首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although lung disease is the major cause of mortality in cystic fibrosis (CF), gastrointestinal (GI) manifestations are the first hallmarks in 15–20% of affected newborns presenting with meconium ileus, and remain major causes of morbidity throughout life. We have previously shown that cGMP-dependent phosphodiesterase type 5 (PDE5) inhibitors rescue defective CF Transmembrane conductance Regulator (CFTR)-dependent chloride transport across the mouse CF nasal mucosa. Using F508del-CF mice, we examined the transrectal potential difference 1 hour after intraperitoneal injection of the PDE5 inhibitor vardenafil or saline to assess the amiloride-sensitive sodium transport and the chloride gradient and forskolin-dependent chloride transport across the GI tract. In the same conditions, we performed immunohistostaining studies in distal colon to investigate CFTR expression and localization. F508del-CF mice displayed increased sodium transport and reduced chloride transport compared to their wild-type littermates. Vardenafil, applied at a human therapeutic dose (0.14 mg/kg) used to treat erectile dysfunction, increased chloride transport in F508del-CF mice. No effect on sodium transport was detected. In crypt colonocytes of wild-type mice, the immunofluorescence CFTR signal was mostly detected in the apical cell compartment. In F508del-CF mice, a 25% reduced signal was observed, located mostly in the subapical region. Vardenafil increased the peak of intensity of the fluorescence CFTR signal in F508del-CF mice and displaced it towards the apical cell compartment. Our findings point out the intestinal mucosa as a valuable tissue to study CFTR transport function and localization and to evaluate efficacy of therapeutic strategies in CF. From our data we conclude that vardenafil mediates potentiation of the CFTR chloride channel and corrects mislocalization of the mutant protein. The study provides compelling support for targeting the cGMP signaling pathway in CF pharmacotherapy.  相似文献   

2.
In 13 cystic fibrosis (CF) patients of 5 to 23 years of age with a known mutation spectrum of gene CFTR, sweat chloride values and nasal-potential differences (NPD) were measured and localization characteristics of the protein product of gene CFTR in the cells of nasal epithelium were studied. Sweat Chloride values were normal or boundary (24 to 62 mM/l) in six CF patients. In seven CF patients, these values were significantly above the estimates for the control group. On average, the NPD values were -44.7 +/- 2.2 mV (from -32.5 to -68.9 mV) and -17.2 +/- 1.8 mV (from -6.8 to -30.2 mV) in CF patients and the control group, respectively. Histochemical studies clearly revealed the localization of the CFTR protein on the apical membrane of the nasal epithelium. Depending on the type of mutation, the protein product of gene CFTR was either absent or regularly distributed in the cytoplasm in CF patients; it was not detected in the apical membrane. Thus, NPD measurements and the analysis of the localization of the protein product of gene CFTR in scrapes of nasal epithelium were shown to be additional, highly informative methods of CF diagnostics.  相似文献   

3.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with most of the mortality given by the lung disease. Human amniotic mesenchymal stromal (stem) cells (hAMSCs) hold great promise for regenerative medicine in the field of lung disease; however, their potential as therapeutics for CF lung disease has not been fully explored. In the present study, hAMSCs were analysed in co‐cultures on Transwell filters with CF immortalized airway epithelial cells (CFBE41o‐ line) at different ratios to exploit their potency to resume basic defects associated with CF. The results show that F‐actin content was increased in co‐cultures as compared with CF cells and actin was reorganized to form stress fibres. Confocal microscopy studies revealed that co‐cultures had a tendency of increased expression of occludin and ZO‐1 at the intercellular borders, paralleled by a decrease in dextran permeability, suggestive of more organized tight junctions (TJs). Spectrofluorometric analysis of CFTR function demonstrated that hAMSC‐CFBE co‐cultures resumed chloride transport, in line with the appearance of the mature Band C of CFTR protein by Western blotting. Moreover, hAMSC‐CFBE co‐cultures, at a 1:5 ratio, showed a decrease in fluid absorption, as opposed to CFBE cell monolayers that displayed a great rate of fluid resorption from the apical side. Our data show that human amniotic MSCs can be used in co‐culture with CF respiratory epithelial cells to model their engraftment into the airways and have the potential to resume a tight epithelium with partial correction of the CF phenotype.  相似文献   

4.
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a membrane glycoprotein that forms Cl- channels. Previous work has shown that when some CF-associated mutants of CFTR are expressed in heterologous cells, their glycosylation is incomplete. That observation led to the hypothesis that such mutants are not delivered to the plasma membrane where they can mediate Cl- transport. Testing this hypothesis requires localization of CFTR in nonrecombinant cells and a specific determination of whether CFTR is in the apical membrane of normal and CF epithelia. To test the hypothesis, we used primary cultures of airway epithelia grown on permeable supports because they polarize and express the CF defect in apical Cl- permeability. Moreover, their dysfunction contributes to disease. We developed a semiquantitative assay, using nonpermeabilized epithelia, an antibody directed against an extracellular epitope of CFTR, and large (1 microns) fluorescent beads which bound to secondary antibodies. We observed specific binding to airway epithelia from non-CF subjects, indicating that CFTR is located in the apical membrane. In contrast, there was no specific binding to the apical membrane of CF airway epithelia. These data were supported by qualitative studies using confocal microscopy: the most prominent immunostaining was in the apical region of non-CF cells and in cytoplasmic regions of CF cells. The results indicate that CFTR is either missing from the apical membrane of these CF cells or it is present at a much reduced level. The data support the proposed defective delivery of some CF-associated mutants to the plasma membrane and explain the lack of apical Cl- permeability in most CF airway epithelia.  相似文献   

5.
Cystic fibrosis (CF) is a frequent autosomal recessive disorder caused by mutation of a gene encoding a multifunctional transmembrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), located in the apical membrane of epithelial cells lining exocrine glands. In an attempt to get a more complete picture of the pleiotropic effects of the CFTR defect on epithelial cells and particularly on the membrane compartment, a bidimensional blue native (BN)/SDS-PAGE-based proteomic approach was used on colonic crypt samples from control and CFTR knock-out mice (cftr-/-). This approach overcomes the difficulties of membrane protein analysis by conventional two-dimensional PAGE and is able to resolve multiprotein complexes. Used here for the first time on crude membrane proteins that were extracted from murine colonic crypts, BN/SDS-PAGE allows effective separation of protein species and complexes of various origins, including mitochondria, plasma membrane, and intracellular compartments. The major statistically significant difference in protein maps obtained with samples from control and cftr-/- mice was unambiguously identified as mClCA3, a member of a family of calcium-activated chloride channels considered to be key molecules in mucus secretion by goblet cells. On the basis of this finding, we evaluated the overall expression and localization of mClCA3 in the colonic epithelium and in the lung of mice by immunoblot analysis and immunohistochemistry. We found that mClCA3 expression was significantly decreased in the colon and lung of the cftr-/- mice. In an ex vivo assay, we found that the Ca2+-dependent (carbachol-stimulated) glycoprotein secretion strongly inhibited by the calcium-activated chloride channel blocker niflumic acid (100 microm) was impaired in the distal colon of cftr-/- mice. These results support the conclusion that a ClCA-related function in the CF colon depends on CFTR expression and may be correlated with the impaired expression of mClCA3.  相似文献   

6.
The pulmonary neuroendocrine cell system comprises solitary neuroendocrine cells and clusters of innervated cells or neuroepithelial bodies (NEBs). NEBs figure prominently during the perinatal period when they are postulated to be involved in physiological adaptation to air breathing. Previous studies have documented hyperplasia of NEBs in cystic fibrosis (CF) lungs and increased neuropeptide (bombesin) content produced by these cells, possibly secondary to chronic hypoxia related to CF lung disease. However, little is known about the role of NEBs in the pathogenesis of CF lung disease. In the present study, using a panel of cystic fibrosis transmembrane conductance regulator (CFTR)-specific antibodies and confocal microscopy in combination with RT-PCR, we demonstrate expression of CFTR message and protein in NEB cells of rabbit neonatal lungs. NEB cells expressed CFTR along with neuroendocrine markers. Confocal microscopy established apical membrane localization of the CFTR protein in NEB cells. Cl(-) conductances corresponding to functional CFTR were demonstrated in NEB cells in a fresh lung slice preparation. Our findings suggest that NEBs, and related neuroendocrine mechanisms, likely play a role in the pathogenesis of CF lung disease, including the early stages before establishment of chronic infection and chronic lung disease.  相似文献   

7.
Most patients with Cystic Fibrosis (CF) carry at least one allele with the F508del mutation, resulting in a CFTR chloride channel protein with a processing, gating and stability defect, but with substantial residual activity when correctly sorted to the apical membranes of epithelial cells. New therapies are therefore aimed at improving the folding and trafficking of F508del CFTR, (CFTR correctors) or at enhancing the open probability of the CFTR chloride channel (CFTR potentiators). Preventing premature breakdown of F508del CFTR is an alternative or additional strategy, which is investigated in this study. We established an ex vivo assay for murine F508del CFTR rescue in native intestinal epithelium that can be used as a pre-clinical test for candidate therapeutics. Overnight incubation of muscle stripped ileum in modified William''s E medium at low temperature (26°C), and 4 h or 6 h incubation at 37°C with different proteasome inhibitors (PI: ALLN, MG-132, epoxomicin, PS341/bortezomib) resulted in fifty to hundred percent respectively of the wild type CFTR mediated chloride secretion (forskolin induced short-circuit current). The functional rescue was accompanied by enhanced expression of the murine F508del CFTR protein at the apical surface of intestinal crypts and a gain in the amount of complex-glycosylated CFTR (band C) up to 20% of WT levels. Sustained rescue in the presence of brefeldin A shows the involvement of a post-Golgi compartment in murine F508del CFTR degradation, as was shown earlier for its human counterpart. Our data show that proteasome inhibitors are promising candidate compounds for improving rescue of human F508del CFTR function, in combination with available correctors and potentiators.  相似文献   

8.
Cystic fibrosis (CF) is a fatal inherited disease caused by the absence or dysfunction of the CF transmembrane conductance regulator (CFTR) Cl- channel. About 70% of CF patients are exocrine pancreatic insufficient due to failure of the pancreatic ducts to secrete a HCO3- -rich fluid. Our aim in this study was to investigate the potential of a recombinant Sendai virus (SeV) vector to introduce normal CFTR into human CF pancreatic duct (CFPAC-1) cells, and to assess the effect of CFTR gene transfer on the key transporters involved in HCO3- transport. Using polarized cultures of homozygous F508del CFPAC-1 cells as a model for the human CF pancreatic ductal epithelium we showed that SeV was an efficient gene transfer agent when applied to the apical membrane. The presence of functional CFTR was confirmed using iodide efflux assay. CFTR expression had no effect on cell growth, monolayer integrity, and mRNA levels for key transporters in the duct cell (pNBC, AE2, NHE2, NHE3, DRA, and PAT-1), but did upregulate the activity of apical Cl-/HCO3- and Na+/H+ exchangers (NHEs). In CFTR-corrected cells, apical Cl-/HCO3- exchange activity was further enhanced by cAMP, a key feature exhibited by normal pancreatic duct cells. The cAMP stimulated Cl-/HCO3- exchange was inhibited by dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (H2-DIDS), but not by a specific CFTR inhibitor, CFTR(inh)-172. Our data show that SeV vector is a potential CFTR gene transfer agent for human pancreatic duct cells and that expression of CFTR in CF cells is associated with a restoration of Cl- and HCO3- transport at the apical membrane.  相似文献   

9.
Chronic respiratory infections in cystic fibrosis result from CFTR channel mutations but how these impair antibacterial defense is less clear. Airway host defense depends on lactoperoxidase (LPO) that requires thiocyanate (SCN-) to function and epithelia use CFTR to concentrate SCN- at the apical surface. To test whether CFTR mutations result in impaired LPO-mediated host defense, CF epithelial SCN- transport was measured. CF epithelia had significantly lower transport rates and did not accumulate SCN- in the apical compartment. The lower CF [SCN-] did not support LPO antibacterial activity. Modeling of airway LPO activity suggested that reduced transport impairs LPO-mediated defense and cannot be compensated by LPO or H2O2 upregulation.  相似文献   

10.
Morbidity and mortality in cystic fibrosis (CF) are due not only to abnormal epithelial cell function, but also to an abnormal immune response. We have shown previously that macrophages lacking CF transmembrane conductance regulator (CFTR), the gene mutated in CF, contribute significantly to the hyperinflammatory response observed in CF. In this study, we show that lack of functional CFTR in murine macrophages causes abnormal TLR4 subcellular localization. Upon LPS stimulation, CFTR macrophages have prolonged TLR4 retention in the early endosome and reduced translocation into the lysosomal compartment. This abnormal TLR4 trafficking leads to increased LPS-induced activation of the NF-κB, MAPK, and IFN regulatory factor-3 pathways and decreased TLR4 degradation, which affects downregulation of the proinflammatory state. In addition to primary murine cells, mononuclear cells isolated from CF patients demonstrate similar defects in response to LPS. Moreover, specific inhibition of CFTR function induces abnormal TLR4 trafficking and enhances the inflammatory response of wild-type murine cells to LPS. Thus, functional CFTR in macrophages influences TLR4 spatial and temporal localization and perturbs LPS-mediated signaling in both murine CF models and patients with CF.  相似文献   

11.
Interleukin-13 (IL-13) is a central regulator of Th2-dominated respiratory disorders such as asthma. Lesions of the airway epithelial barrier frequently observed in chronic respiratory inflammatory diseases are repaired through proliferation, migration and differentiation of epithelial cells. Our work is focused on the effects of IL-13 in human cellular models of airway epithelial cell regeneration. We have previously shown that IL-13 altered epithelial cell polarity during mucociliary differentiation of human nasal epithelial cells. In particular, the cytokine inhibited ezrin expression and interfered with its apical localization during epithelial cell differentiation in vitro. Here we show that CFTR expression is enhanced in the presence of the cytokine, that two additional CFTR protein isoforms are expressed in IL-13-treated cells and that part of the protein is retained within the endoplasmic reticulum. We further show that aquaporin 5 expression, a water channel localized within the apical membrane of epithelial cells, is completely abolished in the presence of the cytokine. These results show that IL-13 interferes with ion and water channel expression and localization during epithelial regeneration and may thereby influence mucus composition and hydration.  相似文献   

12.
BACKGROUND INFORMATION: CF (cystic fibrosis) is a disease caused by mutations within the CFTR (CF transmembrane conductance regulator) gene. The most common mutation, DeltaF508 (deletion of Phe-508), results in a protein that is defective in folding and trafficking to the cell surface but is functional if properly localized in the plasma membrane. We have recently demonstrated that overexpression of the PDZ protein NHERF1 (Na(+)/H(+)-exchanger regulatory factor 1) in CF airway cells induced both a redistribution of DeltaF508CFTR from the cytoplasm to the apical membrane and the PKA (protein kinase A)-dependent activation of DeltaF508CFTR-dependent chloride secretion. In view of the potential importance of the targeted up-regulation of NHERF1 in a therapeutic context, and since it has been demonstrated that oestrogen treatment increases endogenous NHERF1 expression, we tested the hypothesis that oestrogen treatment can increase NHERF1 expression in a human bronchiolar epithelial CF cell line, CFBE41o(-), with subsequent rescue of apical DeltaF508CFTR chloride transport activity. RESULTS: We found that CFBE41o(-) cells do express ERs (oestrogen receptors) in the nuclear fraction and that beta-oestradiol treatment was able to significantly rescue DeltaF508CFTR-dependent chloride secretion in CFBE41o(-) cell monolayers with a peak between 6 and 12 h of treatment, demonstrating that the DeltaF508CFTR translocated to the apical membrane can function as a cAMP-responsive channel, with a significant increase in chloride secretion noted at 1 nM beta-oestradiol and a maximal effect observed at 10 nM. Importantly, knock-down of NHERF1 expression by transfection with siRNA (small interfering RNA) for NHERF1 inhibited the beta-oestradiol-dependent increase in DeltaF508CFTR protein expression levels and completely prevented the beta-oestradiol-dependent rescue of DeltaF508CFTR transport activity. CONCLUSIONS: These results demonstrate that beta-oestradiol-dependent up-regulation of NHERF1 significantly increases DeltaF508CFTR functional expression in CFBE41o(-) cells.  相似文献   

13.
The hereditary disease cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Understanding of the consequences of CFTR gene mutations is derived chiefly from in vitro studies on heterologous cell cultures and on cells hyperexpressing CFTR. Data from ex vivo studies on human tissue are scarce and contradictory, a fact which is in part explained by secondary tissue destruction in most affected organs. The purpose of this study was to establish conditions under which wild-type and mutated CFTR can be studied in affected human tissue. Sweat glands carry the basic defect underlying CF and are not affected by tissue destruction and inflammation. Therefore, we used this tissue to test a panel of eight different CFTR antibodies under various fixation techniques. The antibodies were tested on skin biopsy sections from healthy controls, from CF patients homozygous for the most common mutation, DeltaF508, and from patients carrying two nonsense mutations. Of the eight CFTR antibodies, only three-M3A7, MATG 1104, and cc24-met the criteria necessary for immunolocalization of CFTR in sweat glands. The labeling pattern in the CF sweat glands was consistent with the postulated processing defect of DeltaF508 CFTR. The antibodies exhibited different sensitivities for detecting DeltaF508 CFTR.  相似文献   

14.
The recent identification of the cystic fibrosis (CF) gene and its putative protein product, the CF transmembrane conductance regulator (CFTR), enabled us to synthesize oligopeptides corresponding with a predicted extracellular domain (position 103-117; peptide A) and a cytoplasmic domain (position 501-515; peptide B) constituting the phenylalanine deletion (F 508) observed in the majority of CF mutations. Immunobiochemical studies with antibodies directed against these peptides revealed the presence of two CFTR candidate proteins (155 and 195 kDa) in various types of epithelial cells. Immunolocalization studies performed on slices of human duodenum showed the strongest expression in the endoplasmic reticulum (RER) of the mucus-producing Goblet cells. Labeling is also demonstrated in the RER and apical membranes of villus and crypt cells, however, to a weaker extent.  相似文献   

15.
Emerging porcine models of cystic fibrosis (CF) are expected to mimic the human disease more closely than current mouse models do. However, little is known of the tissue and cellular expression patterns of the porcine CF transmembrane conductance regulator (pCFTR) and possible differences from human CFTR (hCFTR). Here, the expression pattern of pCFTR was systematically established on the mRNA and protein levels. Using specific anti-pCFTR antibodies, the majority of the protein was immunohistochemically detected on paraffin-embedded sections and on cryostate sections in the apical cytosol of intestinal crypt epithelial cells, nasal, tracheal, and bronchial epithelial cells, and other select, mostly glandular epithelial cells. Confocal laser scanning microscopy with co-localization of the Golgi marker 58K localized the protein in the cytosol between the Golgi apparatus and the apical cell membrane with occasional punctate or diffuse staining of the apical membrane. The tissue and cellular distribution patterns were confirmed by RT-PCR from whole tissue lysates or select cells after laser capture microdissection. Thus, expression of pCFTR was found to largely resemble that of hCFTR except for the kidney, brain, and cutaneous glands, which lack expression in pigs. Species-specific differences between pCFTR and hCFTR may become relevant for future interpretations of the CF phenotype in pig models. (J Histochem Cytochem 58:785–797, 2010)  相似文献   

16.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) that prevent its proper folding and trafficking to the apical membrane of epithelial cells. Absence of cAMP-mediated Cl secretion in CF airways causes poorly hydrated airway surfaces in CF patients, and this condition is exacerbated by excessive Na+ absorption. The mechanistic link between missing CFTR and increased Na+ absorption in airway epithelia has remained elusive, although substantial evidence implicates hyperactivity of the epithelial Na+ channel (ENaC). ENaC is known to be activated by selective endoproteolysis of the extracellular domains of its α- and γ-subunits, and it was recently reported that ENaC and CFTR physically associate in mammalian cells. We confirmed this interaction in oocytes by co-immunoprecipitation and found that ENaC associated with wild-type CFTR was protected from proteolytic cleavage and stimulation of open probability. In contrast, ΔF508 CFTR, the most common mutant protein in CF patients, failed to protect ENaC from proteolytic cleavage and stimulation. In normal airway epithelial cells, ENaC was contained in the anti-CFTR immunoprecipitate. In CF airway epithelial cultures, the proportion of full-length to total α-ENaC protein signal was consistently reduced compared with normal cultures. Our results identify limiting proteolytic cleavage of ENaC as a mechanism by which CFTR down-regulates Na+ absorption.  相似文献   

17.
The intracellular localization of cystic fibrosis transmembrane conductance regulator (CFTR) in native tissues is a major issue in the study of mutation, processing, and trafficking effects in CFTR and in the evaluation of therapeutic strategies in cystic fibrosis (CF). This work evaluated the applicability of ten different antibodies (Abs) under various fixation techniques for CFTR localization in fresh-brushed nasal epithelial cells collected from CF patients homozygous for F508del and control individuals. In parallel, the same Ab panel was also tested on BHK cell lines overexpressing wild-type or F508del CFTR. The Abs MATG1061, 169, Lis1, MP-CT1, CC24-R, MAB25031, and MAB1660 gave the best detection of CFTR in the apical region (AR) of nasal tall columnar epithelial (TCE) cells. The labeling pattern of these Abs was consistent with the postulated processing defect of F508del CFTR because only a minority of CF TCE cells present CFTR in the AR. In contrast, M3A7, MM13-4, and L12B4 weakly react with the AR and stain almost exclusively a cis-Golgi-like structure in the majority of CF and non-CF airway cells. In BHK cells, all the Abs enabled distinction between wild-type CFTR localization in cell membrane from F508del CFTR, which in these cells is exclusively located in the endoplasmic reticulum.  相似文献   

18.
The conserved C-terminal peptide motif (1476DTRL) of the cystic fibrosis transmembrane conductance regulator (CFTR) ensures high affinity binding to different PSD-95/Disc-large/zonula occludens-1 (PDZ) domain-containing molecules, including the Na+/H+ exchanger regulatory factor (NHERF)/ezrin-radixin-moesin-binding phosphoprotein of 50 kDa. The physiological relevance of NHERF binding to CFTR is not fully understood. Individuals with mutations resulting in premature termination of CFTR (S1455X or Delta26 CFTR) have moderately elevated sweat Cl- concentration, without an obvious lung and pancreatic phenotype, implying that the CFTR function is largely preserved. Surprisingly, when expressed heterologously, the Delta26 mutation was reported to abrogate channel activity by destabilizing the protein at the apical domain and inducing its accumulation at the basolateral membrane (Moyer, B., Denton, J., Karlson, K., Reynolds, D., Wang, S., Mickle, J., Milewski, M., Cutting, G., Guggino, W., Li, M., and Stanton, B. (1999) J. Clin. Invest. 104, 1353-1361). The goals of this study were to resolve the contrasting clinical and cellular phenotype of the Delta26 CFTR mutation and evaluate the role of NHERF in the functional expression of CFTR at the plasma membrane. Complex formation between CFTR and NHERF was disrupted by C-terminal deletions, C-terminal epitope tag attachments, or overexpression of a dominant negative NHERF mutant. These perturbations did not alter CFTR expression, metabolic stability, or function in nonpolarized cells. Likewise, inhibition of NHERF binding had no discernible effect on the apical localization of CFTR in polarized tracheal, pancreatic, intestinal, and kidney epithelia and did not influence the metabolic stability or the cAMP-dependent protein kinase-activated chloride channel conductance in polarized pancreatic epithelia. On the other hand, electrophysiological studies demonstrated that NHERF is able to stimulate the cAMP-dependent protein kinase-phosphorylated CFTR channel activity in intact cells. These results help to reconcile the discordant genotype-phenotype relationship in individuals with C-terminal truncations and indicate that apical localization of CFTR involves sorting signals other than the C-terminal 26 amino acid residues and the PDZ-binding motif in differentiated epithelia.  相似文献   

19.
Affinity-purified polyclonal antibodies, raised against two synthetic peptides corresponding to the R domain and the C terminus of the human cystic fibrosis transmembrane conductance regulator (CFTR), were used to characterize and localize the protein in human epithelial cells. Employing an immunoblotting technique that ensures efficient detection of large hydrophobic proteins, both antibodies recognized and approximately 180-kDa protein in cell lysates and isolated membranes of airway epithelial cells from normal and cystic fibrosis (CF) patients and of T84 colon carcinoma cells. Reactivity with the anti-C terminus antibody, but not with the anti-R domain antibody, was eliminated by limited carboxypeptidase Y digestion. When normal CFTR cDNA was overexpressed via a retroviral vector in CF or normal airway epithelial cells or in mouse fibroblasts, the protein produced had an apparent molecular mass of about 180 kDa. The CFTR expressed in insect (Sf9) cells by a baculovirus vector had a molecular mass of about 140 kDa, probably representing a nonglycosylated form. The CFTR in epithelial cells appears to exist in several forms. N-glycosidase treatment of T84 cell membranes reduces the apparent molecular mass of the major CFTR band from 180 kDa to 140 kDa, but a fraction of the T84 cell CFTR could not be deglycosylated, and the CFTR in airway epithelial cell membranes could not be deglycosylated either. Moreover, wheat germ agglutinin absorbs the majority of the CFTR from detergent-solubilized T84 cell membranes but not from airway cell membranes. The CFTR in all epithelial cell types was found to be an integral membrane protein not solubilized by high salt or lithium diiodosalicylate treatment. Sucrose density gradient fractionation of crude membranes prepared from the airway epithelial cells, previously surface-labeled by enzymatic galactosidation, showed a plasma membrane localization for both the normal CFTR and the CFTR carrying the Phe508 deletion (delta F 508). The CFTR in all cases co-localized with the Na+, K(+)-ATPase and the plasma membrane calcium ATPase, while the endoplasmic reticulum calcium ATPase and mitochondrial membrane markers were enriched at higher sucrose densities. Thus, the CFTR appears to be localized in the plasma membrane both in normal and delta F 508 CF epithelial cells.  相似文献   

20.
The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF) patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs). We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with IDPs and is hypothesized to regulate F508del-CFTR folding by electrostatic effects. This work provides useful insights for designing optimized synthetic structural correctors of CFTR mutant proteins in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号