a substrate of the proteinase and undergoes a degradation process which correlates with the general mechanism of regulation of the intracellular proteolytic system. The natural calpain activator specifically acts on calpain II isoform, by reducing the Ca2+ required for the autoproteolytic activation process. Based on the general properties of the calpain-calpastatin system and on the substrate specificity, its role in the expression of specific cell functions can be postulated.  相似文献   

11.
Myosin-Va is a molecular motor that may participate in synaptic vesicle cycling. Calpain cleaves myosin-Va in vitro at methionine 1141 in the tail domain. We show that intracellular proteolysis of myosin-Va occurs in rat cortical synaptosomes depolarized in the presence of calcium, evidenced by the formation of an 80 k polypeptide that co-migrates in SDS-PAGE with the 80 k fragment produced by the in vitro proteolysis of myosin-Va by calpain. Anti-myosin-Va antibody recognized this polypeptide in Western blots and immunoprecipitated it from synaptosome extracts. Calpastatin, a calpain-specific inhibitor, or leupeptin, a general cysteine protease inhibitor, suppressed or blocked formation of the 80 k polypeptide depending on membrane permeability. We conclude that myosin-Va undergoes intracellular proteolysis by endogenous calpain, when synaptosomes are depolarized in the presence of calcium, at the same cleavage site previously identified in vitro, thus, making it a target for calcium signaling during synaptic activation.  相似文献   

12.
Calpain-mediated proteolysis regulates cytoskeletal dynamics and is altered during aging and the progression of numerous diseases or pathological conditions. Although several cytoskeletal proteins have been identified as substrates, how localized calpain activity is regulated and the mechanisms controlling substrate recognition are not clear. In this study, we report that phosphoinositide binding regulates the susceptibility of the cytoskeletal adhesion protein alpha-actinin to proteolysis by calpains 1 and 2. At first, alpha-actinin did not appear to be a substrate for calpain 2; however, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) binding to alpha-actinin resulted in nearly complete proteolysis of the full-length protein, producing stable breakdown products. Calpain 1 was able to cleave alpha-actinin in the absence of phosphoinositide binding; however, PtdIns(3,4,5)P(3) binding increased the rate of proteolysis, and phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)) binding significantly inhibited cleavage. Phosphoinositide binding appeared to regulate calpain proteolysis of alpha-actinin by modulating the exposure of a highly sensitive cleavage site within the calponin homology 2 domain. In U87MG glioblastoma cells, which contain elevated levels of PtdIns(3,4,5)P(3), alpha-actinin colocalized with calpain within dynamic actin cytoskeletal structures. Furthermore, proteolysis of alpha-actinin producing stable breakdown products was observed in U87MG cells treated with calcium ionophore to activate the calcium-dependent calpains. Additional evidence of PtdIns(3,4,5)P(3)-mediated calpain proteolysis of alpha-actinin was observed in rat embryonic fibroblasts. These results suggest that PtdIns(3,4,5)P(3) binding is a critical determinant for alpha-actinin proteolysis by calpain. In conclusion, phosphoinositide binding to the substrate is a potential mechanism for regulating susceptibility to proteolysis by calpain.  相似文献   

13.
Premature visual impairment due to lens opacification is a debilitating characteristic of untreated diabetes. Lens opacification is primarily due to the insolubilization of crystallins, proteins essential for lens optical properties, and recent studies have suggested that a major cause of this insolubilization may be the unregulated proteolysis of crystallins by calpains. These are intracellular cysteine proteases whose activation requires the presence of calcium (Ca2+) and elevated levels of lens Ca2+ is a condition associated with both diabetic cataractogenesis and other forms of the disorder. A number of calpains have been identified in the lens, including calpain 2, calpain 10 and two isozymes of calpain 3: Lp82 and Lp85. The use of animal hereditary cataract models have suggested that calpain 2 and/or Lp82 may be the major calpains involved in murine cataractogenesis with contributions from calpain 10 and Lp85. However, calpain 2 appears to be the major calpain involved in murine diabetic cataractogenesis and the strongest candidate of the calpains for a role in human types of cataractogenesis. Here, we present an overview of recent evidence on which these observations are based with an emphasis on the ability of calpains to proteolyse lens crystallins and calpain structural features, which appear to be involved in the Ca2+-mediated activation of these enzymes.  相似文献   

14.
Normal processing of Alzheimer's beta-amyloid precursor protein (APP) is markedly stimulated by phorbol esters, but the underlying mechanisms have yet to be fully understood. In this study, we observed that: (a) Phorbol 12,13-dibutyrate (PDBu)-stimulated APP secretion in cultured SH-SY5Y neuroblastoma and fibroblast cells was blocked by EGTA and calpain inhibitors in a concentration-dependent manner, but not by other protease inhibitors. (b) Secretion of fibronectin, another secretory protein tested for comparison, was enhanced by PDBu, but insensitive to calpain inhibitors. (c) PDBu stimulated intracellular calpain activity as measured by the hydrolysis of a fluorogenic calpain substrate. (d) PDBu also induced rapid proteolysis of two endogenous substrates of calpains, i.e., tau and microtubule-associated protein-2 (MAP-2) and the proteolysis was blocked by EGTA and calpain inhibitors. Taken together, these results suggest that stimulation of APP alpha-processing by PDBu is through a mechanism that involves the activation of Ca(2+) and, most notably, calpain. The implications of the findings are discussed in relation to the regulatory mechanism of APP alpha-processing.  相似文献   

15.
Calpains are a family of calcium-dependent cysteine-proteases involved in cytoskeleton remodelling and muscle differentiation. In a recent study, we observed the presence of calpain 1 in the muscle contractile apparatus and specifically in the N1- and N2-lines. This calpain isoform was found to be involved in the degradation of muscle fibres via proteolysis of key proteins in Z-disk and costameric junctions. The goal of this study was to determine whether gamma-filamin--a specific muscle isoform of the filamin family--is a calpain 1 substrate and to characterise this interaction. Gamma-filamin is a major muscle architectural protein located in the Z-line and under the sarcolemmal membrane. This protein is a component of the chain binding the sarcolemma to the sarcomeric structure. In this study, we found that gamma-filamin formed a stable complex in vitro and in cells with calpain 1 in the absence of calcium stimulation. We also located the binding domains in the C-terminus of gamma-filamin with a cleavage site between serine 2626 and serine 2627 in the hinge 2 region. The catalytic (80 kDa) and regulatory (28 kDa) subunits of calpain 1 are both involved in high affinity binding at gamma-filamin. Moreover, we showed that phosphorylation of the filamin C-terminus domain by PKC alpha protected gamma-filamin against proteolysis by calpain 1 in COS cells. Stimulation of PKC activity in myotubes, prevented gamma-filamin proteolysis by calpain and resulted in an increase in myotube adhesion.  相似文献   

16.
Mammalian cells require extracellular calcium ion to undergo rapid plasma membrane repair seconds after mechanical damage. Utilizing transformed fibroblasts from calpain small subunit knock-out (Capns1-/-) mouse embryos, we now show that the heterodimeric, typical subclass of calpains is required for calcium-mediated survival after plasma membrane damage caused by scraping a cell monolayer. Survival of scrape-damaged Capns1-/- cells was unaffected by calcium in the scraping medium, whereas more Capns1+/+ cells survived when calcium was present. Calcium-mediated survival was increased when Capns1-/- cells were scraped in the presence of purified m- or mu-calpain. Survival rates of scraped Capns1+/+, HFL-1, or Chinese hamster ovary cells were decreased by the calpain inhibitor, calpeptin, or the highly specific calpain inhibitor protein, calpastatin. Capns1-/- cells failed to reseal following laser-induced membrane disruption, demonstrating that their decreased survival after scraping resulted, at least in part, from failed membrane repair. Proteomic and immunologic analyses demonstrated that the known calpain substrates talin and vimentin were exposed at the cell surface and processed by calpain following cell scraping. Autoproteolytic activation of calpain at the scrape site was evident at the earliest time point analyzed and appeared to precede proteolysis of talin and vimentin. The results indicate that conventional calpains are required for calcium-facilitated survival after plasma membrane damage and may act by localized remodeling of the cortical cytoskeleton at the injury site.  相似文献   

17.
Evidence for involvement of calpain in c-Myc proteolysis in vivo   总被引:5,自引:0,他引:5  
Precise control of the level of c-Myc protein is important to normal cellular homeostasis, and this is accomplished in part by degradation through the ubiquitin-proteasome pathway. The calpains are a family of calcium-dependent proteases that play important roles in proteolysis of some proteins, and their possible participation in degradation of intracellular c-Myc was therefore investigated. Activation of calpain with the cell-permeable calcium ionophore A23187 in Rat1a-myc or ts85 cells in culture induced rapid cleavage of c-Myc. This degradation was both calpain- and calcium-dependent since it was inhibited by preincubation with either the calpain-inhibitory peptide calpeptin or the calcium-chelating agent EGTA. A23187-induced c-Myc cleavage occurred in a time-dependent manner comparable to that of FAK, a known calpain substrate, and while calpeptin was able to significantly protect c-Myc from degradation, inhibitors of the proteasome or caspase proteases could not. Exposure of Rat1a-myc or ts85 cells in culture to calpeptin, or to the thiol-protease inhibitor E64d, resulted in the accumulation of c-Myc protein without an impact on ubiquitin-protein conjugates. Using an in vitro assay, calpain-mediated degradation occurred rapidly with wild-type c-Myc as the substrate, but was significantly prolonged in some c-Myc mutants with increased transforming activity derived from lymphoma patients. Those mutants with a prolonged half-life in vitro were also more resistant to A23187-induced cleavage in intact cells. These studies support a role for calpain in the control of c-Myc levels in vivo, and suggest that mutations impacting on sensitivity to calpain may contribute to c-Myc-mediated tumorigenesis.  相似文献   

18.
An increase in intracellular Ca(2+) occurs during ageing of human erythrocytes in vivo. The aged cells show a reduced capacity for active Ca(2+) extrusion. Such a defect may arise from pump proteolysis, due to calpain activation by the raised intracellular Ca(2+). To test this possibility, Ca(2+) pump phosphorylation by [gamma-(32)P]ATP was studied on percoll-separated young and old human erythrocytes. After phosphorylation for 30 s with Ca(2+), the amount of phosphoenzyme produced by the young cell membranes was 50% that of the old cells. With Ca(2+) plus La(3+), in contrast, the phosphoenzyme level was nearly the same in both preparations. After a prolonged phosphorylation period (50-90 s), the phosphoenzyme reached almost identical equilibrium levels in both membrane preparations. On the other hand, a single Ca(2+)-dependent radioactive band of about 150 kDa was apparent in both preparations after acidic electrophoresis. Likewise, Western blotting using 5F10 monoclonal antibody also detected a single band of similar molecular weight. These results demonstrate that there is no alteration in either molecular mass or number of active Ca(2+) pump units during cell ageing, thus indicating that the reduced Ca(2+) pumping activity of aged cells does not arise from pump proteolysis.  相似文献   

19.
How m-calpain is activated in cells has challenged investigators because in vitro activation requires near-millimolar calcium. Previously, we demonstrated that m-calpain activation by growth factors requires extracellular signal-regulated kinase (ERK); this enables tail deadhesion and allows productive motility. We now show that ERK directly phosphorylates and activates m-calpain both in vitro and in vivo. We identified serine 50 as required for epidermal growth factor (EGF)-induced calpain activation in vitro and in vivo. Replacing the serine with alanine limits activation by EGF and subsequent cell deadhesion and motility. A construct with the serine converted to glutamic acid displays constitutive activity in vivo; expression of an estrogen receptor fusion construct produces a tamoxifen-sensitive enzyme. Interestingly, EGF-induced m-calpain activation occurs in the absence of increased intracellular calcium levels; EGF triggers calpain even in the presence of intracellular calcium chelators and in calcium-free media. These data provide evidence that m-calpain can be activated through the ERK cascade via direct phosphorylation and that this activation may occur in the absence of cytosolic calcium fluxes.  相似文献   

20.
We investigated the putative roles of phospholipase C, polyphosphoinositides, and inositol 1,4,5-trisphosphate (IP(3)) in capacitative calcium entry and calcium release-activated calcium current (I(crac)) in lacrimal acinar cells, rat basophilic leukemia cells, and DT40 B-lymphocytes. Inhibition of phospholipase C with blocked calcium entry and I(crac) activation whether in response to a phospholipase C-coupled agonist or to calcium store depletion with thapsigargin. Run-down of cellular polyphosphoinositides by concentrations of wortmannin that block phosphatidylinositol 4-kinase completely blocked calcium entry and I(crac). The membrane-permeant IP(3) receptor inhibitor, 2-aminoethoxydiphenyl borane, blocked both capacitative calcium entry and I(crac). However, it is likely that 2-aminoethoxydiphenyl borane does not inhibit through an action on the IP(3) receptor because the drug was equally effective in wild-type DT40 B-cells and in DT40 B-cells whose genes for all three IP(3) receptors had been disrupted. Intracellular application of another potent IP(3) receptor antagonist, heparin, failed to inhibit activation of I(crac). Finally, the inhibition of I(crac) activation by or wortmannin was not reversed or prevented by direct intracellular application of IP(3). These findings indicate a requirement for phospholipase C and for polyphosphoinositides for activation of capacitative calcium entry. However, the results call into question the previously suggested roles of IP(3) and IP(3) receptor in this mechanism, at least in these particular cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号