首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the role of CCK-A receptors in acid inhibition by intestinal nutrients. Gastric acid and plasma CCK and gastrin levels were measured in rats with gastric and duodenal fistulas during intragastric 8% peptone and duodenal perfusion with saline, complete liquid diet (CLD; 20% carbohydrate, 6% fat, and 5% protein), and the individual components of CLD. Acid output was significantly inhibited (50-60%) by CLD, lipid, and dextrose. Plasma CCK was significantly increased by CLD (from 2.6 +/- 0.3 to 4.8 +/- 0.5 pM) and lipid (4.6 +/- 0.5 pM). CCK levels 50-fold higher (218 +/- 33 pM) were required to achieve similar acid inhibition by exogenous CCK-8 (10 nmol x kg(-1) x h(-1) iv). Intestinal soybean trypsin inhibitor elevated CCK (10.9 +/- 2.5 pM) without inhibiting acid secretion. The CCK-A antagonist MK-329 (1 mg/kg iv) reversed acid inhibition caused by CLD, lipid, and dextrose. Peptone-stimulated gastrin (21.7 +/- 1.9 pM) was significantly inhibited by CLD (14.5 +/- 3.6 pM), lipid (12.3 +/- 2.2 pM), and dextrose (11.9 +/- 1.5 pM). Lipid and carbohydrate inhibit acid secretion by activating CCK-A receptors but not by altering plasma CCK concentrations.  相似文献   

2.
The effect of luminal ghrelin on pancreatic enzyme secretion in the rat   总被引:1,自引:0,他引:1  
Ghrelin, a 28-amino-acid peptide produced predominantly by oxyntic mucosa has been reported to affect the pancreatic exocrine function but the mechanism of its secretory action is not clear. The effects of intraduodenal (i.d.) infusion of ghrelin on pancreatic amylase outputs under basal conditions and following the stimulation of pancreatic secretion with diversion of pancreato-biliary juice (DPBJ) as well as the role of vagal nerve, sensory fibers and CCK in this process were determined. Ghrelin given into the duodenum of healthy rats at doses of 1.0 or 10.0 microg/kg increased pancreatic amylase outputs under basal conditions or following the stimulation of pancreatic secretion with DPBJ. Bilateral vagotomy as well as capsaicin deactivation of sensory fibers completely abolished all stimulatory effects of luminal ghrelin on pancreatic exocrine function. Pretreatment with lorglumide, a CCK(1) receptor blocker, reversed the stimulation of amylase release produced by intraduodenal application of ghrelin. Intraduodenal ghrelin at doses of 1.0 or 10.0 microg/kg increased plasma concentrations of CCK and ghrelin. In conclusion, ghrelin given into the duodenum stimulates pancreatic enzyme secretion. Activation of vagal reflexes and CCK release as well as central mechanisms could be implicated in the stimulatory effect of luminal ghrelin on the pancreatic exocrine functions.  相似文献   

3.
Further studies on the feedback regulation of pancreatic enzyme secretion by trypsin were conducted in conscious rats, surgically prepared so that pancreatic juice could be collected or returned. Suppression of enzyme secretion by trypsin as well as its stimulation by SBTI occurred only in the upper part of the small intestine, where the hormone CCK is known to be released. Over a limited range, trypsin suppression of pancreatic secretion was proportional to the dose of trypsin. Higher concentrations had no further effect, suggesting "saturation" of the intestine. Trypsin which had its active center blocked by DFP did not suppress enzyme output. These results supported the concept that only trypsin (or chymotrypsin) with an exposed active center suppressed pancreatic enzyme secretion in the rat by somehow suppressing the release of CCK from the intestinal cell. Presumably CCK is released from the intestine following "removal" of trypsin from the intestine either by diverting the juice or by feeding SBTI which binds the enzyme. All of the evidence supported the view that the effect of trypsin or SBTI on pancreatic secretion was mediated at the intestinal level and not in the blood as has been suggested.  相似文献   

4.
Plasma ghrelin levels are responsive to short- and long-term nutrient fluctuation, but the mechanisms of its regulation are largely unknown. To explore the role of the autonomic nervous system in the regulation of ghrelin secretion, we measured plasma ghrelin levels after administration of cholinergic and adrenergic agents in rats under normally fed and 48-h fasting conditions. To assess the short- and long-term effects of vagotomy on ghrelin secretion, plasma ghrelin levels and stomach ghrelin levels and gene expressions were measured in rats subjected to fed or fasting. Additionally, we investigated whether plasma ghrelin levels were affected by the anorexigenic gastrointestinal peptides cholecystokinin and somatostatin. In the pharmacological study, plasma ghrelin levels were increased by a muscarinic agonist, an alpha-adrenergic antagonist, and a beta-adrenergic agonist, and decreased by a muscarinic antagonist and an alpha-adrenergic agonist. Vagotomy inhibited ghrelin secretion acutely, but promoted ghrelin release from the stomach at later time points. Stomach ghrelin mRNA levels were unchanged after fasting, but were significantly upregulated in vagotomized rats. The change of plasma ghrelin levels in nutrient fluctuation was independent of the endogenous effects of cholecystokinin and somatostatin. This study demonstrates that stomach ghrelin secretion is modulated by both the cholinergic and adrenergic arms of the autonomic nervous system. The dissociation between the short- and long-term effects of vagotomy on plasma ghrelin level indicates that an additional neural control mechanism might be involved in the regulation of ghrelin secretion.  相似文献   

5.
Ghrelin release in man depends on the macronutrient composition of the test meal. The mechanisms contributing to the differential regulation are largely unknown. To elucidate their potential role, glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), insulin, gastrin and somatostatin were examined on isolated rat stomach ghrelin secretion, which offers the advantage of avoiding systemic interactions. Basal ghrelin secretion was in a range that did not permit to consistently evaluate inhibiting effects. Therefore, the effect of gastrointestinal hormones and insulin was analyzed during vagal prestimulation. GLP-1(7-36)amide 10(-8) and 10(-7) M decreased ghrelin secretion significantly. In contrast, GIP 10(-8) and 10(-7) M augmented not only prestimulated, but also basal ghrelin secretion (p<0.05). Insulin reduced ghrelin at 10(-10), 10(-8) and 10(-6) M (p<0.05). Both gastrin 10(-8) M and somatostatin 10(-6) M also significantly inhibited ghrelin secretion. These data demonstrate that GLP-1(7-36)amide, insulin, gastrin and somatostatin are potential candidates to contribute to the postprandially observed inhibition of ghrelin secretion with insulin being the most effective inhibitor in this isolated stomach model. GIP, on the other hand, could attenuate the postprandial decrease. Because protein-rich meals do not effectively stimulate GIP release, other as yet unknown intestinal factors must be responsible for protein-induced stimulation of ghrelin release.  相似文献   

6.
Cholecystokinin (CCK), peptide YY (PYY), and ghrelin have been proposed to act as satiety hormones. CCK and PYY are stimulated during meal intake by the presence of nutrients in the small intestine, especially fat, whereas ghrelin is inhibited by eating. The sequence of events (fat intake followed by fat hydrolysis and CCK release) suggests that this process is crucial for triggering the effects. The aim of this study was therefore to investigate whether CCK mediated the effect of intraduodenal (ID) fat on ghrelin secretion and PYY release via CCK-1 receptors. Thirty-six male volunteers were studied in three consecutive, randomized, double-blind, cross-over studies: 1) 12 subjects received an ID fat infusion with or without 120 mg orlistat, an irreversible inhibitor of gastrointestinal lipases, compared with vehicle; 2) 12 subjects received ID long-chain fatty acids (LCF), ID medium-chain fatty acids (MCF), or ID vehicle; and 3) 12 subjects received ID LCF with and without the CCK-1 receptor antagonist dexloxiglumide (Dexlox) or ID vehicle plus intravenous saline (placebo). ID infusions were given for 180 min. The effects of these treatments on ghrelin concentrations and PYY release were quantified. Plasma hormone concentrations were measured in regular intervals by specific RIA systems. We found the following results. 1) ID fat induced a significant inhibition in ghrelin levels (P < 0.01) and a significant increase in PYY concentrations (P < 0.004). Inhibition of fat hydrolysis by orlistat abolished both effects. 2) LCF significantly inhibited ghrelin levels (P < 0.02) and stimulated PYY release (P < 0.008), whereas MCF were ineffective compared with controls. 3) Dexlox administration abolished the effect of LCF on ghrelin and on PYY. ID fat or LCF significantly stimulated plasma CCK (P < 0.006 and P < 0.004) compared with saline. MCF did not stimulate plasma CCK release. In summary, fat hydrolysis is essential to induce effects on ghrelin and PYY through the generation of LCF, whereas MCF are ineffective. Furthermore, LCF stimulated plasma CCK release, suggesting that peripheral CCK is the mediator of these actions. The CCK-1 receptor antagonist Dexlox abolished the effect of ID LCF, on both ghrelin and PYY. Generation of LCF through hydrolysis of fat is a critical step for fat-induced inhibition of ghrelin and stimulation of PYY in humans; the signal is mediated via CCK release and CCK-1 receptors.  相似文献   

7.
Ghrelin is produced by A-like cells (ghrelin cells) in the mucosa of the acid-producing part of the stomach. The mobilization of ghrelin is stimulated by nutritional deficiency and suppressed by nutritional abundance. In an attempt to identify neurotransmitters and regulatory peptides that may contribute to the physiological, nutrient-related regulation of ghrelin secretion, we challenged the ghrelin cells in situ with a wide variety of candidate messengers, including known neurotransmitters (e.g. acetylcholine, catecholamines), candidate neurotransmitters (e.g. neuropeptides), local tissue hormones (e.g. serotonin, histamine, bradykinin, endothelin), circulating gut hormones (e.g. gastrin, CCK, GIP, neurotensin, PYY, secretin) and other circulating hormones/regulatory peptides (e.g. calcitonin, glucagon, insulin, PTH). Microdialysis probes were placed in the submucosa of the acid-producing part of the rat stomach. Three days later, the putative messenger compounds were administered via the microdialysis probe (reverse microdialysis) at a screening dose of 0.1 mmol l(-1) for regulatory peptides and 0.1 and 1 mmol l(-1) for amines and amino acids. The rats were awake during the experiments. The resulting microdialysate ghrelin concentration was monitored continuously for 3 h (radioimmunoassay), thereby revealing stimulators or inhibitors of ghrelin secretion. Dose-response curves were constructed for each candidate messenger that significantly (p<0.05) affected ghrelin mobilization at the screening dose. Peptides that showed a (non-significant) tendency to affect ghrelin release at the screening dose were also given at a dose of 0.3 or 1 mmol l(-1). Adrenaline, noradrenaline, endothelin and secretin stimulated ghrelin release, while somatostatin and GRP inhibited. Whether these agents act directly or indirectly on the ghrelin cells remains to be investigated. All other candidate messengers were without measurable effects, including acetylcholine, serotonin, histamine, GABA, aspartic acid, glutamic acid, glycine, VIP, PACAP, CGRP, substance P, NPY, PYY, PP, gastrin, CCK, GIP, insulin, glucagon, GLP and glucose.  相似文献   

8.
The stimulation of exocrine pancreatic secretion that has been attributed by Pavlov exclusively to various reflexes (nervism), was then found that it depend also on numerous enterohormones, especially cholecystokinin (CCK) and secretin, released by duodeno-jejunal mucosa and originally believed to act via an endocrine pathway. Recently, CCK and other enterohormones were found to stimulate the pancreas by excitation of sensory nerves and triggering vago-vagal and entero-pancreatic reflexes. Numerous neurotransmitters and neuropeptides released by enteric nervous system (ENS) of gut and pancreas have been also implicated in the regulation of exocrine pancreas. This article was designed to review the contribution of vagal nerves and entero-hormones, especially CCK and other enterohormones, involved in the control of appetitive behavior such as leptin and ghrelin and pancreatic polypeptide family (peptide YY and neuropeptide Y). Basal secretion shows periodic fluctuations with peals controlled by ENS and by motilin and Ach. Plasma ghrelin, that is considered as hunger hormone, increases under basal conditions, while plasma leptin falls to the lowest level. Postprandial pancreatic secretion, classically divided into cephalic, gastric and intestinal phases, involves predominantly CCK, which under physiological conditions acts almost entirely by activation of vago-vagal reflexes to stimulate the exocrine pancreas, being accompanied by the fall in plasma ghrelin and increase of plasma leptin, reflecting feeding behavior. We conclude that the major role in postprandial pancreatic secretion is played by vagus and gastrin in cephalic and gastric phases and by vagus in conjunction with CCK and secretin in intestinal phase. PP, PYY somatostatin, leptin and ghrelin that affect food intake appear to participate in the feedback control of postprandial pancreatic secretion via hypothalamic centers.  相似文献   

9.
Ghrelin, a 28 amino acids polypeptide was recognized as an endogenous ligand for the growth hormone secretagogue receptor. It turned out that the entire sequence of ghrelin is not necessary for performing the above-mentioned functions. It was suggested that 5 residues (Gly-Ser-Ser(n-octanoyl)-Phe, pentaghrelin) constituted functionally active part of the full-length polypeptide. Ghrelin-28 was found to inhibit pancreatic enzyme output in rats, though the effect of pentaghrelin was not studied so far. The study aimed to determine the involvement of pentaghrelin in pancreatic juice secretion in anaesthetized rats. Male Wistar rats (220 +/- 20 g body weight, b. wt.) were anesthetized, the external jugular vein and common biliary-pancreatic duct were cannulated. Pentaghrelin boluses (i.v., 1.2, 12, and 50 nmol kg(-1) b. wt.) were injected every 30 min with or without CCK-8 infusion, duodenal mucosal CCK(1) receptor blockade with tarazepide, vagotomy and capsaicin pretreatment. Pentaghrelin boluses reduced the volume of pancreatic-biliary juice, protein and trypsin outputs both under basal and CCK-8-stimulated conditions in a dose-dependent manner. However, exogenous pentaghrelin failed to affect the pancreatic secretion in rats subjected to vagotomy, capsaicin deactivation of afferents or pretreatment with Tarazepide. In conclusion, pentaghrelin may control exocrine pancreas secretion by affecting duodenal neurohormonal mechanism(s) involving CCK and vagal nerves in rats.  相似文献   

10.
We have examined the effects of 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), a selective inhibitor of 5-lipoxygenase, on the action of cholecystokinin (CCK) and other secretagogues in the stimulation of amylase secretion from dispersed rat pancreatic acini. AA861 inhibited amylase secretion caused by CCK, carbamylcholine (carbachol), bombesin or calcium ionophore A23187 but failed to affect amylase secretion by vasoactive intestinal peptide or 12-O-tetradecanoyl-phorbol 13-acetate. Inhibition by AA861 of CCK or carbachol-induced amylase secretion was confined to the relatively lower concentrations of these secretagogues. AA861 did not inhibit receptor binding of CCK or alter the cellular calcium mobilization induced by CCK. In kinetic studies, AA861 was effective only on amylase secretion from pancreatic acini incubated with CCK for more than 5 min. Indomethacin, a known inhibitor of cyclooxygenase, did not affect the amylase secretion caused by all secretagogues used. These results indicate that the 5-lipoxygenase pathway of arachidonate metabolism may be involved in the actions of calcium-dependent secretagogues of amylase secretion in rat dispersed pancreatic acini, especially for sustaining stimulation of amylase secretion by CCK.  相似文献   

11.
M Covasa  R C Ritter 《Peptides》2001,22(8):1339-1348
Pharmacological experiments suggest that satiation associated with intestinal infusion of several nutrients is mediated by CCK-A receptors. Otsuka Long-Evans Tokushima Fatty, (OLETF), rats do not express CCK-A receptors and are insensitive to the satiation-producing effects of exogenous CCK. To further evaluate the role of CCK-A receptors in satiation by intestinal nutrient infusion, we examined intake of solid (pelleted rat chow) or liquid (12.5% glucose) food intake, following intestinal infusions of fats (oleic acid or fat emulsion), sugars (maltotriose or glucose), or peptone in OLETF rats and Long Evans Tokushima Otsuka control rats (LETO). Intestinal infusion of glucose or maltotriose reduced solid food intake more in LETO than in OLETF rats from 30 min through 4 h post infusion. Reduction of solid food intake by intestinal infusions of fat or peptone did not differ between OLETF and LETO rats during the first 30 min post infusion, but reduction of intake by these infusates was attenuated in OLETF rats over the ensuing 4h post infusion. Intestinal infusion of glucose, oleate, fat emulsion and peptone reduced 30-min intake of 12.5% glucose more in LETO than OLETF rats. Furthermore, pretreatment with the CCK-A receptor antagonist, devazepide, attenuated intestinal nutrient-induced reduction of food intake only in LETO, but not OLETF rats. Our results confirm pharmacological results, indicating that CCK-A receptors participate in satiation by nutrients that elevate plasma CCK concentrations, as well as by nutrients that do not stimulate secretion of endocrine CCK. In addition, our results indicate: 1) that OLETF rats have deficits in the satiation response to a variety of intestinal nutrient infusions; 2) that the temporal pattern for CCK-A receptor participation in satiation by intestinal nutrients is different during ingestion of liquid and solid foods and 3) that intestinal nutrients provide some satiation signals that are CCK-A receptor mediated and some that are not.  相似文献   

12.
The effect of newly discovered pancreastatin on pancreatic secretion stimulated by a diversion of bile-pancreatic juice (BPJ) from the intestine was examined in the conscious rat. Exogenous pancreastatin infusion (20, 100 and 200 pmol/kg.h) inhibited pancreatic protein and fluid outputs during BPJ diversion in a dose-dependent manner. Pancreastatin did not affect plasma cholecystokinin (CCK) concentrations. Pancreastatin (100 pmol/kg.h) inhibited CCK-stimulated pancreatic secretion, but did not inhibit secretin-stimulated pancreatic secretion. Pancreastatin alone, however, did not affect basal pancreatic secretion. In contrast, pancreastatin (10(-10)-10(-7)M) did not suppress CCK-stimulated amylase release from isolated rat pancreatic acini. These results indicate that pancreastatin has an inhibitory action on exocrine function of the pancreas. This action may not be mediated by direct mechanisms and nor via an inhibition of CCK release. It is suggested that pancreastatin may play a role in the regulation of the intestinal phase of exocrine pancreatic secretion.  相似文献   

13.
It is widely accepted that gastric parameters such as gastric distention provide a direct negative feedback signal to inhibit eating; moreover, gastric and intestinal signals have been reported to synergize to promote satiation. However, there are few human data exploring the potential interaction effects of gastric and intestinal signals in the short-term control of appetite and the secretion of satiation peptides. We performed experiments in healthy subjects receiving either a rapid intragastric load or a continuous intraduodenal infusion of glucose or a mixed liquid meal. Intraduodenal infusions (3 kcal/min) were at rates comparable with the duodenal delivery of these nutrients under physiological conditions. Intraduodenal infusions of glucose elicited only weak effects on appetite and the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). In contrast, identical amounts of glucose delivered intragastrically markedly suppressed appetite (P < 0.05) paralleled by greatly increased plasma levels of GLP-1 and PYY (≤3-fold, P < 0.05). Administration of the mixed liquid meal showed a comparable phenomenon. In contrast to GLP-1 and PYY, plasma ghrelin was suppressed to a similar degree with both intragastric and intraduodenal nutrients. Our data confirm that the stomach is an important element in the short-term control of appetite and suggest that gastric and intestinal signals interact to mediate early fullness and satiation potentially by increased GLP-1 and PYY secretions.  相似文献   

14.
This study was designed to determine the role of cholecystokinin (CCK) in the inhibition of gastric HCl secretion by duodenal peptone, fat and acid in dogs with chronic gastric and pancreatic fistulas. Intraduodenal instillation of 5% peptone stimulated both gastric HCl secretion and pancreatic protein secretion and caused significant increments in plasma gastrin and CCK levels. L-364,718, a selective antagonist of CCK-A receptors, caused further increase in gastric HCl and plasma gastrin responses to duodenal peptone but reduced the pancreatic protein outputs in these tests by about 75%. L-365,260, an antagonist of type B receptors, reduced gastric acid by about 25% but failed to influence pancreatic response to duodenal peptone. Addition of 10% oleate or acidification of peptone to pH 3.0 profoundly inhibited acid secretion while significantly increasing the pancreatic protein secretion and plasma CCK levels. Administration of L-364,718 reversed the fall in gastric HCl secretion and significantly attenuated pancreatic protein secretion in tests with both peptone plus oleate and peptone plus acid. Exogenous CCK infused i.v. in a dose (25 pmol/kg per h) that raised plasma CCK to the level similar to that achieved by peptone meal plus fat resulted in similar inhibition of gastric acid response to that attained with fat and this effect was completely abolished by the pretreatment with L-364,718. We conclude that CCK released by intestinal peptone meal, containing fat or acid, exerts a tonic inhibitory influence on gastric acid secretion and gastrin release through the CCK-A receptors.  相似文献   

15.
The aims of this study were: (1) to define the extent to which a high-fat (HF) diet given on a long-term basis reduces resting plasma ghrelin (total [acyl+des-acyl]) levels and the plasma ghrelin (total) response to fasting, (2) to determine whether a chronic HF diet modifies the orexigenic activity of acyl-ghrelin, (3) whether insulin pretreatment inhibits the plasma ghrelin (total) response to fasting, and (4) the extent to which pioglitazone (PIO) treatment will increase stomach and plasma ghrelin (total) levels in rats fed a HF diet. PIO is a drug given to diabetics which improves insulin resistance. Our findings show that a chronic HF diet given for either 10 or 60 weeks exerts a persistent inhibitory effect on resting plasma ghrelin (total) levels. Additionally, the plasma ghrelin (total) elevation to overnight fasting is not altered in rats fed a HF diet on a long-term basis. A HF diet does not impair the ingestive response to acyl-ghrelin. Together, these results suggest that acyl-ghrelin serves as an important orexigenic factor. Results show that insulin pretreatment does not inhibit the plasma ghrelin (total) response to fasting suggesting that meal-induced insulin secretion does not have a role in reducing ghrelin (total) secretion. In rats fed a HF diet, PIO administration increases stomach ghrelin (total) levels. Because PIO can reduce systemic glucose and lipid levels, our findings suggest that elevated glucose and lipid levels are part of the inhibitory mechanism behind reduced ghrelin (total) secretion in rats fed a HF diet.  相似文献   

16.
Cholecystokinin (CCK) is produced by discrete endocrine cells in the proximal small intestine and is released following the ingestion of food. CCK is the primary hormone responsible for gallbladder contraction and has potent effects on pancreatic secretion, gastric emptying, and satiety. In addition to fats, digested proteins and aromatic amino acids are major stimulants of CCK release. However, the cellular mechanism by which amino acids affect CCK secretion is unknown. The Ca(2+)-sensing receptor (CaSR) that was originally identified on parathyroid cells is not only sensitive to extracellular Ca(2+) but is activated by extracellular aromatic amino acids. It has been postulated that this receptor may be involved in gastrointestinal hormone secretion. Using transgenic mice expressing a CCK promoter driven/enhanced green fluorescent protein (GFP) transgene, we have been able to identify and purify viable intestinal CCK cells. Intestinal mucosal CCK cells were enriched >200-fold by fluorescence-activated cell sorting. These cells were then used for real-time PCR identification of CaSR. Immunohistochemical staining with an antibody specific for CaSR confirmed colocalization of CaSR to CCK cells. In isolated CCK cells loaded with a Ca(2+)-sensitive dye, the amino acids phenylalanine and tryptophan, but not nonaromatic amino acids, caused an increase in intracellular Ca(2+) ([Ca(2+)](i)). The increase in [Ca(2+)](i) was blocked by the CaSR inhibitor Calhex 231. Phenylalanine and tryptophan stimulated CCK release from intestinal CCK cells, and this stimulation was also blocked by CaSR inhibition. Electrophysiological recordings from isolated CCK-GFP cells revealed these cells to possess a predominant outwardly rectifying potassium current. Administration of phenylalanine inhibited basal K(+) channel activity and caused CCK cell depolarization, consistent with changes necessary for hormone secretion. These findings indicate that amino acids have a direct effect on CCK cells to stimulate CCK release by activating CaSR and suggest that CaSR is the physiological mechanism through which amino acids regulate CCK secretion.  相似文献   

17.
18.
The regulatory mechanisms of postprandial pancreatic hyperemia are not well characterized. The aim of this study is to clarify the role of cholecystokinin (CCK) in the intestinal phase of pancreatic circulation. Pancreatic, gastric, and intestinal blood flows were measured by ultrasound transit-time blood flowmeters in five conscious dogs. Pancreatic and gastric secretion and blood pressure were also monitored. Synthetic CCK octapeptide (CCK-8) or gastrin heptadecapeptide (gastrin-17) was infused intravenously, and milk was infused into the duodenum with or without loxiglumide, a specific CCK-A receptor antagonist. CCK-8 induced dose-related increases of pancreatic, but not gastric or intestinal, blood flow and protein secretion without affecting systemic blood pressure. Gastrin-17 did not affect pancreatic blood flow. An intraduodenal infusion of milk increased pancreatic and intestinal blood flows and pancreatic protein secretion. Loxiglumide completely inhibited pancreatic blood flow and protein responses to CCK-8 and milk but not the intestinal blood flow response. CCK is a potent and specific pancreatic vasodilator, with its effect mediated by CCK-A receptors. CCK plays an important role in the regulation of the intestinal phase of the pancreatic circulation in dogs.  相似文献   

19.
20.
Ghrelin, a 28-residue octanoylated peptide recently isolated from the stomach, exhibits anti-cachectic properties through regulating food intake, energy expenditure, adiposity, growth hormone secretion and immune response. Burn injury induces persistent hypermetabolism and muscle wasting. We therefore hypothesized that ghrelin may also play a role in the pathophysiology of burn-induced cachexia. Overall ghrelin expression in the stomach over 10 days after burn was significantly decreased (p = 0.0003). Total plasma ghrelin was reduced 1 day after burn. Thus, changes in ghrelin synthesis and release may contribute to burn-induced dysfunctions. Ghrelin (30 nmol/rat, i.p.) greatly stimulated 2 h food intake in rats on five separate days after burn and in control rats. On post-burn day 15, plasma growth hormone levels were significantly lower than in controls, and this was restored to normal levels by ghrelin (10 nmol/rat, i.p.). These observations suggest that ghrelin retains its ability to favorably modulate both the peripheral anabolic and the central orexigenic signals, even after thermal injury despite ongoing changes due to prolonged and profound hypermetabolism, suggesting that long-term treatment with ghrelin may attenuate burn-induced dysfunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号