首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Amiloride inhibits activation of the Na(+)-H+ exchanger (NHE), a critical step in smooth muscle cell (SMC) growth. While amiloride treatment reduces SMC proliferation and migration, as well as experimental lesion formation, these effects are not exclusively due to NHE inhibition and remain incompletely understood. The purpose of this study was to examine the mechanisms involved in amiloride-induced attenuation of SMC proliferation and migration, looking specifically at the potential role of apoptosis and urokinase plasminogen activator (uPA) activity in these processes. Rabbit SMCs in tissue culture were exposed to 10-80 microM of the amiloride analogue ethyl isopropyl amiloride (EIPA). Compared with controls, EIPA reduced DNA synthesis, cell number, and mitochondrial respiration, but without toxic effects on quiescent or proliferating cells. In a Boyden chamber assay, EIPA reduced uPA-induced SMC migration. Moreover, in a SMC scratch assay EIPA treatment resulted in a 66% reduction in the number of repopulating cells, a 92% decrease in the number of proliferating cells, and a 37-fold increase in the number of apoptotic cells. SMC apoptosis was frequently localized to the scratch edges, where cell proliferation and bcl-2 expression were absent. Finally, uPA enzymatic activity in the cell culture media was lower for EIPA-treated versus control SMCs. Therefore, EIPA inhibits both SMC proliferation and migration by inducing apoptosis and antagonizing uPA activity, respectively, and requires further study as an agent for reducing vascular lesion formation.  相似文献   

3.
A high-fat diet containing polyunsaturated fatty acids (PUFA: n-3 or n-6) given for 4 wk to 5-wk-old male Wistar rats induced a clear hyperglycemia (10.4 +/- 0.001 mmol/l for n-6 rats and 10.1 +/- 0.001 for n-3 rats) and hyperinsulinemia (6.6 +/- 0.8 ng/ml for n-6 rats and 6.4 +/- 1.3 for n-3 rats), signs of insulin resistance. In liver, both diets (n-3 and n-6) significantly reduced insulin receptor (IR) number, IR and IR substrate (IRS)-1 tyrosine phosphorylation, and phosphatidylinositol (PI) 3'-kinase activity. In contrast, in leg muscle, IR density, as determined by Western blotting, was not affected, whereas IR and IRS-1 tyrosine phosphorylation in response to insulin treatment was restored in animals fed with n-3 PUFA to normal; in n-6 PUFA, the phosphorylation was depressed, as evidenced by Western blot analysis using specific antibodies. In addition, PI 3'-kinase activity and GLUT-4 content in muscle were maintained at normal levels in rats fed with n-3 PUFA compared with rats fed a normal diet. In rats fed with n-6 PUFA, both PI 3'-kinase activity and GLUT-4 content were reduced. Furthermore, in adipose tissue and using RT-PCR, we show that both n-3 and n-6 PUFA led to slight or strong reductions in p85 expression, respectively, whereas GLUT-4 and leptin expression was depressed in n-6 rats. The expression was not affected in n-3 rats compared with control rats. In conclusion, a high-fat diet enriched in n-3 fatty acids maintained IR, IRS-1 tyrosine phosphorylation, and PI 3'-kinase activity and total GLUT-44 content in muscle but not in liver. A high-fat diet (n-3) partially altered the expression of p85 but not that of GLUT-4 and leptin mRNAs in adipose tissue.  相似文献   

4.
In order to define the relative contribution of the proteolytic domain and the receptor-binding domain of urokinase plasminogen activator (uPA) toward its mitogenic properties we studied the effects of different uPA isoforms on migration and proliferation of human aortic smooth muscle cells (hSMC). The isoforms tested included native human glycosylated uPA, and two recombinant uPA forms, namely a recombinant uPA with wild type structure (r-uPA), and a uPA-mutant in which the first 24 N-terminal amino acid residues of the receptor binding domain were replaced by 13 foreign amino acid residues (r-uPAmut). Cell migration was evaluated using a micro-Boyden chamber assay, and cell proliferation assessed by measurement of [3H]-thymidine incorporation into DNA. Competition binding studies on hSMC using 125I-r-uPA as ligand demonstrated that r-uPA and r-uPAmut exhibited equivalent displacement profiles. However, migration of hSMC was promoted by r-uPA and not by r-uPAmut. r-uPA-induced migration occurred at concentrations (half-maximally effective concentration of 2 nM) approximating the Kd for uPA-uPAR binding (1 nM). r-uPA-induced migration was not affected by the plasmin inhibitor aprotinin. In contrast to their differential chemotactic properties, uPA, r-uPA and r-uPAmut, which possess similar proteolytic activities, all stimulated [3H]-thymidine incorporation in hSMC. Since the [3H]-thymidine incorporation response to each isoform occurred at concentrations (> 50 nM) much higher than necessary for uPAR saturation by ligand (1 nM), this mitogenic response may be independent of binding to uPAR. [3H]-thymidine incorporation responses to r-uPA and -uPAmut were sensitive to the plasmin inhibitor aprotinin, and uPA stimulated DNA synthesis was inhibited by plasminogen activator inhibitor. We conclude that hSMC migration in response to uPA depends upon on its binding to uPAR, whereas uPA-stimulated DNA synthesis in these cells requires proteolysis and plasmin generation.  相似文献   

5.
Long-chain polyunsaturated fatty acids (LCPUFAs) and their metabolites are considered essential factors to support bone and joint health. The n-6 PUFAs suppress the osteoblasts differentiation via increasing peroxisome proliferator-activated receptor gamma (PPARγ) expression and promoting adipogenesis while n-3 PUFAs promote osteoblastogenesis by down-regulating PPARγ and enhancing osteoblastic activity. Arachidonic acid (AA) and its metabolite prostaglandin E2 (PGE2) are key regulators of osteoclast differentiation via induction of the receptor activator of nuclear factor kappa-Β ligand (RANKL) pathway. Marine-derived n-3 LCPUFAs have been shown to inhibit osteoclastogenesis by decreasing the osteoprotegerin (OPG)/RANKL signalling pathway mediated by a reduction of pro-inflammatory PGE2 derived from AA. Omega-3 PUFAs reduce the expression of cartilage degrading enzyme matrix metalloproteinase-13 (MMP-13) and a disintegrin and metalloprotease with thrombospondin motifs-5 (ADAMTS-5) protein, oxidative stress and thereby apoptosis via nuclear factor kappa-betta (NF-kβ) and inducible nitric oxide synthase (iNOS) pathways. In this review, a diverse range of important effects of LCPUFAs on bone cells and chondrocyte was highlighted through different mechanisms of action established by cell cultures and animal studies. This review allows a better understanding of the possible role of LCPUFAs in bone and chondrocyte metabolism as potential therapeutics in combating the pathological complications such as osteoporosis and osteoarthritis.  相似文献   

6.
Obesity is a growing problem that threatens the health and welfare of a large proportion of the human population. The n-3 polyunsaturated fatty acids (PUFA) are dietary factors that have potential to facilitate reduction in body fat deposition and improve obesity-induced metabolic syndromes. The n-3 PUFA up-regulate several inflammation molecules including serum amyloid A (SAA), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in hepatocytes and adipocytes. Actions of these inflammation mediators resemble those of n-3 PUFA in the modulation of many lipid metabolism-related genes. For instance, they both suppress expressions of perilipin, sterol regulatory element binding protein-1 (SREBP-1) and lipoprotein lipase (LPL) to induce lipolysis and reduce lipogenesis. This review will connect these direct or indirect regulating pathways between n-3 PUFA, inflammation mediators, lipid metabolism-related genes and body fat reduction. A thorough knowledge of these regulatory mechanisms will lead us to better utilization of n-3 PUFA to reduce lipid deposition in the liver and other tissues, therefore presenting an opportunity for developing new strategies to treat obesity.  相似文献   

7.
8.
9.
N-3 polyunsaturated fatty acids (PUFAs) from fish oil exert their functional effects by targeting multiple mechanisms. One mechanism to emerge in the past decade is the ability of n-3 PUFA acyl chains to perturb the molecular organization of plasma membrane sphingolipid/cholesterol-enriched lipid raft domains. These domains are nanometer-scale assemblies that coalesce to compartmentalize select proteins for optimal function. Here we review recent evidence on how n-3 PUFAs modify lipid rafts from biophysical and biochemical experiments from several different model systems. A central theme emerges from these studies. N-3 PUFA acyl chains display tremendous conformational flexibility and a low affinity for cholesterol and saturated acyl chains. This unique flexibility of n-3 PUFA acyl chains impacts the organization of inner and outer leaflet lipid rafts by disrupting acyl chain packing and molecular order within rafts. Ultimately, the disruption in raft organization has consequences for protein clustering and thereby signaling. Overall, elucidating the complex mechanisms by which n-3 PUFA acyl chains reorganize membrane architecture will enhance the translation of these fatty acids into the clinic for treating several diseases.  相似文献   

10.
Free fatty acids (FFAs) are proposed to play a pathogenic role in both peripheral and hepatic insulin resistance. We have examined the effect of saturated FFA on insulin signalling (100 nM) in two hepatocyte cell lines. Fao hepatoma cells were treated with physiological concentrations of sodium palmitate (0.25 mM) (16:0) for 0.25-48 h. Palmitate decreased insulin receptor (IR) protein and mRNA expression in a dose- and time-dependent manner (35% decrease at 12 h). Palmitate also reduced insulin-stimulated IR and IRS-2 tyrosine phosphorylation, IRS-2-associated PI 3-kinase activity, and phosphorylation of Akt, p70 S6 kinase, GSK-3 and FOXO1A. Palmitate also inhibited insulin action in hepatocytes derived from wild-type IR (+/+) mice, but was ineffective in IR-deficient (-/-) cells. The effects of palmitate were reversed by triacsin C, an inhibitor of fatty acyl CoA synthases, indicating that palmitoyl CoA ester formation is critical. Neither the non-metabolized bromopalmitate alone nor the medium chain fatty acid octanoate (8:0) produced similar effects. However, the CPT-1 inhibitor (+/-)-etomoxir and bromopalmitate (in molar excess) reversed the effects of palmitate. Thus, the inhibition of insulin signalling by palmitate in hepatoma cells is dependent upon oxidation of fatty acyl-CoA species and requires intact insulin receptor expression.  相似文献   

11.
Brown/beige fat plays a crucial role in maintaining energy homeostasis through non-shivering thermogenesis in response to cold temperature and excess nutrition (adaptive thermogenesis). Although numerous molecular and genetic regulators have been identified, relatively little information is available regarding thermogenic dietary molecules. Recently, a growing body of evidence suggests that high consumption of n-3 polyunsaturated fatty acids (PUFA) or activation of GPR120, a membrane receptor of n-3 PUFA, stimulate adaptive thermogenesis. In this review, we summarize the emerging evidence that n-3 PUFA promote brown/beige fat formation and highlight the potential mechanisms whereby n-3 PUFA require GPR120 as a signaling platform or act independently. Human clinical trials are revisited in the context of energy expenditure. Additionally, we explore some future perspective that n-3 PUFA intake might be a useful strategy to boost or sustain metabolic activities of brown/beige fat at different lifecycle stages of pregnancy and senescence. Given that a high ratio of n-6/n-3 PUFA intake is associated with the development of obesity and type 2 diabetes, understanding the impact of n-6/n-3 ratio on energy expenditure and adaptive thermogenesis will inform the implementation of a novel nutritional strategy for preventing obesity.  相似文献   

12.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

13.
Ginsenoside 20(R/S)‐Rg3, as a natural peroxisome proliferator‐activated receptor gamma (PPARγ) ligand, has been reported to exhibit differential biological effects. It is of great interest to understand the stereochemical selectivity of 20(R/S)‐Rg3 and explore whether differential PPARγ activation by Rg3 stereoisomers, if it exists, could lead to differential physiological outcome and therapeutic effects in diabetic atherosclerosis. Here, we investigated the binding modes of 20(R/S)‐Rg3 stereoisomers in the PPARγ ligand‐binding domain (PPARγ‐LBD) using molecular modelling and their effects on smooth muscle cell proliferation and migration induced by advanced glycation end products (AGEs). The results revealed that 20(S)‐Rg3 exhibited stronger antiproliferative and antimigratory effects due to stronger PPARγ activation. To validate the in vitro results, we used a mice model with diabetic atherosclerosis and obtained that 20(S)‐Rg3 markedly reduced the plaque size secondary to reducing the proliferation and migration of VSMCs, while the plaques were more stable due to improvements in other plaque compositions. The results shed light on the structural difference between Rg3 stereoisomers that can lead to significant differential physiological outcome, and the (S)‐isomer seems to be the more potent isomer to be developed as a promising drug for diabetic atherosclerosis.  相似文献   

14.
By applying a methodology, a series of benzothiazole–pyrrole based conjugates (4ar) were synthesized and evaluated for their antiproliferative activity. Compounds such as 4a, 4c, 4e, 4gj, 4m, 4n, 4o and 4r exhibited significant cytotoxic effect in the MCF-7 cell line. Cell cycle effects were examined for these conjugates at 2 μM as well as 4 μM concentrations and FACS analysis show an increase of G2/M phase cells with concomitant decrease of G1 phase cells thereby indicating G2/M cell cycle arrest by them. Interestingly 4o and 4r are effective in causing apoptosis in MCF-7 cells. Moreover, 4o showed down regulation of oncogenic expression of Ras and its downstream effector molecules such as MEK1, ERK1/2, p38 MAPK and VEGF. The apoptotic aspect of this conjugate is further evidenced by increased expression of caspase-9 in MCF-7 cells. Hence these small molecules have the potential to control both the cell proliferation as well as the invasion process in the highly malignant breast cancers.  相似文献   

15.
Pancreatic ductal adenocarcinoma (PDAC) expresses high levels of urokinase-type plasminogen activator (uPA), its receptor (uPAR) and plasminogen activator inhibitor (PAI)-2, which may play an important role in PDAC progression. The overexpression of uPAR predicted short survival in PDAC patients. In this study, two different PDAC cell lines were used to examine the effect of small interfering (si) RNAs to uPAR, uPA and PAI-2 on proliferation, apoptosis, migration and MAP kinase activation. In both PDAC cell lines, siRNA to uPAR significantly inhibited cell proliferation and migration and stimulated apoptosis, to a greater extent than uPA siRNA. When either PDAC cell line was treated with uPAR siRNA, the level of phosphorylated ERK (p-ERK) decreased substantially, whereas phosphorylated p38 (p-p38) increased when compared to non-silencing control, uPA siRNA or PAI-2 siRNA treatment. This resulted in enhancement of the p-p38/p-ERK ratio which favors cancer cell arrest. Interestingly, uPAR protein expression was suppressed by p-ERK inhibition and stimulated with p-p38 inhibition, suggesting the presence of a positive feedback loop between uPAR and ERK. In summary, our data indicate that, of the uPA system, uPAR exerts the strongest effects on PDAC cells, by acting through the ERK signaling pathway via a positive feedback loop. Disruption of this loop with uPAR siRNA or inhibitor of p-ERK, inhibits PDAC proliferation and migration and promotes apoptosis. These findings suggest that uPAR strongly contributes to PDAC progression and may be considered as a potential anti-pancreatic cancer target.  相似文献   

16.
Increased expression of plasminogen activator inhibitor type 1 (PAI-1) is associated with decreased apoptosis of neoplastic cells. We sought to determine whether PAI-1 alters apoptosis in vascular smooth muscle cells (VSMC) and, if so, by what mechanisms. A twofold increase in the expression of PAI-1 was induced in VSMC from transgenic mice with the use of the SM-22alpha gene promoter (SM22-PAI+). Cultured VSMC from SM22-PAI+ mice were more resistant to apoptosis induced by tumor necrosis factor plus phorbol myristate acetate or palmitic acid compared with VSMC from negative control littermates. Both wild type (WT) and a stable active mutant form of PAI-1 (Active) inhibited caspase-3 amidolytic activity in cell lysates while a serpin-defective mutant (Mut) PAI-1 did not. Similarly, both WT and Active PAI-1 decreased amidolytic activity of purified caspase-3, whereas Mut PAI-1 did not. WT but not Mut PAI-1 decreased the cleavage of poly-[ADP-ribose]-polymerase (PARP), the physiological substrate of caspase-3. Noncovalent physical interaction between caspase-3 and PAI-1 was demonstrable with the use of both qualitative and quantitative in vitro binding assays. High affinity binding was eliminated by mutations that block PAI-1 serpin activity. Accordingly, attenuated apoptosis resulting from elevated expression of PAI-1 by VSMC may be attributable, at least in part, to reversible inhibition of caspase-3 by active PAI-1.  相似文献   

17.
18.
The effects of arachidonic acid (AA) and other long-chain fatty acids on voltage-dependent Ca channel current (ICa) were investigated, with the whole cell patch clamp method, in longitudinal smooth muscle cells of rabbit ileum. 10-30 microM AA caused a gradual depression of ICa. The inhibitory effect of AA was not prevented by indomethacin (10 microM) (an inhibitor of cyclooxygenase) or nordihydroguaiaretic acid (10 microM) (an inhibitor of lipoxygenase). 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H7; 25-50 microM) or staurosporine (2 microM) (inhibitors of protein kinase C) did not block the AA-induced inhibition of ICa, and application of phorbol ester (a protein kinase C activator) (phorbol-12,13-dibutyrate, 0.2 microM) did not mimic the AA action. Some other cis-unsaturated fatty acids (palmitoleic, linoleic, and oleic acids) were also found to depress ICa, while a trans-unsaturated fatty acid (linolelaidic acid) and saturated fatty acids (capric, lauric, myristic, and palmitic acids) had no inhibitory effects on ICa. Myristic acid consistently increased the amplitude of ICa at negative membrane potentials. The present results suggest the possible role of AA, and perhaps other fatty acids, in the physiological and/or pathological modulation of ICa in smooth muscle.  相似文献   

19.
“Lipid raft aging” in nerve cells represents an early event in the development of aging-related neurodegenerative diseases, such as Alzheimer's disease. Lipid rafts are key elements in synaptic plasticity, and their modification with aging alters interactions and distribution of signaling molecules, such as glutamate receptors and ion channels involved in memory formation, eventually leading to cognitive decline. In the present study, we have analyzed, in vivo, the effects of dietary supplementation of n-3 LCPUFA on the lipid structure, membrane microviscosity, domain organization, and partitioning of ionotropic and metabotropic glutamate receptors in hippocampal lipid raffs in female mice. The results revealed several lipid signatures of “lipid rafts aging” in old mice fed control diets, consisting in depletion of n-3 LCPUFA, membrane unsaturation, along with increased levels of saturates, plasmalogens, and sterol esters, as well as altered lipid relevant indexes. These changes were paralleled by increased microviscosity and changes in the raft/non-raft (R/NR) distribution of AMPA-R and mGluR5. Administration of the n-3 LCPUFA diet caused the partial reversion of fatty acid alterations found in aged mice and returned membrane microviscosity to values found in young animals. Paralleling these findings, lipid rafts accumulated mGluR5, NMDA-R, and ASIC2, and increased their R/NR proportions, which collectively indicate changes in synaptic plasticity. Unexpectedly, this diet also modified the lipidome and dimension of lipid rafts, as well as the domain redistribution of glutamate receptors and acid-sensing ion channels involved in hippocampal synaptic plasticity, likely modulating functionality of lipid rafts in memory formation and reluctance to age-associated cognitive decline.  相似文献   

20.
We have recently reported that osteopontin (OPN) induces nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 activation through IkappaBalpha/IKK signaling pathways and that curcumin (diferulolylmethane) down-regulates these pathways (Philip, S., and Kundu, G. C. (2003) J. Biol. Chem. 278, 14487-14497). However, the molecular mechanism by which upstream kinases regulate the OPN-induced NFkappaB activation and urokinase type plasminogen activator (uPA) secretion in human breast cancer cells is not well defined. Here we report that OPN induces the phosphatidylinositol 3'-kinase (PI 3'-kinase) activity and phosphorylation of Akt in highly invasive MDA-MB-231 and low invasive MCF-7 cells. The OPN-induced Akt phosphorylation was inhibited when cells were transfected with a dominant negative mutant of the p85 domain of PI 3-kinase (Deltap85) and enhanced when cells were transfected with an activated form of PI 3-kinase (p110CAAX), indicating that PI 3'-kinase is involved in Akt phosphorylation. OPN enhances the interaction between IkappaBalpha kinase (IKK) and phosphorylated Akt. OPN also induces NFkappaB activation through phosphorylation and degradation of IkappaBalpha by inducing the IKK activity. However, both pharmacological (wortmannin and LY294002) and genetic (Deltap85) inhibitors of PI 3'-kinase inhibited OPN-induced Akt phosphorylation, IKK activity, and NFkappaB activation through phosphorylation and degradation of IkappaBalpha. OPN also enhances uPA secretion, cell motility, and extracellular matrix invasion. Furthermore, cells transfected with Deltap85 or the super-repressor form of IkappaBalpha suppressed the OPN-induced uPA secretion and cell motility, whereas cells transfected with p110CAAX enhanced these effects. Pretreatment of cells with PI 3-kinase inhibitors or NFkappaB inhibitory peptide (SN-50) reduced the OPN-induced uPA secretion, cell motility, and invasion. To our knowledge, this is first report that OPN induces NFkappaB activity and uPA secretion by activating PI 3'-kinase/Akt/IKK-mediated signaling pathways and further demonstrates a functional molecular link between OPN-induced PI 3'-kinase-dependent Akt phosphorylation and NFkappaB-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号