首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shi H  Tschudi C  Ullu E 《RNA (New York, N.Y.)》2006,12(12):2063-2072
RNA interference (RNAi) is an evolutionarily conserved gene-silencing pathway that is triggered by double-stranded RNA (dsRNA). Central to this pathway are two ribonucleases: Dicer, a multidomain RNase III family enzyme that initiates RNAi by generating small interfering RNAs (siRNAs), and Argonaute or Slicer, an RNase H signature enzyme that affects cleavage of mRNA. Previous studies in the early diverging protozoan Trypanosoma brucei have established a key role for Argonaute 1 in RNAi. However, the identity of Dicer has not been resolved. Here, we report the identification and functional characterization of a T. brucei Dicer-like enzyme (TbDcl1). Using genetic and biochemical approaches, we provide evidence that TbDcl1 is required for the generation of siRNA-size molecules and for RNAi. Whereas Dicer and Dicer-like proteins are endowed with two adjacent RNase III domains at the carboxyl terminus (RNase IIIa and RNase IIIb), the arrangement of these two domains is unusual in TbDcl1. RNase IIIa is close to the amino terminus, and RNase IIIb is located approximately in the center of the molecule. This domain organization is specific to trypanosomatids and further illustrates the variable structures of protozoan Dicer-like proteins as compared to fungal and metazoan Dicer.  相似文献   

2.
Human Dicer contains two RNase III domains (RNase IIIa and RNase IIIb) that are responsible for the production of short interfering RNAs and microRNAs. These small RNAs induce gene silencing known as RNA interference. Here, we report the crystal structure of the C-terminal RNase III domain (RNase IIIb) of human Dicer at 2.0 Å resolution. The structure revealed that the RNase IIIb domain can form a tightly associated homodimer, which is similar to the dimers of the bacterial RNase III domains and the two RNase III domains of Giardia Dicer. Biochemical analysis showed that the RNase IIIb homodimer can cleave double-stranded RNAs (dsRNAs), and generate short dsRNAs with 2 nt 3′ overhang, which is characteristic of RNase III products. The RNase IIIb domain contained two magnesium ions per monomer around the active site. The distance between two Mg-1 ions is approximately 20.6 Å, almost identical with those observed in bacterial RNase III enzymes and Giardia Dicer, while the locations of two Mg-2 ions were not conserved at all. We presume that Mg-1 ions act as catalysts for dsRNA cleavage, while Mg-2 ions are involved in RNA binding.  相似文献   

3.
RISC, the RNA-induced silencing complex, uses short interfering RNAs (siRNAs) or micro RNAs (miRNAs) to select its targets in a sequence-dependent manner. Key RISC components are Argonaute proteins, which contain two characteristic domains, PAZ and PIWI. PAZ is highly conserved and is found only in Argonaute proteins and Dicer. We have solved the crystal structure of the PAZ domain of Drosophila Argonaute2. The PAZ domain contains a variant of the OB fold, a module that often binds single-stranded nucleic acids. PAZ domains show low-affinity nucleic acid binding, probably interacting with the 3' ends of single-stranded regions of RNA. PAZ can bind the characteristic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway.  相似文献   

4.
In humans a single species of the RNAseIII enzyme Dicer processes both microRNA precursors into miRNAs and long double-stranded RNAs into small interfering RNAs (siRNAs). An interesting but poorly understood domain of the mammalian Dicer protein is the N-terminal helicase-like domain that possesses a signature DExH motif. Cummins et al. created a human Dicer mutant cell line by inserting an AAV targeting cassette into the helicase domain of both Dicer alleles in HCT116 cells generating an in-frame 43-amino-acid insertion immediately adjacent to the DExH box. This insertion creates a Dicer mutant protein with defects in the processing of most, but not all, endogenous pre-miRNAs into mature miRNA. Using both biochemical and computational approaches, we provide evidence that the Dicer helicase mutant is sensitive to the thermodynamic properties of the stems in microRNAs and short-hairpin RNAs, with thermodynamically unstable stems resulting in poor processing and a reduction in the levels of functional mi/siRNAs. Paradoxically, this mutant exhibits enhanced processing efficiency and concomitant RNA interference when thermodynamically stable, long-hairpin RNAs are used. These results suggest an important function for the Dicer helicase domain in the processing of thermodynamically unstable hairpin structures.  相似文献   

5.
6.
Novel modes of protein-RNA recognition in the RNAi pathway   总被引:6,自引:0,他引:6  
Gene silencing mediated by RNA interference (RNAi) depends on short interfering RNAs (siRNAs) and micro RNAs (miRNAs). These RNAs have unique features, namely a defined size of 19-21 base pairs, and characteristic two-nucleotide single-stranded 3' overhangs and 5' monophosphate groups. These molecular features of siRNAs and miRNAs are produced by RNase III enzymes, which are a hallmark of gene silencing induced by double-stranded RNA. Recent structural studies of components of the RNAi pathway, including PAZ, Piwi and RNase III domains, as well as full-length Argonaute and viral p19 proteins, have revealed distinct and novel modes of sequence-independent recognition of the characteristic features of siRNAs and miRNAs in the RNAi pathway.  相似文献   

7.
小RNA与蛋白质的相互作用   总被引:1,自引:0,他引:1  
刘默芳  王恩多 《生命科学》2008,20(2):178-182
小分子调控RNA,包括siRNA(small interfering RNA)、miRNA(microRNA)和piRNA(piwiinteracting RNA)、hsRNA(heterochromatin associatedsmall RNA)等,是当前生命科学研究的前沿热点。越来越多的证据表明,这些小分子RNA存在于几乎所有较高等的真核生物细胞中,对生物体具有非常重要的调控功能。它们通过各种序列特异性的RNA基因沉默作用,包括RNA干扰(RNAi)、翻译抑制、异染色质形成等,调控诸如生长发育、应激反应、沉默转座子等各种各样的细胞进程。随着对这些小分子调控RNA的发现,一些RNascⅢ酶家族成员、Argonaute蛋白质家族成员及RNA结合蛋白质等先后被鉴定为小RNA的胞内蛋白质合作者,参与小RNA的加工成熟和在细胞内行使功能。本综述简介一些RNA沉默作用途径中重要组分的结构和功能的研究进展。  相似文献   

8.
RNA interference is a powerful tool for target-specific knockdown of gene expression. The triggers for this process are duplex small interfering RNAs (siRNAs) of 21-25 nt with 2-bp 3' overhangs produced in cells by the RNase III family member Dicer. We have observed that short RNAs that are long enough to serve as Dicer substrates (D-siRNA) can often evoke more potent RNA interference than the corresponding 21-nt siRNAs; this is probably a consequence of the physical handoff of the Dicer-produced siRNAs to the RNA-induced silencing complex. Here we describe the design parameters for D-siRNAs and a protocol for in vitro and in vivo intraperitoneal delivery of D-siRNAs and siRNAs to macrophages. siRNA delivery and transfection and analysis of macrophages in vivo can be accomplished within 36 h.  相似文献   

9.
Dicer结构和功能研究进展   总被引:3,自引:0,他引:3  
彭杰军  燕飞  陈海如  陈剑平 《遗传》2008,30(12):1550-1556
摘要: Dicer蛋白是RNA干扰机制的关键组分, 负责siRNA和miRNA的产生。它主要由RNA解旋酶结构域、PAZ结构域、RNaseⅢ结构域和双链RNA结合结构域构成。Dicer的结构特点决定了它所产生的小RNA的结构特点。不同生物体具有不同数量的Dicer, 各Dicer既有功能上各自独立的特点, 同时又有功能的冗余和交叉, 而在进化过程中, Dicer的数量逐渐减少, 功能却逐步整合从而表现出多功能的特点。对Dicer结构和功能进行深入研究, 有助于了解Dicer乃至整个RNAi及相关途径的作用机制, 也有助于揭示它们在进化过程中所表现出的规律和特点。文章对上述Dicer结构及功能特点作简要综述。  相似文献   

10.
The study of small RNAs and Argonaute proteins in eukaryotes that are deficient in functional RNA interference could provide insights into novel functions of small RNAs. In this study we describe small non-coding RNAs bound to a distinctive Argonaute protein of Trypanosoma cruzi, TcPIWI-tryp. Co-immunoprecipitation of TcPIWI-tryp followed by deep sequencing of isolated RNA identified abundant small RNAs derived from rRNAs and tRNAs. The small RNA repertoire differed from that of the canonical Argonaute in organisms with functional RNA interference, which could indicate novel biological functions for TcPIWI-tryp in T. cruzi and other members of the trypanosomatid clade.  相似文献   

11.
Synthetic shRNAs as potent RNAi triggers   总被引:19,自引:0,他引:19  
Designing potent silencing triggers is key to the successful application of RNA interference (RNAi) in mammals. Recent studies suggest that the assembly of RNAi effector complexes is coupled to Dicer cleavage. Here we examine whether transfection of optimized Dicer substrates results in an improved RNAi response. Dicer cleavage of chemically synthesized short hairpin RNAs (shRNAs) with 29-base-pair stems and 2-nucleotide 3' overhangs produced predictable homogeneous small RNAs comprising the 22 bases at the 3' end of the stem. Consequently, direct comparisons of synthetic small interfering RNAs and shRNAs that yield the same small RNA became possible. We found synthetic 29-mer shRNAs to be more potent inducers of RNAi than small interfering RNAs. Maximal inhibition of target genes was achieved at lower concentrations and silencing at 24 h was often greater. These studies provide the basis for an improved approach to triggering experimental silencing via the RNAi pathway.  相似文献   

12.
13.
14.
15.
Dicer is a member of the ribonuclease III enzyme family and processes double‐stranded RNA into small functional RNAs. The variation in the domain architecture of Dicer among different species whilst preserving its biological dicing function is intriguing. Here, we describe the structure and function of a novel catalytically active RNase III protein, a non‐canonical Dicer (PsDCR1), found in budding yeast Pichia stipitis. The structure of the catalytically active region (the catalytic RNase III domain and double‐stranded RNA‐binding domain 1 [dsRBD1]) of DCR1 showed that RNaseIII domain is structurally similar to yeast RNase III (Rnt1p) but uniquely presents dsRBD1 in a diagonal orientation, forming a catalytic core made of homodimer and large RNA‐binding surface. The second dsRNA binding domain at C‐terminus, which is absent in Rnt1, enhances the RNA cleavage activity. Although the cleavage pattern of PsDCR1 anchors an apical loop similar to Rnt1, the cleavage activity depended on the sequence motif at the lower stem, not the apical loop, of hairpin RNA. Through RNA sequencing and RNA mutations, we showed that RNA cleavage by PsDCR1 is determined by the stem‐loop structure of the RNA substrate, suggesting the possibility that stem‐loop RNA‐guided gene silencing pathway exists in budding yeast.  相似文献   

16.
Ribonuclease III (RNase III) enzymes occur ubiquitously in biology and are responsible for processing RNA precursors into functional RNAs that participate in protein synthesis, RNA interference and a range of other cellular activities. Members of the RNase III enzyme family, including Escherichia coli RNase III, Rnt1, Dicer and Drosha, share the ability to recognize and cleave double-stranded RNA (dsRNA), typically at specific positions or sequences. Recent biochemical and structural data have shed new light on how RNase III enzymes catalyze dsRNA hydrolysis and how substrate specificity is achieved. A major theme emerging from these studies is that accessory domains present in different RNase III enzymes are the key determinants of substrate selectivity, which in turn dictates the specialized biological function of each type of RNase III protein.  相似文献   

17.
YF Ren  G Li  J Wu  YF Xue  YJ Song  L Lv  XJ Zhang  KF Tang 《PloS one》2012,7(7):e40705
It has been reported that decreased Dicer expression leads to Alu RNAs accumulation in human retinal pigmented epithelium cells, and Dicer may process the endogenous SINE/B1 RNAs (the rodent equivalent of the primate Alu RNAs) into small interfering RNAs (siRNAs). In this study, we aimed to address whether Dicer can process Alu RNAs and their common ancestor, 7SL RNA. Using Solexa sequencing technology, we showed that Alu-derived small RNAs accounted for 0.6% of the total cellular small RNAs in HepG2.2.15 cells, and the abundance decreased when Dicer was knocked down. However, Alu-derived small RNAs showed different characteristics from miRNAs and siRNAs, the classic Dicer-processed products. Interestingly, we found that small RNAs derived from 7SL RNA accounted for 3.1% of the total cellular small RNAs in the control cells, and the abundance dropped about 3.4 folds in Dicer knockdown cells. Dicer-dependent biogenesis of 7SL RNA-derived small RNAs was validated by northern blotting. In vitro cleavage assay using the recombinant human Dicer protein also showed that synthetic 7SL RNA was processed by Dicer into fragments of different lengths. Further functional analysis suggested that 7SL RNA-derived small RNAs do not function like miRNAs, neither do they regulate the expression of 7SL RNA. In conclusion, the current study demonstrated that Dicer can process 7SL RNA, however, the biological significance remains to be elucidated.  相似文献   

18.
19.
S Gu  L Jin  Y Huang  F Zhang  MA Kay 《Current biology : CB》2012,22(16):1536-1542
Small RNAs regulate genetic networks through a ribonucleoprotein complex called the RNA-induced silencing complex (RISC), which, in mammals, contains at its center one of four Argonaute proteins (Ago1-Ago4) (reviewed in [1-4]). A key regulatory event in the RNA interference (RNAi) and microRNA (miRNA) pathways is Ago loading, wherein double-stranded small-RNA duplexes are incorporated into RISC (pre-RISC) and then become single-stranded (mature RISC), a process that is not well understood [5, 6]. The?Agos contain an evolutionarily conserved PAZ (Piwi/Argonaute/Zwille) domain [7, 8] whose primary function is to bind the 3' end of small RNAs [9-13]. We created multiple PAZ-domain-disrupted mutant Ago proteins and studied their biochemical properties and biological functionality in cells.?We found that the PAZ domain is dispensable for Ago loading of slicing-competent RISC. In contrast, in the absence of slicer activity or slicer-substrate duplex RNAs,?PAZ-disrupted Agos bound duplex small interfering RNAs,?but were unable to unwind or eject the passenger strand and form functional RISC complexes. We have discovered that the highly conserved PAZ domain plays an important role in RISC activation, providing new mechanistic insights into how miRNAs regulate genes, as well as new insights for future design of miRNA- and RNAi-based therapeutics.  相似文献   

20.
One of the most exciting recent developments in RNA biology has been the discovery of small non-coding RNAs that affect gene expression through the RNA interference (RNAi) mechanism. Two major classes of RNAs involved in RNAi are small interfering RNA (siRNA) and microRNA (miRNA). Dicer, an RNase III enzyme, plays a central role in the RNAi pathway by cleaving precursors of both of these classes of RNAs to form mature siRNAs and miRNAs, which are then loaded into the RNA-induced silencing complex (RISC). miRNA and siRNA precursors are quite structurally distinct; miRNA precursors are short, imperfect hairpins while siRNA precursors are long, perfect duplexes. Nonetheless, Dicer is able to process both. Dicer, like the majority of RNase III enzymes, contains a dsRNA binding domain (dsRBD), but the data are sparse on the exact role this domain plays in the mechanism of Dicer binding and cleavage. To further explore the role of human Dicer-dsRBD in the RNAi pathway, we determined its binding affinity to various RNAs modeling both miRNA and siRNA precursors. Our study shows that Dicer-dsRBD is an avid binder of dsRNA, but its binding is only minimally influenced by a single-stranded – double-stranded junction caused by large terminal loops observed in miRNA precursors. Thus, the Dicer-dsRBD contributes directly to substrate binding but not to the mechanism of differentiating between pre-miRNA and pre-siRNA. In addition, NMR spin relaxation and MD simulations provide an overview of the role that dynamics contribute to the binding mechanism. We compare this current study with our previous studies of the dsRBDs from Drosha and DGCR8 to give a dynamic profile of dsRBDs in their apo-state and a mechanistic view of dsRNA binding by dsRBDs in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号