共查询到20条相似文献,搜索用时 15 毫秒
1.
Establishment and dynamic regulation of a higher order chromatin structure is an essential component of development. Chromatin remodelling complexes such as the SWI2/SNF2 family of ATP-dependent chromatin remodellers can alter chromatin architecture by changing nucleosome positioning or substituting histones with histone variants. These remodellers often act in concert with chromatin modifiers such as the polycomb group proteins which confer repressive states through modification of histone tails. These mechanisms are highly conserved across the eukaryotic kingdom although in plants, owing to the maintenance of dedifferentiated cell states that allow for post-embyronic changes in development, strict control of chromatin remodelling is even more paramount. Recent and ongoing studies in the model plant Arabidopsis thaliana have found that while the major families of the SWI2/SNF2 ATPase chromatin remodellers are represented, a number of redundancies and divergent functions have emerged that show a break from the roles of their metazoan counterparts. This review focusses on the SNF2 and CHD families of ATP-dependent remodellers and their roles in plant development. 相似文献
2.
3.
4.
The rigid cell wall peptidoglycan (murein) is a single giant macromolecule whose shape determines the shape of the bacterial cell. Insight into morphogenetic mechanism(s) responsible for determining the shape of the murein sacculus itself has begun to emerge only in recent years. The discovery that MfreB and Mbl are cytoskeletal actin homologues that form helical structures extending from pole to pole in rod-shaped cells has opened an exciting new field of microbial cell biology. MreB (in Gram-negative rods) and Mbl (in Gram-positive species) are essential for murein synthesis along the lateral wall and hence, the rod shape of the cell. Known members of the morphogenetic system include MreB (or Mbl), MreC, MreD and PBP2, but Rod A and murein biosynthetic enzymes involved in peptidoglycan precursor synthesis and assembly are likely to be recruited to the same multimolecular apparatus. However, the actual role of MreB in assembly of the morphogenetic complex is still not clear and little is known about regulatory mechanisms controlling the switch from lateral murein elongation to septa1 murein synthesis at the time of cell division. 相似文献
5.
Plant cells interact during development through diverse mechanisms that range from genetically encoded signals to physical stresses. Pollen self-incompatibility is the best understood cell interaction in plants. Analysis of genes that appear to be involved in specific developmental signals, such as liguleless1 from maize and GLABROUS1 from Arabidopsis, will provide clues as to the nature of cell interactions in plant development. Recent data suggest that intercellular connections may be more similar in plants and animals than previously thought. 相似文献
6.
Cell shape and cell division 总被引:1,自引:0,他引:1
The correlation between cell shape elongation and the orientation of the division axis described by early cell biologists is still used as a paradigm in developmental studies. However, analysis of early embryo development and tissue morphogenesis has highlighted the role of the spatial distribution of cortical cues able to guide spindle orientation. In vitro studies of cell division have revealed similar mechanisms. Recent data support the possibility that the orientation of cell division in mammalian cells is dominated by cell adhesion and the associated traction forces developed in interphase. Cell shape is a manifestation of these adhesive and tensional patterns. These patterns control the spatial distribution of cortical signals and thereby guide spindle orientation and daughter cell positioning. From these data, cell division appears to be a continuous transformation ensuring the maintenance of tissue mechanical integrity. 相似文献
7.
8.
9.
Cell shape changes during gastrulation in Drosophila 总被引:13,自引:0,他引:13
The first morphogenetic movement during Drosophila development is the invagination of the mesoderm, an event that folds a one-layered epithelium into a multilayered structure. In this paper, we describe the shape changes and behaviour of the cells participating in this process and show how mutations that change cell fate affect this behaviour. We divide the formation of the mesodermal germ layer into two phases. During the first phase, the ventral epithelium folds into a tube by a series of concerted cell shape changes (ventral furrow formation). Based on the behaviour of cells in this phase, we conclude that the prospective mesoderm is not a homogeneous cell population, but consists of two subpopulations. Each subpopulation goes through a distinctive sequence of specific cell shape changes which together mediate the invagination of the ventral furrow. In the second phase, the invaginated tube of mesoderm loses its epithelial character, the mesoderm cells disperse, divide and then spread out along the ectoderm to form a single cell layer. To test how ventral furrow formation depends on cell fates in the mesoderm and in neighbouring cells we alter these fates genetically using maternal and zygotic mutations. These experiments show that some of the aspects of cell behaviour specific for ventral furrow cells are part of an autonomous differentiation programme. The force driving the invagination is generated within the region of the ventral furrow, with the lateral and dorsal cell populations contributing little or none of the force. Two known zygotic genes that are required for the formation of the mesoderm, twist and snail, are expressed in ventral furrow cells, and the correct execution of cell shape changes in the mesoderm depends on both. Finally, we show that the region where the ventral furrow forms is determined by the expression of mesoderm-specific genes, and not by mechanical or other epigenetic properties of the egg. 相似文献
10.
11.
Mendel RR 《Plant cell reports》2011,30(10):1787-1797
The transition element molybdenum (Mo) is of essential importance for (nearly) all biological systems as it is required by
enzymes catalyzing important reactions within the cell. The metal itself is biologically inactive unless it is complexed by
a special cofactor. With the exception of bacterial nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound
to a pterin, thus forming the molybdenum cofactor (Moco) which is the active compound at the catalytic site of all other Mo-enzymes.
In plants, the most prominent Mo-enzymes are nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase,
and the mitochondrial amidoxime reductase. The biosynthesis of Moco involves the complex interaction of six proteins and is
a process of four steps, which also includes iron as well as copper in an indispensable way. After its synthesis, Moco is
distributed to the apoproteins of Mo-enzymes by Moco-carrier/binding proteins that also participate in Moco-insertion into
the cognate apoproteins. Xanthine dehydrogenase and aldehyde oxidase, but not the other Mo-enzymes, require a final step of
posttranslational activation of their catalytic Mo-center for becoming active. 相似文献
12.
《Seminars in Developmental Biology》1994,5(3):147-154
The isolation of plant genes homologous to cdk and cyclin components from yeast and animals proves the existence of a basic cell cycle machinery in all eukaryotes. cdk and cyclin expression has been shown to be involved in the spatial and temporal control of cell division in a variety of developmental processes. In plants, cell division and development are closely interlinked processes that are regulated by phytohormones. cdks and cyclins were found to be under control of phytohormones underscoring their integral role in mediating different developmental pathways. Furthermore, studies on cdk and cyclin expression not only correlate with actual cell cycle activity but also with cell division competence providing a working model to understand regeneration capacity at the molecular level. 相似文献
13.
14.
15.
Blood vessel development is a vital process during embryonic development, during tissue growth, regeneration and disease processes in the adult. In the past decade researchers have begun to unravel basic molecular mechanisms that regulate the formation of vascular lumen, sprouting angiogenesis, fusion of vessels, and pruning of the vascular plexus. The understanding of the biology of these angiogenic processes is increasingly driven through studies on vascular development at the cellular resolution. Single cell analysis in vivo, advanced genetic tools and the widespread use of powerful animal models combined with improved imaging possibilities are delivering new insights into endothelial cell form, function and behavior angiogenesis. Moreover, the combination of in silico modeling and experimentation including dynamic imaging promotes insights into higher level cooperative behavior leading to functional patterning of vascular networks. Here we summarize recent concepts and advances in the field of vascular development, focusing in detail on the endothelial cell. 相似文献
16.
Preservation of cell architecture under physically stressful conditions is a basic requirement for many biological processes and is critical for mechanosensory systems built to translate subtle changes in cell shape into changes in organism behaviour. A new study reveals how an extracellular protein--Spam--helps mechanosensory organs in the fruit fly to withstand the effects of the water loss that accompanies heat shock. 相似文献
17.
18.
Mycoplasmas, a group of small parasitic bacteria, adhere to and move across host cell surfaces. The role of motility across host cell surfaces in pathogenesis remains unclear. Here, we used optical microscopy to visualize rheotactic behavior in three phylogenetically distant species of Mycoplasma using a microfluidic chamber that enabled the application of precisely controlled fluid flow. We show that directional movements against fluid flow occur synchronously with the polarized cell orienting itself to be parallel against the direction of flow. Analysis of depolarized cells revealed that morphology itself functions as a sensor to recognize rheological properties that mimic those found on host-cell surfaces. These results demonstrate the vital role of cell morphology and motility in responding to mechanical forces encountered in the native environment. 相似文献
19.