首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Fewer than 1% of vertebrate species are hermaphroditic, and essentially all of these are fishes. Four types of hermaphroditism are known in fishes: simultaneous (or synchronous) hermaphroditism (SH), protandry (male-to-female sex change; PA), protogyny (female-to-male sex change; PG), and bidirectional sex change (BS or reversed sex change in protogynous species). Here we present an annotated list of hermaphroditic fish species from a comprehensive review and careful re-examination of all primary literature. We confirmed functional hermaphroditism in more than 450 species in 41 families of 17 teleost orders. PG is the most abundant type (305 species of 20 families), and the others are much less abundant, BS in 66 species of seven families, SH in 55 species of 13 families, and PA in 54 species of 14 families. The recently proposed phylogenetic tree indicated that SH and PA have evolved several times in not-closely related lineages of Teleostei but that PG (and BS) has evolved only in four lineages of Percomorpha. Examination of the relation between hermaphroditism type and mating system in each species mostly supported the size-advantage model that predicts the evolution of sequential hermaphroditism. Finally, intraspecific variations in sexual pattern are discussed in relation to population density, which may cause variation in mating system.

  相似文献   

2.
Impatiens capensis displays a mixed mating system in which individual out-crossing rate is expected to increase with light and resource availability. We investigated the amount and spatial distribution of polygenic variation for 15 morphological traits within and among six natural populations of I. capensis growing in three distinct light habitats (shaded, mixed, full sun). We grew individuals from each population in uniform greenhouse conditions and detected significant genetic variation among families within populations for all the quantitative traits examined. However, only the features related to the vegetative characteristics of seedlings and sexually mature plants show also differentiation at the population level. Surprisingly, even though light availability is likely to be the most important factor affecting the mating system of I. capensis, we find that: (1) trait means of individuals from similar light environments are not more similar than those from different light environments; (2) partitioning of polygenic variance within and among families differs both among populations from the same light habitat and among characters within each population. If natural selection is maintaining such variation, it must operate primarily through heterogeneous selection pressure within, rather than between, populations.  相似文献   

3.
Reproductive apparatus and mating system in two tropical goby species   总被引:7,自引:0,他引:7  
Field observations demonstrated that two gobiid species Amblygobius nocturnus and Valenciennea muralis have a monogamous mating system. Histological analyses showed an extreme reduction of male accessory organs relative to other gobiids in A. nocturnus , and their complete absence in V. muralis.  相似文献   

4.
Summary The mating system of Hydrophyllum appendiculatum (Hydrophyllaceae), a protandrous, self-compatible, monocarpic plant was examined using progeny arrays assayed at three polymorphic allozyme loci. We were particularly interested in the effect of ecological factors on spatial and temporal variation in outcrossing rates. Multilocus estimates of outcrossing rates in three populations ranged from 0.62–0.81 indicating that the majority of seeds are produced via outcrossing. The population estimates did not differ significantly from each other indicating that there is little or no spatial variation in the mating system of this species. The estimates were, however, significantly less than unity, which demonstrates that although mainly outcrossing, a significant fraction of seeds are produced by selfing. Estimates suggested that biparental inbreeding occurred, although it was statistically significant in only one population. Individuals of H. appendiculatum may remain in anthesis 3–4 weeks and produce up to 30 inflorescences. As a result, the possibility exists for the mating system to vary through the flowering season. Although the mean outcrossing rate was highest in the middle of the flowering phenology than at the beginning or end, there was no evidence for statistically significant temporal heterogeneity. We were also interested in determining if the size of the floral display (number of inflorescences produced by a plant) influenced the outcrossing rate. The results obtained by two different statistical analyses were contradictory; there was a significant positive correlation between size of floral display and outcrossing rate, but the outcrossing rates of large plants (\s> 8 inflorescences) did not differ significantly from small plants (> 8 inflorescences).  相似文献   

5.
Mating systems are among the most labile characteristics of flowering plants, with transitions frequently occurring among populations or in association with speciation. The frequency of mating system shifts has made it difficult to reconstruct historical evolutionary dynamics unless transitions have been very recent. Here, we examine molecular and phenotypic variation to determine the polarity, timescale, and causes of a transition between outcrossing and self-fertilization in sister subspecies of Clarkia xantiana. Phylogenetic analyses and coalescent-based estimates of the time to most recent common ancestor indicated that outcrossing is ancestral to selfing and that there has been a single origin of selfing. Estimates of divergence time between outcrossing and selfing subspecies were 10,000 (95% CI [credible interval]: 3169-66,889) and 65,000 years ago (95% CI: 33,035-151,448) based on two different methods, suggesting a recent and rapid evolutionary transition. Population genetic data indicated that the transition to selfing was associated with a 80% reduction in molecular diversity, which is much greater than the 50% reduction expected under a shift from obligate outcrossing to obligate self-fertilization alone. Our data also suggest that this severe loss of diversity was caused by colonization bottlenecks. Together with previous studies, evidence for reproductive assurance in C. xantiana now connects variation in plant-pollinator interactions in the field to phenotypic and molecular evolution.  相似文献   

6.
Speciation often involves the evolution of numerous prezygotic and postzygotic isolating barriers between divergent populations. Detailed knowledge of the strength and nature of those barriers provides insight into ecological and genetic factors that directly or indirectly influenced their origin, and may help predict whether they will be maintained in the face of sympatric hybridization and introgression. We estimated the magnitude of pre- and postzygotic barriers between naturally occurring sympatric populations of Mimulus guttatus and M. nasutus. Prezygotic barriers, including divergent flowering phenologies, differential pollen production, mating system isolation, and conspecific pollen precedence, act asymmetrically to completely prevent the formation of F(1) hybrids among seeds produced by M. guttatus (F(1)g), and reduce F(1) hybrid production among seeds produced by M. nasutus (F(1)n) to only about 1%. Postzygotic isolation is also asymmetric: in field experiments, F(1)g but not F(1)n hybrids had significantly reduced germination rates and survivorship compared to parental species. Both hybrid classes had flower, pollen, and seed production values within the range of parental values. Despite the moderate degree of F(1)g hybrid inviability, postzygotic isolation contributes very little to the total isolation between these species in the wild. We also found that F(1) hybrid flowering phenology overlapped more with M. guttatus than M. nasutus. These results, taken together, suggest greater potential for introgression from M. nasutus to M. guttatus than for the reverse direction. We also address problems with commonly used indices of isolation, discuss difficulties in calculating meaningful measures of reproductive isolation when barriers are asymmetric, and propose novel measures of prezygotic isolation that are consistent with postzygotic measures.  相似文献   

7.
8.
Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression.  相似文献   

9.
10.
Background and AimsSelf-fertilization is often associated with ecological traits corresponding to the ruderal strategy, and selfers are expected to be less competitive than outcrossers, either because of a colonization/competition trade-off or because of the deleterious genetic effects of selfing. Range expansion could reduce further competitive ability while polyploidy could mitigate the effects of selfing. If pollinators are not limited, individual fitness is thus expected to be higher in outcrossers than in selfers and, within selfers, in polyploids than in diploids. Although often proposed in the botanical literature and also suggested by meta-analyses, these predictions have not been directly tested yet.MethodsIn order to compare fitness and the competitive ability of four Capsella species with a different mating system and ploidy level, we combined two complementary experiments. First, we carried out an experiment outdoors in north-west Greece, i.e. within the range of the obligate outcrossing species, C. grandiflora, where several life history traits were measured under two different disturbance treatments, weeded plots vs. unweeded plots. To better control competition and to remove potential effects of local adaptation of the outcrosser, we also performed a similar competition experiment but under growth chamber conditions.Key ResultsIn the outdoor experiment, disturbance of the environment did not affect the phenotype in any of the four species. For most traits, the obligate outcrossing species performed better than all selfing species. In contrast, polyploids did not survive or reproduce better than diploids. Under controlled conditions, as in the field experiment, the outcrosser had a higher fitness than selfing species and was less affected by competition. Finally, contrary to the outdoor experiment where the two behaved identically, polyploid selfers were less affected by competition than diploid selfes.ConclusionsIn the Capsella genus, selfing induces lower fitness than outcrossing and can also reduce competitive ability. The effect of polyploidy is, however, unclear. These results highlight the possible roles of ecological context in the evolution of selfing species.  相似文献   

11.
Alasan, the exocellular polymeric emulsifier produced by Acinetobacter radioresistens KA53 was shown to bind to the surface of Sphingomonas paucimobilis EPA505 and Acinetobacter calcoaceticus RAG-1. The presence of alasan on the surface of S. paucimobilis EPA505 and A. calcoaceticus RAG-1 caused a decrease in their cell-surface hydrophobicities. Binding was proportional to the concentration of recipient cells and input alasan. At the highest concentration of A. calcoaceticus RAG-1 (4 × 109 ml−1) and alasan (20 µg ml−1) tested, 75% of the alasan was cell bound. Alasan binding was measured by the loss of emulsifying activity and alasan protein and polysaccharide from the aqueous phase after incubation of alasan with the recipient cells. In addition, alasan was visualized on the surface of the recipient cells by staining with anti-alasan antibodies and rhodamine-labelled secondary antibodies. Moreover, when the alasan-producing A. radioresistens KA53 was grown together with A. calcoaceticus RAG-1, alasan was released from the producing strain and became bound to the recipient RAG-1 cells, as demonstrated by fluorescence microscopy. This horizontal transfer of exopolymers from one bacterial species to another has significant implications in natural microbial communities, coaggregation and biofilms.  相似文献   

12.
With the advent of sophisticated genetic markers, studies on mating systems and reproductive apportionment have become increasingly feasible. In particular, paternity analyses in haplodiploid species have gained in power as hemizygous paternal genotypes allow maternal and paternal genotypes to be directly inferred from offspring genotypes. The computer program matesoft offers both newly developed algorithms for inferring maternal and paternal genotypes, and integrated estimation and correction procedures for calculating mating frequency statistics. Standard data are offspring genotypes of male‐haplodiploid organisms, including social Hymenoptera.  相似文献   

13.
The three species ecosystem with one prey and two predators is considered in an exactly solvable model with interactions of the Gompertz form. Oscillatory solutions implying coexistence of the three species are obtained for the case without the self-interaction term for the prey species, provided an equality relation between ratios of certain parameters holds. The same model enlarged by incorporating the self-interaction terms for the prey species also leads to coexistence but the above equality relation persists. If the model is further enlarged by adding self-interaction terms for all the species, coexistence can be shown to follow quite generally without the constraint of the earlier equality relation.  相似文献   

14.
Variation in mating system traits can have important consequences for plant populations by affecting reproductive assurance, the expression of inbreeding depression, and the colonization of and persistence in new or altered habitats. Environmental stressors, such as drought, have been hypothesized to induce higher rates of self-fertilization, yet this hypothesis has rarely been tested. Here we measure the response of two sister species of self-compatible annual herbs from contrasting habitats, Clarkia breweri and C. concinna, to an experimentally imposed greenhouse drought treatment. We find that the species differ in their baseline per-flower autogamy rates and the degree of spatial and temporal separation of male and female function within their flowers. Both species show a reduction in temporal separation of anthesis and stigma receptivity with the drought treatment. However, the species from the more mesic habitat, C. concinna, increases its low autogamy rate under drought conditions, whereas the species from the more xeric habitat, C. breweri, decreases its high autogamy rate under drought conditions. Neither species showed a response to drought in flower size or anther-stigma distance. Our results demonstrate that the induction of selfing under environmental stress cannot be assumed and that, in this case, the developmental timing of flower maturation is more plastic than floral morphology.  相似文献   

15.
The genus Pseudobranchiomma Jones, 1962 can be divided into three groups: (A) those with paired serrated flanges along all or most of the crown radioles, as in the type species P. emersoni Jones, 1962; (B) those with such flanges only on the distal parts of the radioles; (C) those with flanges reduced or absent (without serrations) as in two new species described here from Florida and Italy. Group C also contains Pseudobranchiomma longa (Kinberg, 1867), P. punctata (Treadwell, 1906) and P. minima (Nogueira & Knight-Jones, 2002). Lists of species (and their synonyms) in the other two groups are given, and scissiparity, thoracic length, chaetal arrangements and types of radiolar eyes are discussed.  相似文献   

16.
Summary A reticulate mating system is described which was designed by the late R.A. Fisher to permit the introduction of new genetic variability into an improved stock by immigration. Analysis of part of a long-term experiment to alter the degree of dominance of the mutant Sd in mice using the system demonstrates a rapid response. Its applicability to stocks of animals of economic value is considered.  相似文献   

17.
18.
19.
X-linked hydrocephalus is a variable condition caused by mutations in the gene encoding for L1CAM. This gene is located at Xq28. Clinically the spectrum ranges from males with lethal congenital hydrocephalus to mild/moderate mental retardation and spastic paraplegia. Few carrier females show minimal signs of the syndrome. Although most cases are familial, de novo situations have been reported. We report two new families with the syndrome and a L1 mutation. Family 1 has two patients and family 2 a single patient. Clinical diagnosis in all three affected boys was beyond doubt. Prenatal testing through chorionic villus biopsy is possible only with a demonstrated L1 mutation. In lethal sporadic cases neuropathology is very important in order to evaluate for features of the syndrome. We stress the importance of further clinical reports including data on neuropathology and DNA analysis in order to further understand the mechanisms involved in this disorder.  相似文献   

20.
Theory predicts that when males provision females with nuptial gifts that include nutrients, the degree of polyandry should be positively correlated with the size or quality of the gift. This is because larger and more nutritious gifts tend to increase female refractory period, reducing the chances the female will remate soon. This decreases the likelihood of sperm competiton and consequently increases the donor male fitness. Butterflies in the genus Heliconius Kluk (Lepidoptera: Nymphalidae: Heliconini) exhibit variable mating systems that include monandry and polyandry. In addition to protein in the spermatophore, males increase gift quality by providing females with cyanide, which may contribute to protection of the female or her eggs. We tested whether degree of polyandry and gift quality (spermatophore weight and cyanide content) were correlated in nine Heliconius species from greenhouse populations. As predicted, both spermatophore weight and cyanide content were correlated with mating frequency. This is the first report to show that degree of polyandry correlates with allocation of defensive chemical as part of a nuptial gift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号