首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loli D  Bicudo JE 《Bioscience reports》2005,25(3-4):149-180
Most insects and birds are able to fly. The chitin made exoskeleton of insects poses them several constraints, and this is one the reasons they are in general small sized animals. On the other hand, because birds possess an endoskeleton made of bones they may grow much larger when compared to insects. The two taxa are quite different with regards to their general “design” platform, in particular with respect to their respiratory and circulatory systems. However, because they fly, they may share in common several traits, namely those associated with the control and regulatory mechanisms governing thermogenesis. High core temperatures are essential for animal flight irrespective of the taxa they belong to. Birds and insects have thus evolved mechanisms which allowed them to control and regulate high rates of heat fluxes. This article discusses possible convergent thermogenic control and regulatory mechanisms associated with flight in insects and birds.  相似文献   

2.
Physiological mechanisms of neuronal information processing have been shaped during evolution by a continual interplay between organisms and their sensory surroundings. Thus, when asking for the functional significance of such mechanisms, the natural conditions under which they operate must be considered. This has been done successfully in several studies that employ sensory stimulation under in vivo conditions. These studies address the question of how physiological mechanisms within neurons are properly adjusted to the characteristics of natural stimuli and to the demands imposed on the system being studied. Results from diverse animal models show how neurons exploit natural stimulus statistics efficiently by utilizing specific filtering capacities. Mechanisms that allow neurons to adapt to the currently relevant range from an often immense stimulus spectrum are outlined, and examples are provided that suggest that information transfer between neurons is shaped by the system-specific computational tasks in the behavioral context.  相似文献   

3.
Physiological mechanisms of neuronal information processing have been shaped during evolution by a continual interplay between organisms and their sensory surroundings. Thus, when asking for the functional significance of such mechanisms, the natural conditions under which they operate must be considered. This has been done successfully in several studies that employ sensory stimulation under in vivo conditions. These studies address the question of how physiological mechanisms within neurons are properly adjusted to the characteristics of natural stimuli and to the demands imposed on the system being studied. Results from diverse animal models show how neurons exploit natural stimulus statistics efficiently by utilizing specific filtering capacities. Mechanisms that allow neurons to adapt to the currently relevant range from an often immense stimulus spectrum are outlined, and examples are provided that suggest that information transfer between neurons is shaped by the system-specific computational tasks in the behavioral context.  相似文献   

4.
Juvenile Oncorhynchus spp. can memorise their natal stream during downstream migration; juveniles migrate to feed during their growth phase and then they migrate long distances from their feeding habitat to their natal stream to reproduce as adults. Two different sensory mechanisms, olfaction and navigation, are involved in the imprinting and homing processes during short-distance migration within the natal stream and long-distance migration in open water, respectively. Here, olfactory functions are reviewed from both neurophysiological studies on the olfactory discrimination ability of natal stream odours and neuroendocrinological studies on the hormonal controlling mechanisms of olfactory memory formation and retrieval in the brain. These studies revealed that the long-term stability of dissolved free amino-acid composition in the natal stream is crucial for olfactory imprinting and homing. Additionally, the brain–pituitary–thyroid and brain–pituitary–gonadal hormones play important roles in olfactory memory formation and retrieval, respectively. Navigation functions were reviewed from physiological biotelemetry techniques with sensory interference experiments during the homing migration of anadromous and lacustrine Oncorhynchus spp. The experiments demonstrated that Oncorhynchus spp. used compass navigation mechanisms in the open water. These findings are discussed in relation to the sensory mechanisms involved in natal stream imprinting and homing in Oncorhynchus spp.  相似文献   

5.
Pacific salmon (genus Oncorhynchus) exhibit an interesting anduncommon life-history pattern that combines semelparity, anadromy,and navigation (homing). During smoltification, young salmonimprint on the chemical composition of their natal stream water(the home-stream olfactory bouquet or "HSOB"); they then migrateto the ocean where they spend a few years feeding prior to migratingback to their natal freshwater stream to spawn. Upstream migrationis guided by the amazing ability to discriminate between thechemical compositions of different stream waters and thus identifyand travel to their home-stream. Pacific salmon demonstratemarked somatic and neural degeneration changes during home-streammigration and at the spawning grounds. The appearance of thesepathologies is correlated with a marked elevation in plasmacortisol levels. While the mechanisms of salmonid homing arenot completely understood, it is known that adult salmon continuouslyutilize two of their primary sensory systems, olfaction andvision, during homing. Olfaction is the primary sensory systeminvolved in freshwater homing and "HSOB" recognition, and willbe emphasized here. Previously, we proposed that the increasein plasma cortisol during Pacific salmon home-stream migrationis adaptive because it enhances the salmon's ability to recallthe imprinted memory of the "HSOB" (Carruth, 1998; Carruth etal., 2000b). Elevated plasma concentrations of cortisol couldprime the hippocampus or other olfactory regions of the brainto recall this memory and, therefore, aid in directing the fishto their natal stream. Thus, specific responses of salmon tostressors could enhance reproductive success.  相似文献   

6.
Each primary olfactory neuron stochastically expresses one of approximately 1000 odorant receptors. The total population of these neurons therefore consists of approximately 1,000 distinct subpopulations, each of which are mosaically dispersed throughout one of four semi-annular zones in the nasal cavity. The axons of these different subpopulations are initially intermingled within the olfactory nerve. However, upon reaching the olfactory bulb, they sort out and converge so that axons expressing the same odorant receptor typically target one or two glomeruli. The spatial location of each of these approximately 1800 glomeruli are topographically-fixed in the olfactory bulb and are invariant from animal to animal. Thus, while odorant receptors are expressed mosaically by neurons throughout the olfactory neuroepithelium their axons sort out, converge and target the same glomerulus within the olfactory bulb. How is such precise and reproducible topographic targeting generated? While some of the mechanisms governing the growth cone guidance of olfactory sensory neurons are understood, the cues responsible for homing axons to their target site remain elusive.  相似文献   

7.
Homing by the nocturnal Namib Desert spider Leucorchestris arenicola (Araneae: Sparassidae) is comparable to homing in diurnal bees, wasps and ants in terms of path length and layout. The spiders'' homing is based on vision but their basic navigational strategy is unclear. Diurnal homing insects use memorised views of their home in snapshot matching strategies. The insects learn the visual scenery identifying their nest location during learning flights (e.g. bees and wasps) or walks (ants). These learning flights and walks are stereotyped movement patterns clearly different from other movement behaviours. If the visual homing of L. arenicola is also based on an image matching strategy they are likely to exhibit learning walks similar to diurnal insects. To explore this possibility we recorded departures of spiders from a new burrow in an unfamiliar area with infrared cameras and analysed their paths using computer tracking techniques. We found that L. arenicola performs distinct stereotyped movement patterns during the first part of their departures in an unfamiliar area and that they seem to learn the appearance of their home during these movement patterns. We conclude that the spiders perform learning walks and this strongly suggests that L. arenicola uses a visual memory of the burrow location when homing.  相似文献   

8.
How fish find their original habitat and natal home remains an unsolved riddle of animal behaviour. Despite extensive efforts to study the homing behaviour of diadromous fish, relatively little attention has been paid to that of non-diadromous marine fish. Among these, most rockfish of the genus Sebastes exhibit homing ability and/or a strong fidelity to their habitats. However, how these rockfish detect the homeward direction has not been clarified. The goal of the present research was to investigate the sensory mechanisms involved in the homing behaviour of the black rockfish Sebastes inermis, using acoustic telemetry. Vision-blocked or olfactory-ablated rockfish were released in natural waters and their homing behaviours compared with those of intact or control individuals. Blind rockfish showed homing from both inside and outside their habitat. The time taken by blind fish to reach their home habitat was not significantly different from that of the control fish. In contrast, most olfactory-ablated fish did not successfully reach their original habitat. Our results indicate that black rockfish predominantly use the olfactory sense in their homing behaviour.  相似文献   

9.
Brieftauben     
Homing pigeons Homing pigeons are well known for their excellent homing abilities which allow them to return to their lofts from unknown releasing sites more than hundreds of kilometres away. Several orientation mechanisms – sun compass, earth's magnetic field, olfactory cues, visual cues – are known to be involved in homing performance as well as parameters such as motivation and experience. New technology give an insight in their homing behaviour and track preferences and it is shown that homing pigeons physiology and neurobiology seem to be functionally adapted to homing. Pigeons races are still common and it is shown how the pigeon breeder tries to maximize the success of his pigeons.  相似文献   

10.
In complex environments, behavioural plasticity depends on the ability of an animal to integrate numerous sensory stimuli. The multidimensionality of factors interacting to shape plastic behaviour means it is difficult for both organisms and researchers to predict what constitutes an adaptive response to a given set of conditions. Although researchers may be able to map the fitness pay-offs of different behavioural strategies in changing environments, there is no guarantee that the study species will be able to perceive these pay-offs. We thus risk a disconnect between our own predictions about adaptive behaviour and what is behaviourally achievable given the umwelt of the animal being studied. This may lead to erroneous conclusions about maladaptive behaviour in circumstances when the behaviour exhibited is the most adaptive possible given sensory limitations. With advances in the computational resources available to behavioural ecologists, we can now measure vast numbers of interactions among behaviours and environments to create adaptive behavioural surfaces. These surfaces have massive heuristic, predictive and analytical potential in understanding adaptive animal behaviour, but researchers using them are destined to fail if they ignore the sensory ecology of the species they study. Here, we advocate the continued use of these approaches while directly linking them to perceptual space to ensure that the topology of the generated adaptive landscape matches the perceptual reality of the animal it intends to study. Doing so will allow predictive models of animal behaviour to reflect the reality faced by the agents on adaptive surfaces, vastly improving our ability to determine what constitutes an adaptive response for the animal in question.  相似文献   

11.
Marine turtles use geomagnetic cues during open-sea homing   总被引:1,自引:0,他引:1  
Marine turtles are renowned long-distance navigators, able to reach remote targets in the oceanic environment; yet the sensory cues and navigational mechanisms they employ remain unclear [1, 3]. Recent arena experiments indicated an involvement of magnetic cues in juvenile turtles' homing ability after simulated displacements [4, 5], but the actual role of geomagnetic information in guiding turtles navigating in their natural environment has remained beyond the reach of experimental investigations. In the present experiment, twenty satellite-tracked green turtles (Chelonia mydas) were transported to four open-sea release sites 100-120 km from their nesting beach on Mayotte island in the Mozambique Channel; 13 of them had magnets attached to their head either during the outward journey or during the homing trip. All but one turtle safely returned to Mayotte to complete their egg-laying cycle, albeit with indirect routes, and showed a general inability to take into account the deflecting action of ocean currents as estimated through remote-sensing oceanographic measurements [7]. Magnetically treated turtles displayed a significant lengthening of their homing paths with respect to controls, either when treated during transportation or when treated during homing. These findings represent the first field evidence for the involvement of geomagnetic cues in sea-turtle navigation.  相似文献   

12.
For almost a century, biologists have used trait scaling relationships(bi-variate scatter-plots of trait size versus body size) tocharacterize phenotypic variation within populations, and tocompare animal shape across populations or species. Scalingrelationships are a popular metric because they have long beenthought to reflect underlying patterns of trait growth and development.However, the physiological mechanisms generating animal scalingare not well understood, and it is not yet clear how scalingrelationships evolve. Here we review recent advances in developmentalbiology, genetics, and physiology as they pertain to the controlof growth of adult body parts in insects. We summarize fourmechanisms known to influence either the rate or the durationof cell proliferation within developing structures, and suggesthow mutations in these mechanisms could affect the relativesizes of adult body parts. By reviewing what is known aboutthese four processes, and illustrating how they may contributeto patterns of trait scaling, we reveal genetic mechanisms likelyto be involved in the evolution of insect form.  相似文献   

13.
To determine the generality of developmental mechanisms involved in the construction of the insect nervous system, the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria was characterized at the level of identified neurons and nerve branches and then compared to that previously described from the fly Drosophila melanogaster. For this, immunocytochemistry using a neuron-specific antibody was carried out on staged grasshopper embryos. Our results show that initially a simple peripheral nerve scaffolding is established in each segment of the animal. This scaffolding consists of a pair of intersegmental nerves that are formed by identified afferent and efferent pioneer neurons and a pair of segmental nerves that are formed by afferent pioneers situated in limb buds. Subsequently, identified sets of sensory neurons differentiate in a stereotyped spatiotemporal pattern in dorsal, lateral and ventral clusters in each segment and project their axons onto these nerves. Although segment-specific differences exist, serial homologs of the developing nerves and sensory neurons can be identified. A comparison of these results with those obtained from Drosophila shows that virtually the same pattern of peripheral nerves and sensory structures is formed in both species. This indicates that the construction of the peripheral nervous system in extremely divergent modern insects relies on conserved developmental mechanisms that evolved in ancestral insects over 300 million years ago.  相似文献   

14.
In addition to the ancestors of insects, representatives of five lineages of crustaceans have colonized land. Whereas insects have evolved sensilla that are specialized to allow the detection of airborne odors and have evolved olfactory sensory neurons that recognize specific airborne ligands, there is so far little evidence for aerial olfaction in terrestrial crustaceans. Here we ask the question whether terrestrial Isopoda have evolved the neuronal substrate for the problem of detecting far-field airborne chemicals. We show that conquest of land of Isopoda has been accompanied by a radical diminution of their first antennae and a concomitant loss of their deutocerebral olfactory lobes and olfactory computational networks. In terrestrial isopods, but not their marine cousins, tritocerebral neuropils serving the second antenna have evolved radical modifications. These include a complete loss of the malacostracan pattern of somatotopic representation, the evolution in some species of amorphous lobes and in others lobes equipped with microglomeruli, and yet in others the evolution of partitioned neuropils that suggest modality-specific segregation of second antenna inputs. Evidence suggests that Isopoda have evolved, and are in the process of evolving, several novel solutions to chemical perception on land and in air.  相似文献   

15.
Mesenchymal stromal cells(MSCs) are currently being investigated for use in a wide variety of clinical applications. For most of these applications, systemic delivery of the cells is preferred. However, this requires the homing and migration of MSCs to a target tissue. Although MSC hominghas been described, this process does not appear to be highly efficacious because only a few cells reach the target tissue and remain there after systemic administration. This has been ascribed to low expression levels of homing molecules, the loss of expression of such molecules during expansion, and the heterogeneity of MSCs in cultures and MSC culture protocols. To overcome these limitations, different methods to improve the homing capacity of MSCs have been examined. Here, we review the current understanding of MSC homing, with a particular focus on homing to bone marrow. In addition, we summarize the strategies that have been developed to improve this process. A better understanding of MSC biology, MSC migration and homing mechanisms will allow us to prepare MSCs with optimal homing capacities. The efficacy of therapeutic applications is dependent on efficient delivery of the cells and can, therefore, only benefit from better insights into the homing mechanisms.  相似文献   

16.
Synopsis Existence of home site fidelity and homing ability was established for Pseudotropheus aurora. Territorial males stayed up to 1 1/2 years within the same territories. Females showed long-term fidelity to certain places. Transplantation experiments revealed that P. aurora males home over distances of up to at least 2500 m but would not cross deep water. The territorial males of five other sympartic species returned from 1000 m to their territories. The mechanisms and functions of homing in cichlids are discussed.  相似文献   

17.
Many physiological functions of insects show a rhythmic change to adapt to daily environmental cycles. These rhythms are controlled by a multi-clock system. A principal clock located in the brain usually organizes the overall behavioral rhythms, so that it is called the "central clock". However, the rhythms observed in a variety of peripheral tissues are often driven by clocks that reside in those tissues. Such autonomous rhythms can be found in sensory organs, digestive and reproductive systems. Using Drosophila melanogaster as a model organism, researchers have revealed that the peripheral clocks are self-sustained oscillators with a molecular machinery slightly different from that of the central clock. However, individual clocks normally run in harmony with each other to keep a coordinated temporal structure within an animal. How can this be achieved? What is the molecular mechanism underlying the oscillation? Also how are the peripheral clocks entrained by light-dark cycles? There are still many questions remaining in this research field. In the last several years, molecular techniques have become available in non-model insects so that the molecular oscillatory mechanisms are comparatively investigated among different insects, which give us more hints to understand the essential regulatory mechanism of the multi-oscillatory system across insects and other arthropods. Here we review current knowledge on arthropod's peripheral clocks and discuss their physiological roles and molecular mechanisms.  相似文献   

18.
The development of the nervous system in insects, as in most other higher animals, is characterized by the high degree of precision and specificity with which synaptic connectivity is established. Multiple molecular mechanisms are involved in this process. In insects a number of experimental methods and model systems can be used to analyze these mechanisms, and the modular organization of the insect nervous system facilitates this analysis considerably. Well characterized molecular elements involved in axogenesis are the cell-cell adhesion molecules that underlie selective fasciculation. These are cell-surface molecules that are expressed in a regional and dynamic manner on developing axon fascicles. Secreted molecules also appear to be involved in directing axonal navigation. Nonneuronal cells, such as glia, provide cellular and noncellular substrates that are important pathway cues for neuronal outgrowth. Once outgrowing processes reach their general target regions they make synapses with the appropriate postsynaptic cells. The molecular mechanisms that allow growth cones to recognize their correct target cells are essential for neuronal specificity and are being analyzed in neuromuscular and brain interneuron systems of insects. Candidate synaptic recognition molecules with remarkable and highly restricted expression patterns in the developing nervous system have recently been discovered.  相似文献   

19.
地下啮齿动物视觉系统的形态结构与机能进化   总被引:3,自引:0,他引:3  
感觉系统的适应进化机制一直是动物行为学研究的焦点。生活在特殊环境中的动物,其感觉系统在进化过程中表现出的显著差异更是引人注目。由于适应地下黑暗生活环境,地下啮齿动物感觉系统在各个组织水平都表现出进化和退化镶嵌的形态特征,其视觉系统表现得最为突出:视觉器官退化,有关图象分析结构、由视觉诱导产生行为反应的脑区及视觉投射严重退化,有关感受光周期的“非成像” 视觉通路结构高度发达。本文综述了地下啮齿动物视觉系统的结构、功能、进化与发育等方面的研究进展,旨在阐明地下啮齿动物视觉系统的特点,有助于开展地下啮齿动物视觉系统适应进化机制的研究。  相似文献   

20.
For an effective adaptive immune response to occur, dendritic cells (DC), which are the most efficient antigen-presenting cells, must be able to sample the peripheral microenvironment and migrate towards secondary lymphoid organs (SLO) where they activate naive lymphocytes. Upon activation, lymphocytes proliferate and acquire the capacity to migrate to extralymphoid compartments. Although the molecular mechanisms controlling lymphocyte homing to lymphoid and to some extralymphoid tissues have been described in significant detail, it is much less clear how DC migration is controlled. Do DC obey similar adhesion cues that lymphocytes do, or do they have their own "zip codes"? This is relevant from a therapeutic standpoint because effective DC-based vaccines should be able to reach the appropriate tissues in order to generate protective immune responses. Here, we discuss some of the mechanisms used by DC to reach their target tissues. Once DC arrive at their destination, they are exposed to the tissue microenvironment, which likely modulates their functional properties in a tissue-specific fashion. This local DC "education" is probably responsible among other things; for the acquisition of tissue-specific homing imprinting capacity by which DC instruct lymphocytes to migrate to specific tissues. Finally, we discuss how dysregulation of these signals may play a key role in disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号