首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to compare the effects of short-term unilateral resistance training (UL) and bilateral resistance training (BL) with free weights on several tests of unilateral and bilateral lower-body strength and power in men and women. Thirty-eight untrained men and women (mean body mass 78.3 +/- 21.47 kg; age 20.74 +/- 2.6 years) completed the study. The groups trained 2 days per week for 8 weeks with free weights and 2 days per week for 5 of the 8 weeks with plyometric drills. The resistance-training program consisted of a progression from 3 sets of 15 repetitions at 50% of the subject's predicted 1 repetition maximum (1RM) to 6 sets of 5 repetitions at 87% 1RM. Training volume and intensity were equal for each group. The free-weight squat was used to measure unilateral and bilateral strength. Power was measured by the Magaria-Kalamen stair-climb test and the unilateral and bilateral vertical jump test. Analysis of covariance was used to analyze differences between men and women and the interaction of group and gender. Pretest scores were used as the covariate. The UL group improved more than the BL group on the unilateral vertical jump height (p = 0.001) and relative power (p = 0.013). After adjusting for pretest differences, the improved scores on all tests, except for the unilateral squat, were similar between the men and the women. No significant interactions on all tests were found for the men or women comparison between training groups. These results indicate that UL and BL are equally effective for early phase improvement of unilateral and bilateral leg strength and power in untrained men and women.  相似文献   

2.
The purpose of this study was to determine the influence of endogenous circulating testosterone (T) on muscle androgen receptor (AR) responses to acute resistance exercise (RE). Six healthy men (26 ± 4 years; 176 ± 5 cm; 75.8 ± 11.4 kg) performed a knee extension exercise protocol on two occasions separated by 1–3 weeks. Rest preceded one trial (i.e., control [CON] trial) and a high-volume upper-body RE protocol designed to increase circulating T preceded the other trial (i.e., high T [HT] trial). Serial blood samples were obtained throughout each trial to determine circulating T concentrations. Biopsies of the vastus lateralis were obtained pre-RE (REST), 10-min post-RE (+10), and 180-min post-RE (+180) to determine muscle AR content. Circulating T concentrations remained stable during CON. Alternately, HT significantly (p ≤ 0.05) increased T concentrations above resting values (+16%). Testosterone area-under-the-time curve during HT exceeded CON by 14%. AR content remained stable from REST to +10 in both trials. Compared to the corresponding +10 value, muscle AR content at +180 tended to decrease during CON (−33%; p = 0.10) but remained stable during HT (+40%; p = 0.17). Muscle AR content at +180 during the HT trial exceeded the corresponding CON value. In conclusion, acute elevations in circulating T potentiated muscle AR content following RE.  相似文献   

3.
This study compared serum total testosterone (TT) and free testosterone (FT) responses of young (20-26 years, n = 8), middle-aged (38-53 years, n = 7), and older (59-72 years, n = 9) men to resistance exercise. We also examined the relationships between testosterone (T) levels and strength, bone mineral density (BMD), and body composition variables for each age group. Subjects were tested for isotonic muscular strength (1 repetition maximum [1RM]), BMD (dual-energy x-ray absorptiometry [DXA]) and body composition (DXA). Each group performed an acute exercise protocol (3 sets, 10 repetitions, 80% of 1RM, 6 exercises). Blood samples were obtained at baseline, immediately postexercise, and 15 minutes postexercise for the TT and FT assays. The older age group had significantly (p < 0.05) lower T levels than the young group, but each group exhibited an increase (p < 0.05) in TT and FT immediately postexercise. Total T and FT were significantly correlated (p < 0.05) with strength in middle-aged and older men and with bone-free lean tissue mass in older men. In conclusion, middle-aged and older men showed similar relative T responses to those of younger men to a single bout of high-intensity resistance exercise. However, T levels were related to strength and muscle mass only in middle-aged or older men. On a practical application level, older men can complete a high-intensity resistance exercise program resulting in spikes in T that may attenuate age-related muscle and BMD loss.  相似文献   

4.
Previous research has shown that L-carnitine L-tartrate (LCLT) supplementation beneficially affects markers of hypoxic stress following resistance exercise. However, the mechanism of this response is unclear. Therefore, the primary purpose of this study was to determine the effects of LCLT supplementation on muscle tissue oxygenation during and after multiple sets of squat exercise. Nine healthy, previously resistance-trained men (25.2 +/- 6.years, 91.2 +/- 10.2 kg, 180.2 +/- 6.3 cm) ingested 2 g.d of LCLT or an identical placebo for 23 days in a randomized, balanced, crossover, double-blind, placebo-controlled, repeated-measures study design. On day 21, forearm muscle oxygenation was measured during and after an upper arm occlusion protocol using near infrared spectroscopy (NIRS), which measures the balance of oxygen delivery in relation to oxygen consumption. On day 22, subjects performed 5 sets of 15 to 20 repetitions of squat exercise with corresponding measures of thigh muscle oxygenation, via NIRS, and serial blood draws. Compared to the placebo trial, muscle oxygenation was reduced in the LCLT trial during upper arm occlusion and following each set of resistance exercise. Despite reduced oxygenation, plasma malondealdehyde, a marker of membrane damage, was attenuated during the LCLT trial. There were no differences between trials in the vasoactive substance prostacyclin. In conclusion, because oxygen delivery was occluded during the forearm protocol, it is proposed that enhanced oxygen consumption mediated the reduced muscle oxygenation during the LCLT trial. Enhanced oxygen consumption would explain why hypoxic stress was attenuated with LCLT supplementation.  相似文献   

5.
This study examined the acute hormonal responses to a single high power resistance exercise training session. Four weight trained men (X ± SD; age [yrs] = 24.5 ± 2.9; hgt [m] = 1.82 ± 0.05; BW [kg] = 96.9 ± 10.6; 1 RM barbell squat [kg] = 129.3 ± 17.4) participated as subjects in two randomly ordered sessions. During the lifting session, serum samples were collected pre- and 5 min post-exercise, and later analyzed for testosterone (Tes), cortisol (Cort), their ratio (Tes/Cort), and lactate (HLa). The lifting protocol was 10 × 5 speed squats at 70% of system mass (1 RM + BW) with 2 min inter-set rest intervals. Mean power and velocity were determined for each repetition using an external dynamometer. On the control day, the procedures and times (1600–1900 h) were identical except the subjects did not lift. Tes and Cort were analyzed via EIA. Mean ± SD power and velocity was 1377.1 ± 9.6 W and 0.79 ± 0.01 m s−1 respectively for all repetitions, and did not decrease over the 10 sets (p < 0.05). Although not significant, post-exercise Tes exhibited a very large effect size (nmol L−1; pre = 12.5 ± 2.9, post = 20.0 ± 3.9; Cohen’s D = 1.27). No changes were observed for either Cort or the Tes/Cort ratio. HLa significantly increased post-exercise (mmol L−1; pre = 1.00 ± 0.09, post = 4.85 ± 1.10). The exercise protocol resulted in no significant changes in Tes, Cort or the Tes/Cort ratio, although the Cohen’s D value indicates a very large effect size for the Tes response. The acute increase for Tes is in agreement with previous reports that high power activities can elicit a Tes response. High power resistance exercise protocols such as the one used in the present study produce acute increases of Tes. These results indicate that high power resistance exercise can contribute to an anabolic hormonal response with this type of training, and may partially explain the muscle hypertrophy observed in athletes who routinely employ high power resistance exercise.  相似文献   

6.
Hormonal and growth factor responses to heavy resistance exercise protocols   总被引:10,自引:0,他引:10  
To examine endogenous anabolic hormone and growth factor responses to various heavy resistance exercise protocols (HREPs), nine male subjects performed each of six randomly assigned HREPs, which consisted of identically ordered exercises carefully designed to control for load [5 vs. 10 repetitions maximum (RM)], rest period length (1 vs. 3 min), and total work effects. Serum human growth hormone (hGH), testosterone (T), somatomedin-C (SM-C), glucose, and whole blood lactate (HLa) concentrations were determined preexercise, midexercise (i.e., after 4 of 8 exercises), and at 0, 5, 15, 30, 60, 90, and 120 min postexercise. All HREPs produced significant (P less than 0.05) temporal increases in serum T concentrations, although the magnitude and time point of occurrence above resting values varied across HREPs. No differences were observed for T when integrated areas under the curve (AUCs) were compared. Although not all HREPs produced increases in serum hGH, the highest responses were observed consequent to the H10/1 exercise protocol (high total work, 1 min rest, 10-RM load) for both temporal and time integrated (AUC) responses. The pattern of SM-C increases varied among HREPs and did not consistently follow hGH changes. Whereas temporal changes were observed, no integrated time (AUC) differences between exercise protocols occurred. These data indicate that the release patterns (temporal or time integrated) observed are complex functions of the type of HREPs utilized and the physiological mechanisms involved with determining peripheral circulatory concentrations (e.g., clearance rates, transport, receptor binding). All HREPs may not affect muscle and connective tissue growth in the same manner because of possible differences in hormonal and growth factor release.  相似文献   

7.
The present study investigated the effect of unilateral and bilateral resistance exercise (RE) on maximal voluntary strength, total volume of load lifted (TVLL), rating of perceived exertion (RPE) and blood lactate concentration of resistance-trained males. Twelve healthy men were assessed for the leg extension one-repetition maximum (1RM) strength using bilateral and unilateral contractions. Following this assessment, an RE session (3 sets of repetitions to failure) was conducted with bilateral and unilateral (both limbs) contractions using a load of 50% 1RM. The TVLL was calculated by the product of the number of repetitions and the load lifted per repetition. RPE and blood lactate were measured before, during and after each set. Session RPE was measured 30 minutes after RE sessions. There was a significant difference in the bilateral (120.0±11.9) and unilateral (135.0±20.2 kg) 1RM strength (p < 0.05). The TVLL was similar between both RE sessions. Although the repetitions decreased with each successive set, the total number of repetitions completed in the bilateral protocol (48) was superior to the unilateral (40) protocol (p < 0.05). In both bouts, RPE increased with each subsequent set whilst blood lactate increased after set 1 and thereafter remained stable (p < 0.05). The RPE and lactate responses were not significantly different between both sessions. In conclusion, a bilateral deficit in leg extension strength was confirmed, but the TVLL was similar between both RE sessions when exercising to voluntary fatigue. This outcome could be attributed to the number of repetitions completed in the unilateral RE bout. The equal TVLL would also explain the similar perceptual and metabolic responses across each RE session.  相似文献   

8.
We hypothesized that the elevated primary O(2) uptake (VO(2)) amplitude during the second of two bouts of heavy cycle exercise would be accompanied by an increase in the integrated electromyogram (iEMG) measured from three leg muscles (gluteus maximus, vastus lateralis, and vastus medialis). Eight healthy men performed two 6-min bouts of heavy leg cycling (at 70% of the difference between the lactate threshold and peak VO(2)) separated by 12 min of recovery. The iEMG was measured throughout each exercise bout. The amplitude of the primary VO(2) response was increased after prior heavy leg exercise (from mean +/- SE 2.11 +/- 0.12 to 2.44 +/- 0.10 l/min, P < 0.05) with no change in the time constant of the primary response (from 21.7 +/- 2.3 to 25.2 +/- 3.3 s), and the amplitude of the VO(2) slow component was reduced (from 0.79 +/- 0.08 to 0.40 +/- 0.08 l/min, P < 0.05). The elevated primary VO(2) amplitude after leg cycling was accompanied by a 19% increase in the averaged iEMG of the three muscles in the first 2 min of exercise (491 +/- 108 vs. 604 +/- 151% increase above baseline values, P < 0.05), whereas mean power frequency was unchanged (80.1 +/- 0.9 vs. 80.6 +/- 1.0 Hz). The results of the present study indicate that the increased primary VO(2) amplitude observed during the second of two bouts of heavy exercise is related to a greater recruitment of motor units at the onset of exercise.  相似文献   

9.
10.
The purpose of this investigation was to examine the acute responses of several hormones [total and free testosterone (TT and FT, respectively), adrenocorticotropic hormone (ACTH), cortisol (C), growth hormone (GH), and insulin (INS)] to a single bout of heavy resistance exercise (HRE). Eight younger [30-year (30y) group] and nine older [62-year (62y) group] men matched for general physical characteristics and activity levels performed four sets of ten repetitions maximum (RM) squats with 90 s rest between sets. Blood samples were obtained from each subject via an indwelling cannula with a saline lock pre-exercise, immediately post-exercise (IP), and 5, 15 and 30 min post-exercise. Levels of TT, FT, ACTH, C and lactate significantly increased after HRE for both groups. Pre-HRE pairwise differences between groups were noted only for FT, while post-HRE pairwise differences were found for TT, FT, GH, glucose and lactate. Area under the curve analysis showed that the 30y group had a significantly higher magnitude of increase over the entire recovery period (IP, 5, 15, and 30 min post-exercise) for TT, FT, ACTH and GH. Few changes occurred in the INS response with the only change being that the 62y group demonstrated a decrease IP. Lactate remained elevated at 30 min post-HRE. This investigation demonstrates that age-related differences occur in the endocrine response to HRE, and the most striking changes appear evident in the FT response to HRE in physically active young and older men. Accepted: 11 June 1997  相似文献   

11.
The acute response of free salivary testosterone (T) and cortisol (C) concentrations to four resistance exercise (RE) protocols in 23 elite men rugby players was investigated. We hypothesized that hormonal responses would differ among individuals after four distinct RE protocols: four sets of 10 repetitions (reps) at 70% of 1 repetition maximum (1RM) with 2 minutes' rest between sets (4 x 10-70%); three sets of five reps at 85% 1RM with 3 minutes' rest (3 x 5-85%); five sets of 15 reps at 55% 1RM with 1 minute's rest (5 x 15-55%); and three sets of five reps at 40% 1RM with 3 minutes' rest (3 x 5-40%). Each athlete completed each of the four RE protocols in a random order on separate days. T and C concentrations were measured before exercise (PRE), immediately after exercise (POST), and 30 minutes post exercise (30 POST). Each protocol consisted of four exercises: bench press, leg press, seated row, and squats. Pooled T data did not change as a result of RE, whereas C declined significantly. Individual athletes differed in their T response to each of the protocols, a difference that was masked when examining the pooled group data. When individual data were retrospectively tabulated according to the protocol in which each athlete showed the highest T response, a significant protocol-dependent T increase for all individuals was revealed. Therefore, RE induced significant individual, protocol-dependent hormonal changes lasting up to 30 minutes after exercise. These individual responses may have important ramifications for modulating adaptation to RE and could explain the variability often observed in studies of hormonal response to RE.  相似文献   

12.
It is well established that resistance exercise can damage muscle tissue, but the combined effects of hypohydration and resistance exercise on muscle damage are unclear. Two common circulating markers of muscle damage, myoglobin (Mb) and creatine kinase (CK) may be attenuated by fluid ingestion post-exercise. The purpose of this study was to examine the combined effect of resistance exercise and hydration state on muscle damage. Seven healthy resistance-trained males (age = 23 +/- 4 years; body mass = 87.8 +/- 6.8 kg; body fat = 11.5 +/- 5.2%) completed 3 identical resistance exercise bouts (6 sets of up to 10 repetitions of the back squat) in different hydration states: euhydrated (HY0), hypohydrated approximately 2.5% body mass (HY2.5), and hypohydrated approximately 5.0% body mass (HY5). Subjects achieved desired hydration states via controlled water deprivation, exercise-heat stress, and fluid intake. Both Mb and CK were measured during euhydrated rest (PRE). Mb was also measured immediately post-exercise, 1 hour (+1H) and 2 hours (+2H) post-exercise; CK was measured at 24 and 48 hours post-exercise. Body mass decreased 0.2 +/- 0.4%, 2.4 +/- 0.4%, and 4.8 +/- 0.4% during HY0, HY2.5, and HY5, respectively. Mb concentrations increased significantly (effect size >or=1, p < 0.05) from PRE (2.6 +/- 1.1, 3.5 +/- 2.8, and 3.2 +/- 1.6 nmol x L(-1)) to +1H (5.3 +/- 3.4, 6.8 +/- 3.2, and 7.6 +/- 2.8 nmol x L(-1)), and +2H (5.5 +/- 3.8, 6.2 +/- 3.0, and 7.2 +/- 3.0 nmol x L(-1)) for HY0, HY2.5, and HY5, respectively, but were not significantly different between trials. CK concentrations remained within the normal resting range at all time points. Thus, hypohydration did not enhance muscle damage following the resistance exercise challenge. Despite these results, athletes are encouraged to commence exercise in a euhydrated state to maximize endogenous hormonal, mechanical, and metabolic benefits.  相似文献   

13.
Loss of lean body and muscle mass characterizes the acquired immunodeficiency syndrome (AIDS) wasting syndrome (AWS). Testosterone and exercise increase muscle mass in men with AWS, with unclear effects on muscle composition. We examined muscle composition in 54 eugonadal men with AWS who were randomized to 1) testosterone (200 mg im weekly) or placebo and simultaneously to 2) resistance training or no training in a 2 x 2 factorial design. At baseline and after 12 wk, we performed assessments of whole body composition by dual-energy X-ray absorptiometry and single-slice computed tomography for midthigh cross-sectional area and muscle composition. Leaner muscle has greater attenuation. Baseline muscle attenuation correlated inversely with whole body fat mass (r = -0.52, P = 0.0001). This relationship persisted in a model including age, body mass index, testosterone level, viral load, lean body mass, and thigh muscle cross-sectional area (P = 0.02). Testosterone (P = 0.03) and training (P = 0.03) increased muscle attenuation. These data demonstrate that thigh muscle attenuation by computed tomography varies inversely with whole body fat and increases with testosterone and training. Anabolic therapy in these patients increases muscle leanness.  相似文献   

14.
Ginseng, an herbal plant, has been ingested by many athletes in Oriental regions of the world in order to improve stamina and to facilitate rapid recovery from injuries. However, adequate investigation has not been conducted to examine the ergogenic effects of ginseng. To examine the effects of ginseng supplements on hormonal status following acute resistance exercise, eight male college students were randomly given water (control; CON) or 20 g of ginseng root extract (GIN) treatment immediately after a standardized exercise bout. Venous blood samples were drawn before and immediately after exercise and at 4 time points during a 2-hour recovery period. Human growth hormone, testosterone, cortisol, and insulin-like growth factor 1 (IGF-1) levels were determined by radioimmunoassay. The responses of plasma hormones following ginseng consumption were not significant between CON and GIN treatments during the 2-hour recovery period. These results do not support the use of ginseng to promote an anabolic hormonal status following resistance exercise.  相似文献   

15.
We tested the hypothesis that dehydration exacerbates reductions of middle cerebral artery blood velocity (MCAv) and alters cerebrovascular control during standing after heavy resistance exercise. Ten males participated in two trials under 1) euhydration (EUH) and 2) dehydration (DEH; fluid restriction + 40 mg furosemide). We recorded finger photoplethysmographic arterial pressure and MCAv (transcranial Doppler) during 10 min of standing immediately after high-intensity leg press exercise. Symptoms (e.g., lightheadedness) were ranked by subjects during standing (1-5 scale). Low-frequency (LF) oscillations of mean arterial pressure (MAP) and mean MCAv were calculated as indicators of cerebrovascular control. DEH reduced plasma volume by 11% (P = 0.002; calculated from hemoglobin and hematocrit). During the first 30 s of standing after exercise, subjects reported greater symptoms during DEH vs. EUH (P = 0.05), but these were mild and resolved at 60 s. While MAP decreased similarly between conditions immediately after standing, MCAv decreased more with DEH than EUH (P = 0.02). With prolonged standing under DEH, mean MCAv remained below baseline (P ≤ 0.01), and below EUH values (P ≤ 0.05). LF oscillations of MAP were higher for DEH at baseline and during the entire 10 min of stand after exercise (P ≤ 0.057), while LF oscillations in mean MCAv were distinguishable only at baseline and 5 min following stand (P = 0.05). Our results suggest that mean MCAv falls below a "symptomatic threshold" in the acute phase of standing after exercise during DEH, although symptoms were mild and transient. During the prolonged phase of standing, increases in LF MAP and mean MCAv oscillations with DEH may help to maintain cerebral perfusion despite absolute MCAv remaining below the symptomatic threshold.  相似文献   

16.
The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (p < 0.05). Bilateral IO, EO, and left RA muscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (p < 0.05). These findings suggest that additional isometric hip adduction during the plank exercise could be a useful method to enhance abdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction.  相似文献   

17.
To examine the effects of repetitive bouts of heavy exercise on the maximal activities of enzymes representative of the major metabolic pathways and segments, 13 untrained volunteers [peak aerobic power (Vo(2 peak)) = 44.3 +/- 2.3 ml.kg(-1).min(-1)] cycled at approximately 91% Vo(2 peak) for 6 min once per hour for 16 h. Maximal enzyme activities (V(max), mol.kg(-1).protein.h(-1)) were measured in homogenates from tissue extracted from the vastus lateralis before and after exercise at repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). For the mitochondrial enzymes, exercise resulted in reductions (P < 0.05) in cytochrome-c oxidase (COX, 14.6%), near significant reductions in malate dehydrogenase (4.06%; P = 0.06) and succinic dehydrogenase (4.82%; P = 0.09), near significant increases in beta-hydroxyacyl-CoA dehydrogenase (4.94%; P = 0.08), and no change in citrate synthase (CS, 2.88%; P = 0.37). For the cytosolic enzymes, exercise reduced (P < 0.05) V(max) in hexokinase (Hex, 4.4%), creatine phosphokinase (9.0%), total phosphorylase (13.5%), phosphofructokinase (16.6%), pyruvate kinase (PK, 14.1%) and lactate dehydrogenase (10.7%). Repetition-dependent reductions (P < 0.05) in V(max) were observed for CS (R1, R2 > R16), COX (R1, R2 > R16), Hex (1R, 2R > R16), and PK (R9 > R16). It is concluded that heavy exercise results in transient reductions in a wide range of enzymes involved in different metabolic functions and that in the case of selected enzymes, multiple repetitions of the exercise reduce average V(max).  相似文献   

18.
Previous studies have shown that low-intensity resistance exercises with vascular occlusion and slow movement effectively increase muscular size and strength. Researchers have speculated that local hypoxia by occlusion and slow movement may contribute to such adaptations via promoting anabolic hormone secretions by the local accumulation of metabolites. In this study, we determined the effects of low-intensity resistance exercise under acute systemic hypoxia on metabolic and hormonal responses. Eight male subjects participated in 2 experimental trials: (a) low-intensity resistance exercise while breathing normoxic air (normoxic resistance exercise [NR]), (b) low-intensity resistance exercise while breathing 13% oxygen (hypoxic resistance exercise [HR]). The resistance exercises (bench press and leg press) consisted of 14 repetitions for 5 sets at 50% of maximum strength with 1 minute of rest between sets. Blood lactate (LA), serum growth hormone (GH), norepinephrine (NE), testosterone, and cortisol concentrations were measured before normoxia and hypoxia exposures; 15 minutes after the exposures; and at 0, 15, and 30 minutes after the exercises. The LA levels significantly increased after exercises in both trials (p ≤ 0.05). The area under the curve for LA after exercises was significantly higher in the HR trial than in the NR trial (p ≤ 0.05). The GH significantly increased only after the HR trial (p ≤ 0.05). The NE and testosterone significantly increased after the exercises in both trials (p ≤ 0.05). Cortisol did not significantly change in both trials. These results suggest that low-intensity resistance exercise in the hypoxic condition caused greater metabolic and hormonal responses than that in the normoxic condition. Coaches may consider low-intensity resistance exercise under systemic hypoxia as a potential training method for athletes who need to maintain muscle mass and strength during the long in-season.  相似文献   

19.
Many commonly utilized low-back exercise devices offer mechanisms to stabilize the pelvis and to isolate the lumbar spine, but the value of these mechanisms remains unclear. The purpose of this study was to examine the effect of pelvic stabilization on the activity of the lumbar and hip extensor muscles during dynamic back extension exercise. Fifteen volunteers in good general health performed dynamic extension exercise in a seated upright position on a lumbar extension machine with and without pelvic stabilization. During exercise, surface electromyographic activity of the lumbar multifidus and biceps femoris was recorded. The activity of the multifidus was 51% greater during the stabilized condition, whereas there was no difference in the activity of the biceps femoris between conditions. This study demonstrates that pelvic stabilization enhances lumbar muscle recruitment during dynamic exercise on machines. Exercise specialists can use these data when designing exercise programs to develop low back strength.  相似文献   

20.
The effects of a single series of high-force eccentric contractions involving the quadriceps muscle group (single leg) on plasma concentrations of muscle proteins were examined as a function of time, in the context of measurements of torque production and magnetic resonance imaging (MRI) of the involved muscle groups. Plasma concentrations of slow-twitch skeletal (cardiac beta-type) myosin heavy chain (MHC) fragments, myoglobin, creatine kinase (CK), and cardiac troponin T were measured in blood samples of six healthy male volunteers before and 2 h after 70 eccentric contractions of the quadriceps femoris muscle. Screenings were conducted 1, 2, 3, 6, 9, and 13 days later. To visualize muscle injury, MRI of the loaded and unloaded thighs was performed 3, 6, and 9 days after the eccentric exercise bout. Force generation of the knee extensors was monitored on a dynamometer (Cybex II+) parallel to blood sampling. Exercise resulted in a biphasic myoglobin release profile, delayed CK and MHC peaks. Increased MHC fragment concentrations of slow skeletal muscle myosin occurred in late samples of all participants, which indicated a degradation of slow skeletal muscle myosin. Because cardiac troponin T was within the normal range in all samples, which excluded a protein release from the heart (cardiac beta-type MHC), this finding provides evidence for an injury of slow-twitch skeletal muscle fibers in response to eccentric contractions. Muscle action revealed delayed reversible increases in MRI signal intensities on T2-weighted images of the loaded vastus intermedius and deep parts of the vastus lateralis. We attributed MRI signal changes due to edema in part to slow skeletal muscle fiber injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号